Skip to main content

The Art and Science of Constructing a Memristor Model: Updated

  • Chapter
  • First Online:

Abstract

This chapter is updated from an earlier version [63]. In the few years since that book chapter was written, there have been several thousand papers published on the topic of memristors, but very few new compact memristor models have appeared. This is not a reflection of the maturity of the field but rather the difficulty of constructing an accurate and predictive compact mathematical model for an electronic circuit element that displays memristor behavior. Given the rapid advances in the field in general, it is time to provide another snapshot of the state of memristor modeling, even though any such attempt will be incomplete. Such models are essential for designing and simulating complex integrated circuits that contain memristors, and the types of applications being considered are increasing significantly. Although the fundamental equations that specify the device physics may be known, they usually comprise a set of coupled nonlinear integro-differential equations that are extremely challenging to solve in three dimensions, and standard multi-physics solvers may not have all the components needed for an accurate model. A numerical solution of the physics equations can require supercomputers and long execution times, which makes this approach useless for interactive simulation of large circuits that contain many such elements. Thus, the equations must be simplified dramatically, and it is not always clear which terms are the most important for the behavior of the device. On the other hand, a purely black box approach of fitting a set of experimental measurements to a convenient functional form runs the risk of poorly representing the behavior of the device in operating regimes outside the range in which the data were collected. Thus, a hybrid approach is necessary, in which the mathematical formalism for a memristor provides the framework for the model and knowledge of the device physics defines the state variable(s), operating limits and asymptotic behavior necessary to make the model useful. After describing the challenge, the art and science of constructing a memristor model are illustrated by three examples: a completely rewritten description of a locally active and volatile device based on a thin film of niobium dioxide that undergoes both a thermal instability and an insulator to metal transition because of Joule heating, the original description of a nonvolatile memory device based on titanium dioxide in which the effective width of an electron tunnel barrier is determined by oxygen vacancy drift caused by an applied electric field, and the recent detailed examination of the transport properties and identification of the primary state variable for tantalum oxide.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abdalla, H., Pickett, M.D.: SPICE modeling of memristors. In: 2011 IEEE International Symposium of Circuits and Systems (ISCAS), pp. 1832–1835 (2011)

    Google Scholar 

  2. Adhikari, S.P., Sah, M.P., Kim, H., Chua, L.O.: Three fingerprints of memristor. IEEE Trans. Circuits Syst. I Regul. Pap. 60, 3008 (2013)

    Article  Google Scholar 

  3. Alexandrov, A.S., Bratkovsky, A.M., Bridle, B., Savelev, S.E., Strukov, D.B., Williams, R.S.: Current-controlled negative differential resistance due to Joule heating in TiO2. Appl. Phys. Lett. 99, 202104 (2011)

    Article  Google Scholar 

  4. Ascoli, A., Slesazeck, S., Mahne, H., Tetzlaff, R., Mikolajick, T.: Nonlinear dynamics of a locally-active memristor. In: IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 62, p. 1165 (2015a)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ascoli, A., Tetzlaff, R., Chua, L.: Robust simulation of a TaO memristor model. Radioengineering 24(384–392) (2015b)

    Article  Google Scholar 

  6. Ascoli, A., Tetzlaff, R., Chua, L.O., Strachan, J.P., Williams, R.S.: History erase effect in a non-volatile memristor. IEEE Trans. Circuits Syst. 63, 389–400 (2016)

    Article  MathSciNet  Google Scholar 

  7. Ascoli, A., Tetzlaff, R., Chua, L.: Continuous and differentiable approximation of a TaO memristor model for robust numerical simulations. In: Springer Proceedings in Physics, vol. 191, pp. 61–69 (2017)

    Chapter  Google Scholar 

  8. Berglund, C.N.: Thermal filaments in vanadium dioxide. IEEE Trans. Electron Devices 16, 432 (1969)

    Article  Google Scholar 

  9. Choi, J., Torrezan, A.C., Strachan, J.P., Kotula, P.G., Lohn, A.J., Marinella, M.J., Li, Z., Williams, R.S., Yang, J.J.: High-speed and low-energy nitride memristors. Adv. Func. Mater. 26, 5290–5296 (2016)

    Article  Google Scholar 

  10. Chopra, K.L.: Current-controlled negative resistance in thin niobium oxide films. Proc. IEEE 51, 941–942 (1963)

    Article  Google Scholar 

  11. Chua, L.O.: Introduction to nonlinear network theory. McGraw-Hill, New York (1969)

    Google Scholar 

  12. Chua, L.O.: Memristor—the missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971)

    Article  Google Scholar 

  13. Chua, L.O., Kang, S.M.: Memristive devices and systems. Proc. IEEE 64, 209–223 (1976)

    Article  MathSciNet  Google Scholar 

  14. Chua, L.O.: Device modeling via basic nonlinear circuit elements. IEEE Trans. Circuits Systems CAS 27, 1014–1044 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chua, L.O.: Nonlinear Circuits. IEEE Trans. Circuits Systems CAS 31, 69–87 (1984)

    Article  MATH  Google Scholar 

  16. Chua, L.O.: Nonlinear foundations for nanodevices, part I: The four-element torus. Proc. IEEE 91, 1830–1859 (2003)

    Article  Google Scholar 

  17. Chua, L.O.: Local activity is the origin of complexity. Int J of Bifurcation and Chaos 15, 3435–3456 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chua, L.O.: Resistance switching memories are memristors. Appl. Phys. A 102, 765–783 (2011)

    Article  MATH  Google Scholar 

  19. Chua, L.O., Sbitnev, V., Kim, H.: Hodgkin-Huxley axon is made of memristors. Int. J. Bifurc. Chaos 22, 1230011 (2012a)

    Article  MATH  Google Scholar 

  20. Chua, L.O., Sbitnev, V., Kim, H.: Neurons are poised near the edge of chaos. Int. J. Bifurc. Chaos 22, 1250098 (2012b)

    Article  Google Scholar 

  21. Chua, L.O.: The fourth element. Proc. IEEE 100, 1920–1927 (2012)

    Article  Google Scholar 

  22. Chua, L.: Memristor, hodgkin-huxley, and edge of chaos. Nanotechnology 24, 383001 (2013)

    Article  Google Scholar 

  23. Chua, L.: If it’s pinched it’s a memristor. Semicond. Sci. Technol. 29, 104001 (2014)

    Article  Google Scholar 

  24. Chua, L.: Everything you wish to know about memristors but are afraid to ask. Radioengineering 24, 319–368 (2015)

    Article  Google Scholar 

  25. Crane, H.D.: The neuristor. IRE Trans. Electronic Computers EC 9, 370–371 (1960)

    Article  Google Scholar 

  26. Geppert, D.V.: A new negative-resistance device. Proc. IEEE 51, 223 (1963)

    Article  Google Scholar 

  27. Gibson, G., Musunuru, M., Zhang, J., Vandenberghe, K., Lee, J., Hsieh, C.C., Jackson, W., Jeon, Y., Henze, D., Li, Z., Williams, R.S.: An accurate locally active memristor model for S-type negative differential resistance in NbOx. Appl. Phys. Lett. 108, 023505 (2016)

    Article  Google Scholar 

  28. Goldfarb, I., Miao, F., Yang, J.J., Yi, W., Strachan, J.P., Zhang, M.X., Pickett, M.D., Medeiros-Ribeiro, G., Williams, R.S.: Electronic structure and transport measurements of amorphous transition-metal oxides: observation of Fermi glass behavior. Appl. Phys. A 107, 1–11 (2012)

    Article  Google Scholar 

  29. Graves, C.E., Dávila, N., Merced-Grafals, E.J., Lam, S.T., Strachan, J.P., Williams, R.S.: Temperature- and field-dependent transport measurements in continuously tunable tantalum oxide memristors expose the dominant state variable. Appl. Phys. Lett. 110, 123501 (2017)

    Article  Google Scholar 

  30. Guckenheimer J, Holmes P (1983) in Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Springer, New York 117–165

    Google Scholar 

  31. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

    Article  Google Scholar 

  32. Hu, M., Strachan, J.P., Li, Z., Williams, R.S.: Dot-product engine as computing memory to accelerate machine learning algorithms. In: IEEE 17th International Symposium on Quality Electronic Design (ISQED), pp. 374–379 (2016a)

    Google Scholar 

  33. Hu, M., Strachan, J.P., Li, Z., Merced Grafals, E., Davila, N., Graves, C., Lam, S., Ge, N., Williams, R.S., Yang, J.J.: Dot-product engine for neuromorphic computing: programming 1T1M crossbar to accelerate matrix-vector multiplication. In: IEEE Design Automation Conference (DAC), pp.1–6 (2016b)

    Google Scholar 

  34. Itoh, M., Chua, L.O.: Memristor oscillators. Int. J. Bifurcation Chaos 18, 3183–3206 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Itoh, M., Chua, L.O.: Parasitic effects on memristor dynamics. Int. J. Bifurcat. Chaos 26, 1630014 (2016)

    Article  MATH  Google Scholar 

  36. Jannick, R.F., Whitmore, D.H.: Electrical conductivity and thermoelectric power of niobium dioxide. J. Phys. Chem. Solids 27, 1183 (1966)

    Article  Google Scholar 

  37. Kumar, S., Pickett, M.D., Strachan, J.P., Gibson, G., Nishi, Y., Williams, R.S.: Local temperature redistribution and structural transition during Joule-heating-driven conductance switching in VO2. Adv. Mater. 25, 6128 (2013)

    Article  Google Scholar 

  38. Kumar, S., Graves, C.E., Strachan, J.P., Grafals, EM., Kilcoyne, A.L.D., Tyszczak, T., Weker, J.N., Nishi, Y., Williams, R.S.: Direct observation of localized radial oxygen migration in functioning tantalum oxide memristors. Adv. Mater. 28,2272–2276 (2016a)

    Article  Google Scholar 

  39. Kumar, S., Wang, Z., Huang, X., Kumari, N., Dávila, N., Strachan, J.P., Vine, D., Kilcoyne, A.L.D., Nishi, Y., Williams, R.S.: Conduction channel formation and dissolution due to oxygen thermophoresis/diffusion in hafnium oxide memristors. ACS Nano 10, 11205–19 (2016b)

    Article  Google Scholar 

  40. Kumar, S., Strachan, J.P., Williams, R.S.: Chaotic dynamics in a nanoscale NbO2 Mott memristor. Nature 548, 318–321 (2017)

    Article  Google Scholar 

  41. Kumar, S., Wang, Z., Davila, N., Kumari, N., Norris, K.J., Huang, X., Strachan, J.P., Vine, D., Kilcoyne, A.L.D., Nishi,Y., Williams, R.S.: Physical characterization of current- and temperature-controlled negative differential resistances in NbO2. Nat. Commun. (2017)

    Google Scholar 

  42. Lee, S.R., Kim, Y.B., Chang, M., Kim, K.M., Lee, C.B., Hur, J.H., Park, G.Y., Lee, D., Lee, M.J., Kim, C.J., Chung, U.I., Yoo, I.K., Kim, K.: Multi-level switching of triple-layered TaOx RRAM with excellent reliability for storage class memory. In: IEEE Symposium on VLSI Technology (VLSIT), pp. 71–72 (2012)

    Google Scholar 

  43. Mannan, Z.I., Choi, H., Kim, H.: Chua corsage memristor oscillator via hopf bifurcation. Int. J. Bifurcat. chaos 26, 1630009 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  44. Mainzer, K., Chua, L.: Local Activity Principle. Imperial College Press, London (2013)

    Book  MATH  Google Scholar 

  45. Medeiros-Ribeiro, G., Perner, F., Carter, R., Abdalla, H., Pickett, M.D., Williams, R.S.: Lognormal switching times for titanium dioxide bipolar memristors: origin and resolution. Nanotechnology 22, 095702 (2011)

    Article  Google Scholar 

  46. Merced-Grafals, E.J., Dávila, N., Ge, N., Williams, R.S., Strachan, J.P.: Repeatable, accurate, and high speed multi-level programming of memristor 1T1R arrays for power efficient analog computing applications. Nanotechnology 27, 365202 (2016)

    Article  Google Scholar 

  47. Mott, N.F., Davis, E.A.: Electronic Processes in Non-Crystalline Materials. Clarendon, Oxford (1979)

    Google Scholar 

  48. Pickett, M.D., Strukov, D.B., Borghetti, J.L., Yang, J.J., Snider, G.S., Stewart, D.R., Williams, R.S.: Switching dynamics in titanium dioxide memristive devices. J. Appl. Phys. 106, 074508 (2009)

    Article  Google Scholar 

  49. Pickett, M.D., Williams, R.S.: Sub-100 femtoJoule and sub-nanosecond thermally-driven threshold switching in niobium oxide crosspoint nanodevices. Nanotechnology 23, 215202 (2012)

    Article  Google Scholar 

  50. Pickett, M.D., Medeiros-Ribeiro, G., Williams, R.S.: A scalable neuristor built with Mott memristors. Nat. Mater. 12, 114–117 (2013)

    Article  Google Scholar 

  51. Prakash, A., Deleruyelle, D., Song, J., Bocquet, M., Hwang, H.: Resistance controllability and variability improvement in a TaOx-based resistive memory for multilevel storage application. Appl. Phys. Lett. 106, 233104 (2015)

    Article  Google Scholar 

  52. Ramprasad, R.: First principles study of oxygen vacancy defects in tantalum pentoxide. J. Appl. Phys. 94, 5609–5612 (2003)

    Article  Google Scholar 

  53. Ridley, B.K.: Specific negative resistance in solids. Proc. Phys. Soc. London 82, 954 (1963)

    Article  Google Scholar 

  54. Sah, MPd, Yang, C., Kim, H., Muthuswamy, B., Jevtic, J., Chua, L.: A generic model of memristors with parasitic components. IEEE Trans. Circuits Syst. I Regul. Pap. 62, 891–898 (2015)

    Article  MathSciNet  Google Scholar 

  55. Sethupathi, K., Kim, H., Shah, M.P.d., Chua, L.O.: Memristor modelling. In: Proceedings—IEEE International Symposium on Circuits and Systems, art. no. 6865179, pp. 490–493 (2014)

    Google Scholar 

  56. Strachan, J.P., Torrezan, A.C., Medeiros-Ribeiro, G., Williams, R.S.: Measuring the switching dynamics and energy efficiency of tantalum oxide memristors. Nanotechnology 22, 505402 (2011)

    Article  Google Scholar 

  57. Strachan, J.P., Torrezan, A.C., Miao, F., Pickett, M.D., Yang, J.J., Yi, W., Medeiros-Ribeiro, G., Williams, R.S.: State dynamics and modeling of tantalum oxide memristors. IEEE Trans. Electr. Devices 60, 2491–2202 (2013)

    Article  Google Scholar 

  58. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453, 80–83 (2008)

    Article  Google Scholar 

  59. Strukov, D.B., Williams, R.S.: Exponential ionic drift: fast switching and low volatility of thin-film memristors. Appl. Phys. A 94, 515–519 (2009)

    Article  Google Scholar 

  60. Strukov, D.B., Borghetti, J.L., Williams, R.S.: Coupled ionic and electronic transport model of thin-film semiconductor memristive behavior. Small 5, 1058–1063 (2009)

    Article  Google Scholar 

  61. Strukov, D.B., Alibart, F., Williams, R.S.: Thermophoresis/diffusion as a mechanism for unipolar resistive switching in metal-oxide-metal memristors. Appl. Phys. A 107, 509–518 (2012)

    Article  Google Scholar 

  62. Sze, S.M., Ng, K.K.: Physics of Semiconductor Devices. Hoboken, New Jersey (2006)

    Book  Google Scholar 

  63. Williams, R.S., Pickett, M.D.: The art and science of constructing a memristor model. In: Memristors and Memristive Systems, pp.93–104. Springer, New York (2014)

    Google Scholar 

  64. Yang, J.J., Strukov, D.B., Stewart, D.R.: Memristive devices for computing. Nat. Nanotechnol. 8, 13–24 (2013)

    Article  Google Scholar 

  65. Yi, W., Savel’ev, S., Medeiros-Ribeiro, G., Miao, F., Zhang, M., Yang, J.J., Bratkovsky, A.M., Williams, R.S.: Quantized conductance coincides with state instability and excess noise in tantalum oxide memristors. Nat. Commun. 7, 11142 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Stanley Williams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, S., Gibson, G., Graves, C.E., Pickett, M.D., Strachan, J.P., Stanley Williams, R. (2019). The Art and Science of Constructing a Memristor Model: Updated. In: Chua, L., Sirakoulis, G., Adamatzky, A. (eds) Handbook of Memristor Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-76375-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76375-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76374-3

  • Online ISBN: 978-3-319-76375-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics