Skip to main content

Mimicking Physarum Space Exploration with Networks of Memristive Oscillators

  • Chapter
  • First Online:

Abstract

Physarum polycephalum’s foraging has been for a long time a real source of inspiration for scientists and researchers as it exhibits intrinsic optimization characteristics. When some sources of nutrients are present, Physarum connects these sources with its protoplasmic vascular network, along shortest path connections. This chapter presents the modeling of Physarum’s learning and adaptivity to periodic environmental changes by a memristor-based passive LC filter, and further demonstrates its computational capabilities through two different electronic approaches. Firstly, a circuit-level model of Physarum’s oscillatory internal motion mechanism is designed to emulate the local signal propagation and the expansion of its vascular network during biological shortest path finding experiments. Furthermore, an extension of this model in a system-level approach is presented, which introduces also the shrinking mechanism that Physarum performs to reduce its power consumption after it has reached every nutrient source within its environment. The proper functioning of both the aforementioned approaches was verified via circuit simulations in SPICE as well as MATLAB. Finally, the effect of environmental noise was integrated to the presented approaches, permitting their evaluation under more realistic circumstances closer to the biological experiments, with very interesting results.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Chua, L.O.: Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971)

    Article  Google Scholar 

  2. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453(7191), 80–83 (2008)

    Article  Google Scholar 

  3. Pershin, Y.V., Di Ventra, M.: Memory effects in complex materials and nanoscale systems. Adv. Phys. 60(2), 145–227 (2011)

    Article  Google Scholar 

  4. Gale, E.: Tio2-based memristors and reram: materials, mechanisms and models (a review). Semicond. Sci. Technol. 29(10), 104004 (2014)

    Article  Google Scholar 

  5. Linn, E., Rosezin, R., Tappertzhofen, S., Böttger, U., Waser, R.: Beyond von neumannlogic operations in passive crossbar arrays alongside memory operations. Nanotechnology 23(30), 305205 (2012)

    Article  Google Scholar 

  6. Lehtonen, E., Poikonen, J., Laiho, M.: Implication logic synthesis methods for memristors. In: 2012 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2441–2444. IEEE, New York (2012)

    Google Scholar 

  7. Shin, S., Kim, K., Kang, S.M.: Memristor applications for programmable analog ICs. IEEE Trans. Nanotechnol. 10(2), 266–274 (2011)

    Article  Google Scholar 

  8. Zhao, Y.B., Tse, C.K., Feng, J.C., Guo, Y.C.: Application of memristor-based controller for loop filter design in charge-pump phase-locked loops. Circuits Syst. Sign. Process. 32(3), 1013–1023 (2013)

    Article  MathSciNet  Google Scholar 

  9. Driscoll, T., Quinn, J., Klein, S., Kim, H.T., Kim, B., Pershin, Y.V., Di Ventra, M., Basov, D.: Memristive adaptive filters. Appl. Phys. Lett. 97(9), 093502 (2010)

    Article  Google Scholar 

  10. Bayat, F.M., Alibart, F., Gao, L., Strukov, D.B.: A reconfigurable fir filter with memristor-based weights. arXiv preprint arXiv:1608.05445 (2016)

  11. Pershin, Y.V., La Fontaine, S., Di Ventra, M.: Memristive model of amoeba learning. Phys. Rev. E 80(2), 021926 (2009)

    Article  Google Scholar 

  12. Traversa, F.L., Pershin, Y.V., Di Ventra, M.: Memory models of adaptive behavior. IEEE Trans. Neural Networks Learn. Syst. 24(9), 1437–1448 (2013)

    Article  Google Scholar 

  13. Adamatzky, A.: Physarum Machines: Computers from Slime Mould, vol. 74. World Scientific, Singapore (2010)

    Book  Google Scholar 

  14. Zhang, X., Adamatzky, A., Chan, F.T.S., Deng, Y., Yang, H., Yang, X.S., Tsompanas, M.A.I., Sirakoulis, G.C., Mahadevan, S.: A biologically inspired network design model. Sci. Rep. 5, 455–467 (2015)

    Google Scholar 

  15. Nakagaki, T., Yamada, H., Tóth, A.: Maze-solving by an amoeboid organism. Nature 407(6803), 470 (2000)

    Article  Google Scholar 

  16. Tero, A., Takagi, S., Saigusa, T., Ito, K., Bebber, D.P., Fricker, M.D., Yumiki, K., Kobayashi, R., Nakagaki, T.: Rules for biologically inspired adaptive network design. Science 327(5964), 439–442 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Adamatzky, A.: Slime mould computes planar shapes. Int. J. Bio-Inspired Comput. 4(3), 149–154 (2012)

    Article  Google Scholar 

  18. Schumann, A., Pancerz, K., Adamatzky, A., Grube, M.: Bio-inspired game theory: the case of Physarum polycephalum. In: Proceedings of the 8th International Conference on Bioinspired Information and Communications Technologies, ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), pp. 9–16 (2014)

