Lecture Notes in Computer Science

10769

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, Lancaster, UK

Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler

University of Surrey, Guildford, UK

Jon M. Kleinberg

Cornell University, Ithaca, NY, USA

Friedemann Mattern

ETH Zurich, Zurich, Switzerland

John C. Mitchell

Stanford University, Stanford, CA, USA

Moni Naor

Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan

Indian Institute of Technology, Madras, India

Bernhard Steffen

TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos

University of California, Los Angeles, CA, USA

Doug Tygar

University of California, Berkeley, CA, USA

Gerhard Weikum

Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

Public-Key Cryptography – PKC 2018

21st IACR International Conference on Practice and Theory of Public-Key Cryptography Rio de Janeiro, Brazil, March 25–29, 2018 Proceedings, Part I

Editors
Michel Abdalla
CNRS and École Normale Supérieure
Paris
France

Ricardo Dahab University of Campinas Campinas, SP Brazil

ISSN 0302-9743 ISSN 1611-3349 (electronic) Lecture Notes in Computer Science ISBN 978-3-319-76577-8 ISBN 978-3-319-76578-5 (eBook) https://doi.org/10.1007/978-3-319-76578-5

Library of Congress Control Number: 2018934351

LNCS Sublibrary: SL4 – Security and Cryptology

© International Association for Cryptologic Research 2018

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG part of Springer Nature

The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The 21st IACR International Conference on Practice and Theory of Public-Key Cryptography (PKC 2018) was held March 25–29, 2018, in Rio de Janeiro, Brazil. The conference is sponsored by the International Association for Cryptologic Research (IACR) and focuses on all technical aspects of public-key cryptography.

These proceedings consist of two volumes including 49 papers that were selected by the Program Committee from 186 submissions. Each submission was assigned to at least three reviewers while submissions co-authored by Program Committee members received at least four reviews. Following the initial reviewing phase, the submissions were discussed over a period of five weeks. During this discussion phase, the Program Committee used quite intensively a recent feature of the review system, which allows Program Committee members to anonymously ask questions to the authors.

The reviewing and selection process was a challenging task and I am deeply grateful to the Program Committee members and external reviewers for their hard and thorough work. Many thanks also to Shai Halevi for his assistance with the Web submission and review software and for his constant availability.

The conference program also included invited talks by Elette Boyle (IDC Herzliya, Israel) and Hugo Krawczyk (IBM Research, USA). I would like to thank both of them as well as all the other speakers for their contributions to the program.

Finally, I would like to thank Ricardo Dahab, the general chair, for organizing a great conference and all the conference attendees for making this a truly intellectually stimulating event through their active participation.

March 2018 Michel Abdalla

PKC 2018

21st International Conference on Practice and Theory of Public-Key Cryptography

Rio de Janeiro, Brazil March 25–29, 2018

Sponsored by

The International Association of Cryptologic Research

General Chair

Ricardo Dahab University of Campinas, Brazil

Program Chair

Michel Abdalla CNRS and École Normale Supérieure, France

Program Committee

Shweta Agrawal Indian Institute of Technology, Madras, India

Prabhanjan Ananth UCLA and MIT, USA

Diego Aranha University of Campinas, Brazil

Mihir Bellare University of California, San Diego, USA Chris Brzuska Hamburg University of Technology, Germany

Dario Catalano Università di Catania, Italy

Jie Chen East China Normal University, China

Yilei Chen Boston University, USA

Céline Chevalier Université Panthéon-Assas Paris 2, France

Kai-Min Chung Academia Sinica, Taiwan
Dana Dachman-Soled University of Maryland, USA

Bernardo David Tokyo Institute of Technology, Japan Léo Ducas CWI Amsterdam, The Netherlands Nico Döttling FAU Erlangen-Nürnberg, Germany Pierre-Alain Fouque Rennes 1 University, France Sergey Gorbunov University of Waterloo, Canada

Aurore Guillevic Inria, France

Carmit Hazay Bar-Ilan University, Israel

Julia Hesse Karlsruhe Institute of Technology, Germany

Zahra Jafargholi Aarhus University, Denmark
Tibor Jager Paderborn University, Germany
Bhavana Kanukurthi Indian Institute of Science, India

Markulf Kohlweiss Microsoft Research and University of Edinburgh, UK

VIII PKC 2018

Adeline Langlois CNRS and Rennes 1 University, France

Payman Mohassel Visa Research, USA

Ryo Nishimaki NTT Secure Platform Labs, Japan

Alain Passelègue UCLA, USA

Arpita Patra Indian Institute of Science, India

Antigoni Polychroniadou Cornell University, USA

Carla Ràfols Salvador Universitat Pompeu Fabra, Spain Alessandra Scafuro North Carolina State University, USA

Christian Schaffner University of Amsterdam & QuSoft, The Netherlands

Gil Segev Hebrew University, Israel

Jae Hong Seo Myongji University, South Korea

Qiang Tang New Jersey Institute of Technology, USA Mehdi Tibouchi NTT Secure Platform Laboratories, Japan

Bogdan Warinschi University of Bristol, UK Mor Weiss Northeastern University, USA

Additional Reviewers

Masayuki Abe Binyi Chen
Shashank Agrawal Long Chen
Erdem Alkım Rongmao Chen
Nuttapong Attrapadung Yu Chen
Saikrishna Badrinarayanan Nai-Hui Chia

Shi Bai Arka Rai Choudhuri
Christian Bardertscher Ashish Choudhury
Hridam Basu Peter Chvojka
Balthazar Bauer Michele Ciampi
Carsten Baum Ran Cohen
Pascal Bemmann Sandro Coretti

Pascal Bemmann
Fabrice Benhamouda
Craig Costello
David Bernhard
Geoffroy Couteau
Pauline Bert
Jan Czajkowski
Olivier Blazy
Anders Dalskov
Guillaume Bonnoron
Luca De Feo

Niek Bouman Jean Paul Degabriele Florian Bourse David Derler

Jacqueline Brendel Apoorvaa Deshpande
Ran Canetti Mario Di Raimondo
Guilhem Castagnos Luis J. Dominguez Perez

Suvradip Chakraborty Rafael Dowsley Nishanth Chandran Yfke Dulek Sanjit Chatterjee Lisa Eckey

Andrew Ellis Aaron Hutchinson Lucas Enloe Ilia Iliashenko Naomi Ephraim Sorina Ionica Thomas Espitau Malika Izabachène Leo Fan Michael Jacobson Xiong Fan Joseph Jaeger Antonio Faonio Aayush Jain Prastudy Fauzi Christian Janson Armando Faz-Hernández Stacey Jeffery Rex Fernando Saqib Kakvi Houda Ferradi Shuichi Katsumata

Claus Fieker Natasha Kharchenko
Dario Fiore Sam Kim
Marc Fischlin Taechan Kim
Benjamin Fuller Elena Kirshanova
Philippe Gaborit Fuyuki Kitagawa
Nicolas Gama Susumu Kiyoshima
Chaya Ganesh Konrad Kohbrok

Romain Gay Lisa Kohl

Kai Gellert Ilan Komargodski Ran Gelles Stephan Krenn Nicholas Genise Ashutosh Kumar Paul Germouty Rafael Kurek Essam Ghadafi Eyal Kushilevitz Satrajit Ghosh Russell Lai Irene Giacomelli Kim Laine Huijing Gong Mario Larangeira Junging Gong Changmin Lee

Alonso González Hyung Tae Lee
Conrado Porto Lopes Gouvêa Kwangsu Lee
Rishab Goyal Moon Sung Lee
Paul Grubbs Nikos Leonardos
Siyao Guo Iraklis Leontiadis

Divya Gupta Qinyi Li Kyoohyung Han Benoît Libert Javier Herranz Weikai Lin Justin Holmgren Feng-Hao Liu Kristina Hostakova Shengli Liu Zhengan Huang Tianren Liu Andreas Huelsing Alex Lombardi Robin Hui Vadim Lyubashevsky

Shih-Han Hung Fermi Ma

Gilles Macario-Rat Varun Madathil Bernardo Magri Monosij Maitra Christian Majenz Hemanta K. Maji Giulio Malavolta Mary Maller Mark Manulis

Giorgia Azzurra Marson

Takahiro Matsuda Sogol Mazaheri Thierry Mefenza Peihan Miao Ian Miers

Ameer Mohammed

Paz Morillo

Fabrice Mouhartem Pratyay Mukherjee Pierrick Méaux Gregory Neven Khoa Nguyen David Niehues

Luca Nizzardo

Sai Lakshmi Bhayana Obbattu

Cristina Onete Michele Orrù Emmanuela Orsini Jheyne N. Ortiz

Daniel Escudero Ospina

Maris Ozols Jiaxin Pan Tapas Pandit

Dimitris Papadopoulos

Filip Pawlega Thomas Peters Doung Hieu Phan Cecile Pierrot Zaira Pindado Oxana Poburinnaya

Chen Qian

Elizabeth Quaglia Liz Quaglia

Ananth Raghunathan Srinivasan Raghuraman Somindu C. Ramanna Divya Ravi Guénaël Renault Peter Rindal Miruna Rosca Lior Rotem Kai Samelin Pratik Sarkar Sajin Sasy John Schanck

Dominique Schröder Adam Sealfon Sruthi Sekar Nicolas Sendrier Barak Shani Abhishek Shetty Javier Silva Mark Simkin Luisa Siniscalchi

Daniel Slamanig Ben Smith Fang Song

Eduardo Soria-Vazquez Akshayaram Srinivasan

Ron Steinfeld Mario Strefler Christoph Striecks Atsushi Takayasu

Benjamin Hong Meng Tan

Emmanuel Thomé

Sri Aravinda Thyagarajan

Ni Trieu Rotem Tsabary Jorge L. Villar

Dhinakaran Vinayagamurthy Satyanarayana Vusirikala

Riad S. Wahby Kun-Peng Wang Mingyuan Wang Xiao Wang Yuyu Wang Yohei Watanabe

Benjamin Wesolowski

David Wu Keita Xagawa

Weiqiang Wen

Fan Xiong Aaram Yun

Sophia Yakoubov Mohammad Zaheri
Shota Yamada Mark Zhandry
Takashi Yamakawa Daode Zhang
Avishay Yanai Jiang Zhang
Rupeng Yang Kai Zhang
Arkady Yerukhimovich Ren Zhang
Eylon Yogev Linfeng Zhou

Zuoxia Yu

Sponsoring Institutions

Accenture Digital (https://www.accenture.com/br-pt/digital-index)
ERC CryptoCloud (http://www.di.ens.fr/users/pointche/cryptocloud.php)
Scyphir Unipessoal, LDA (http://scyphir.pt)

Contents – Part I

Key-Dependent-Message and Selective-Opening Security	
New Constructions of Identity-Based and Key-Dependent Message Secure Encryption Schemes	3
Nico Döttling, Sanjam Garg, Mohammad Hajiabadi, and Daniel Masny	
Key Dependent Message Security and Receiver Selective Opening Security for Identity-Based Encryption	32
Tightly SIM-SO-CCA Secure Public Key Encryption from Standard Assumptions	62
Searchable and Fully Homomorphic Encryption	
Multi-Key Searchable Encryption, Revisited	95
Fully Homomorphic Encryption from the Finite Field Isomorphism Problem	125
Yarkın Doröz, Jeffrey Hoffstein, Jill Pipher, Joseph H. Silverman, Berk Sunar, William Whyte, and Zhenfei Zhang	
Public-Key Encryption	
Hybrid Encryption in a Multi-user Setting, Revisited Federico Giacon, Eike Kiltz, and Bertram Poettering	159
KEM Combiners Federico Giacon, Felix Heuer, and Bertram Poettering	190
Revisiting Proxy Re-encryption: Forward Secrecy, Improved Security, and Applications	219

Encryption with Bad Randomness

Hedged Nonce-Based Public-Key Encryption: Adaptive Security Under Randomness Failures	253
Zhengan Huang, Junzuo Lai, Wenbin Chen, Man Ho Au, Zhen Peng, and Jin Li	
Related Randomness Security for Public Key Encryption, Revisited	280
Subversion Resistance	
Subversion-Zero-Knowledge SNARKs	315
Public-Key Encryption Resistant to Parameter Subversion and Its Realization from Efficiently-Embeddable Groups	348
Cryptanalysis	
A Practical Cryptanalysis of WalnutDSA TM	381
Speed-Ups and Time-Memory Trade-Offs for Tuple Lattice Sieving Gottfried Herold, Elena Kirshanova, and Thijs Laarhoven	407
Fast Lattice Basis Reduction Suitable for Massive Parallelization and Its Application to the Shortest Vector Problem	437
Composable Security	
Reusing Tamper-Proof Hardware in UC-Secure Protocols	463
On Composable Security for Digital Signatures	494
Oblivious Transfer	
Equational Security Proofs of Oblivious Transfer Protocols	527

Contents – Part I	ΧV
Extending Oblivious Transfer with Low Communication via Key-Homomorphic PRFs	. 554
Multiparty Computation	
Committed MPC: Maliciously Secure Multiparty Computation from Homomorphic Commitments	. 587
Fast Garbling of Circuits over 3-Valued Logic Yehuda Lindell and Avishay Yanai	. 620
Efficient Covert Two-Party Computation	. 644
Towards Characterizing Securely Computable Two-Party Randomized Functions Deepesh Data and Manoj Prabhakaran	. 675
On the Message Complexity of Secure Multiparty Computation Yuval Ishai, Manika Mittal, and Rafail Ostrovsky	. 698
Author Index	. 713

Contents - Part II

Signatures	
SOFIA: MQ-Based Signatures in the QROM	3
A Unified Framework for Trapdoor-Permutation-Based Sequential Aggregate Signatures	34
Constant-Size Group Signatures from Lattices	58
Attribute-Based Signatures for Unbounded Circuits in the ROM and Efficient Instantiations from Lattices	89
Structure-Preserving Signatures	
Improved (Almost) Tightly-Secure Structure-Preserving Signatures	123
Weakly Secure Equivalence-Class Signatures from Standard Assumptions Georg Fuchsbauer and Romain Gay	153
Functional Encryption	
Simple and Generic Constructions of Succinct Functional Encryption Fuyuki Kitagawa, Ryo Nishimaki, and Keisuke Tanaka	187
Making Public Key Functional Encryption Function Private, Distributively	218
Full-Hiding (Unbounded) Multi-input Inner Product Functional Encryption from the k-Linear Assumption	245
Foundations	
Local Non-malleable Codes in the Bounded Retrieval Model	281

Non-malleability vs. CCA-Security: The Case of Commitments	312
Obfuscation-Based Cryptographic Constructions	
Interactively Secure Groups from Obfuscation	341
Graded Encoding Schemes from Obfuscation	371
Protocols	
Hashing Solutions Instead of Generating Problems: On the Interactive Certification of RSA Moduli	403
Two-Factor Authentication with End-to-End Password Security Stanislaw Jarecki, Hugo Krawczyk, Maliheh Shirvanian, and Nitesh Saxena	431
Blockchain	
Bootstrapping the Blockchain, with Applications to Consensus and Fast PKI Setup	465
Zero-Knowledge	
Efficient Adaptively Secure Zero-Knowledge from Garbled Circuits	499
Compact Zero-Knowledge Proofs of Small Hamming Weight	530
Efficient Batch Zero-Knowledge Arguments for Low Degree Polynomials Jonathan Bootle and Jens Groth	561
On the Security of Classic Protocols for Unique Witness Relations Yi Deng, Xuyang Song, Jingyue Yu, and Yu Chen	589

Contents – Part II	XIX
Lattices	
New (and Old) Proof Systems for Lattice Problems	619
Hash Proof Systems over Lattices Revisited	644
Privately Constraining and Programming PRFs, the LWE Way	675
Learning with Errors and Extrapolated Dihedral Cosets	702
Rounded Gaussians: Fast and Secure Constant-Time Sampling	
for Lattice-Based Crypto	728
Author Index	759