    Google Scholar 

  19. Aono, M., Hara, M.: Spontaneous deadlock breaking on amoeba-based neurocomputer. BioSystems 91(1), 83–93 (2008)

    Article  Google Scholar 

  20. Zhu, L., Aono, M., Kim, S.J., Hara, M.: Amoeba-based computing for traveling salesman problem: long-term correlations between spatially separated individual cells of Physarum polycephalum. Biosystems 112(1), 1–10 (2013)

    Article  Google Scholar 

  21. Gale, E., Adamatzky, A., de Lacy Costello, B.: Slime mould memristors. BioNanoScience 5(1), 1–8 (2014)

    Article  Google Scholar 

  22. Saigusa, T., Tero, A., Nakagaki, T., Kuramoto, Y.: Amoebae anticipate periodic events. Phys. Rev. Lett. 100, 018101 (2008)

    Article  Google Scholar 

  23. Chua, L.: If it’s pinched it’s a memristor. Semicond. Sci. Technol. 29(10) (2014)

    Article  Google Scholar 

  24. Vourkas, I., Sirakoulis, G.C.: Memristor-Based Nanoelectronic Computing Circuits and Architectures: Foreword by Leon Chua. Emergence, Complexity and Computation. Springer, Berlin (2015)

    Google Scholar 

  25. Ziegler, M., Ochs, K., Hansen, M., Kohlstedt, H.: An electronic implementation of amoeba anticipation. J. Phys. A: Math. Theor. 114(2), 565–570 (2014)

    Google Scholar 

  26. Shannon, C.E.: Presentation of a maze-solving machine. In: Proceedings of the 8th Conference on Josiah Macy Jr. Foundation (Cybernetics), pp. 173–180 (1951)

    Google Scholar 

  27. Steinbock, O., Tóth, Á., Showalter, K.: Navigating complex labyrinths: optimal paths from chemical waves. Science 267(5199), 868–871 (1995)

    Article  Google Scholar 

  28. Agladze, K., Magome, N., Aliev, R., Yamaguchi, T., Yoshikawa, K.: Finding the optimal path with the aid of chemical wave. Physica D 106(3–4), 247–254 (1997)

    Article  Google Scholar 

  29. Rambidi, N., Yakovenchuck, D.: Finding paths in a labyrinth based on reaction-diffusion media. BioSystems 51(2), 67–72 (1999)

    Article  Google Scholar 

  30. Rambidi, N., Yakovenchuk, D.: Chemical reaction-diffusion implementation of finding the shortest paths in a labyrinth. Phys. Rev. E 63(2), 026607 (2001)

    Article  Google Scholar 

  31. Adamatzky, A., de Lacy Costello, B.: Collision-free path planning in the Belousov-Zhabotinsky medium assisted by a cellular automaton. Naturwissenschaften 89(10), 474–478 (2002)

    Article  Google Scholar 

  32. Reyes, D.R., Ghanem, M.M., Whitesides, G.M., Manz, A.: Glow discharge in microfluidic chips for visible analog computing. Lab Chip 2(2), 113–116 (2002)

    Article  Google Scholar 

  33. Dubinov, A.E., Maksimov, A.N., Mironenko, M.S., Pylayev, N.A., Selemir, V.D.: Glow discharge based device for solving mazes. Phys. Plasmas 21(9), 093503 (2014)

    Article  Google Scholar 

  34. Lagzi, I., Soh, S., Wesson, P.J., Browne, K.P., Grzybowski, B.A.: Maze solving by chemotactic droplets. J. Am. Chem. Soc. 132(4), 1198–1199 (2010)

    Article  Google Scholar 

  35. Cejkova, J., Novak, M., Stepanek, F., Hanczyc, M.M.: Dynamics of chemotactic droplets in salt concentration gradients. Langmuir 30(40), 11937–11944 (2014)

    Article  Google Scholar 

  36. Reynolds, A.: Maze-solving by chemotaxis. Phys. Rev. E 81(6), 062901 (2010)

    Article  Google Scholar 

  37. Lovass, P., Branicki, M., Tóth, R., Braun, A., Suzuno, K., Ueyama, D., Lagzi, I.: Maze solving using temperature-induced marangoni flow. RSC Adv. 5(60), 48563–48568 (2015)

    Article  Google Scholar 

  38. Ricigliano, V., Chitaman, J., Tong, J., Adamatzky, A., Howarth, D.G.: Plant hairy root cultures as plasmodium modulators of the slime mold emergent computing substrate Physarum polycephalum. Frontiers Microbiol. 6, 720 (2015)

    Article  Google Scholar 

  39. Nakagaki, T., Yamada, H., Toth, A.: Path finding by tube morphogenesis in an amoeboid organism. Biophys. Chem. 92(1), 47–52 (2001)

    Article  Google Scholar 

  40. Tero, A., Kobayashi, R., Nakagaki, T.: Physarum solver: a biologically inspired method of road-network navigation. Phys. A: Stat. Mech. Appl. 363(1), 115–119 (2006)

    Article  Google Scholar 

  41. Adamatzky, A.: Slime mold solves maze in one pass, assisted by gradient of chemo-attractants. IEEE Trans. NanoBiosci. 11(2), 131–134 (2012)

    Article  Google Scholar 

  42. Reid, C.R., Beekman, M.: Solving the Towers of Hanoi – how an amoeboid organism efficiently constructs transport networks. J. Exp. Biol. 216(9), 1546–1551 (2013)

    Article  Google Scholar 

  43. Hinz, A.M.: The Tower of Hanoi. Enseign. Math 35(2), 289–321 (1989)

    MathSciNet  MATH  Google Scholar 

  44. Hinz, A.M.: Shortest paths between regular states of the Tower of Hanoi. Inf. Sci. 63(1), 173–181 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  45. Romik, D.: Shortest paths in the Tower of Hanoi graph and finite automata. SIAM J. Discrete Math. 20(3), 610–622 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  46. Zhang, X., Zhang, Y., Zhang, Z., Mahadevan, S., Adamatzky, A., Deng, Y.: Rapid Physarum Algorithm for shortest path problem. Appl. Soft Comput. 23, 19–26 (2014)

    Article  Google Scholar 

  47. Zhang, X., Wang, Q., Adamatzky, A., Chan, F.T., Mahadevan, S., Deng, Y.: A biologically inspired optimization algorithm for solving fuzzy shortest path problems with mixed fuzzy arc lengths. J. Optim. Theory Appl. 163(3), 1049–1056 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  48. Zhang, X., Adamatzky, A., Yang, H., Mahadaven, S., Yang, X.S., Wang, Q., Deng, Y.: A bio-inspired algorithm for identification of critical components in the transportation networks. Appl. Math. Comput. 248, 18–27 (2014)

    MATH  Google Scholar 

  49. Zhang, X., Adamatzky, A., Chan, F.T., Deng, Y., Yang, H., Yang, X.S., Tsompanas, M.A.I., Sirakoulis, G.C., Mahadevan, S.: A biologically inspired network design model. Sci. Rep. 5 (2015)

    Google Scholar 

  50. Zhang, X., Adamatzky, A., Yang, X.S., Yang, H., Mahadevan, S., Deng, Y.: A Physarum-inspired approach to supply chain network design. Sci. China Inf. Sci. 1–14 (2016)

    Google Scholar 

  51. Zhang, X., Mahadevan, S., Deng, Y.: Physarum-inspired applications in graph-optimization problems. Parallel Process. Lett. 25(01), 1540005 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  52. Dourvas, N., Tsompanas, M.A., Sirakoulis, G.C., Tsalides, P.: Hardware acceleration of cellular automata Physarum polycephalum model. Parallel Process. Lett. 25(01), 1540006 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  53. Becker, M., Kromker, M., Szczerbicka, H.: Evaluating heuristic optimization, bio-inspired and graph-theoretic algorithms for the generation of fault-tolerant graphs with minimal costs. In: Information Science and Applications, pp. 1033–1041. Springer, Berlin (2015)

    Google Scholar 

  54. Liang, M., Gao, C., Liu, Y., Tao, L., Zhang, Z.: A new Physarum network based genetic algorithm for bandwidth-delay constrained least-cost multicast routing. In: Advances in Swarm and Computational Intelligence, pp. 273–280. Springer, Berlin (2015)

    Chapter  Google Scholar 

  55. Ntinas, V., Vourkas, I., Sirakoulis, G.: LC filters with enhanced memristive damping. In: IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2664–2667 (August 2015)

    Google Scholar 

  56. Vourkas, I., Batsos, A., Sirakoulis, G.C.: Spice modeling of nonlinear memristive behavior. Int. J. Circuit Theory Appl. 43(5), 553–565 (2015)

    Article  Google Scholar 

  57. Vourkas, I., Sirakoulis, G.C.: A novel design and modeling paradigm for memristor-based crossbar circuits. IEEE Trans. Nanotechnol. 11(6), 1151–1159 (2012)

    Article  Google Scholar 

  58. Georgiou, P.S., Barahona, M., Yaliraki, S.N., Drakakis, E.M.: On memristor ideality and reciprocity. Microelectron. J. 45(11), 1363–1371 (2014)

    Article  Google Scholar 

  59. Vourkas, I., Sirakoulis, G.C.: On the analog computational characteristics of memristive networks. In: 2013 IEEE 20th International Conference on Electronics, Circuits, and Systems (ICECS), pp. 309–312. IEEE, New York (2013)

    Google Scholar 

  60. Adamatzky, A.: Slime mould electronic oscillators. Microelectron. Eng. 124, 58–65 (2014)

    Article  Google Scholar 

  61. Ntinas, V., Vourkas, I., Sirakoulis, G., Adamatzky, A.: Oscillation-based slime mould electronic circuit model for maze-solving computations. In: IEEE Transactions on Circuits and Systems I: Regular Papers (2016)

    Google Scholar 

  62. Ntinas, V., Vourkas, I., Sirakoulis, G.C., Adamatzky, A.: Modeling physarum space exploration using memristors. J. Phys. D: Appl. Phys. 50(17), 174004 (2017)

    Article  Google Scholar 

  63. Nakagaki, T., Yamada, H., Hara, M.: Smart network solutions in an amoeboid organism. Biophys. Chem. 107(1), 1–5 (2004)

    Article  Google Scholar 

  64. Adamatzky, A., Akl, S., Alonso-Sanz, R., Van Dessel, W., Ibrahim, Z., Ilachinski, A., Jones, J., Kayem, A.V., Martínez, G.J., De Oliveira, P., et al.: Are motorways rational from slime mould’s point of view? Int. J. Parallel Emergent Distrib. Syst. 28(3), 230–248 (2013)

    Article  Google Scholar 

  65. Adamatzky, A., Alonso-Sanz, R.: Rebuilding iberian motorways with slime mould. Biosystems 105(1), 89–100 (2011)

    Article  Google Scholar 

  66. Adamatzky, A., Schubert, T.: Schlauschleimer in Reichsautobahnen: slime mould imitates motorway network in Germany. Kybernetes 41(7/8), 1050–1071 (2012)

    Article  Google Scholar 

  67. Adamatzky, A.: Bioevaluation of World Transport Networks. World Scientific, Singapore (2012)

    Book  Google Scholar 

  68. Jones, J., Adamatzky, A.: Emergence of self-organized amoeboid movement in a multi-agent approximation of Physarum polycephalum. Bioinspiration Biomimetics 7(1) (2012)

    Article  Google Scholar 

  69. Gunji, Y.P., Murakami, H., Niizato, T., Nishiyama, Y., Tomaru, T., Adamatzky, A.: Robust swarm model based on mutual anticipation: swarm as a mobile network analyzed by rough set lattice. Int. J. Artif. Life Res. 3(1), 45–58 (2012)

    Article  Google Scholar 

  70. Gunji, Y.P., Murakami, H., Niizato, T., Nishiyama, Y., Tomaru, T., Adamatzky, A.: Inherent noise appears as a Lévy walk in fish schools. Sci. Rep. 5 (2015)

    Google Scholar 

  71. Adamatzky, A.: Physical maze solvers. all twelve prototypes implement 1961 lee algorithm. arXiv preprint arXiv:1601.04672 (2016)

    Google Scholar 

  72. Adamatzky, A., Costello, B.D.L., Asai, T.: Reaction-Diffusion Computers. Elsevier, Amsterdam (2005)

    Google Scholar 

  73. Chu, M., Kim, B., Park, S., Hwang, H., Jeon, M., Lee, B.H., Lee, B.G.: Neuromorphic hardware system for visual pattern recognition with memristor array and CMOS neuron. IEEE Trans. Industr. Electron. 62(4), 2410–2419 (2015)

    Article  Google Scholar 

  74. Cruz-Albrecht, J.M., Derosier, T., Srinivasa, N.: A scalable neural chip with synaptic electronics using cmos integrated memristors. Nanotechnology 24(38), 384011 (2013)

    Article  Google Scholar 

  75. Zidan, M.A., Fahmy, H.A.H., Hussain, M.M., Salama, K.N.: Memristor-based memory: the sneak paths problem and solutions. Microelectron. J. 44(2), 176–183 (2013)

    Article  Google Scholar 

  76. Yang, J., Zhang, M.M., Ribeiro, G.M., Williams, R.S.: Memristor cell structures for high density arrays (December 30, 2014) US Patent 8,921,960

    Google Scholar 

  77. Chang, T., Yang, Y., Lu, W.: Building neuromorphic circuits with memristive devices. IEEE Circuits Syst. Mag. 13(2), 56–73 (2013)

    Article  Google Scholar 

  78. Thomas, A.: Memristor-based neural networks. J. Phys. D: Appl. Phys. 46(9), 093001 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios Ch. Sirakoulis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ntinas, V., Vourkas, I., Sirakoulis, G.C., Adamatzky, A. (2019). Mimicking Physarum Space Exploration with Networks of Memristive Oscillators. In: Chua, L., Sirakoulis, G., Adamatzky, A. (eds) Handbook of Memristor Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-76375-0_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76375-0_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76374-3

  • Online ISBN: 978-3-319-76375-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics