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Abstract

A few years ago new quantitative measures of pseudorandomness of binary sequences

have been introduced. Since that these measures have been studied in many papers and

many constructions have been given along these lines. In this paper the connection between

the new measures and the NIST tests is analyzed. It is shown that finite binary sequences

possessing strong pseudorandom properties in terms of these new measures usually also pass

or nearly pass most of the NIST tests.
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1 Introduction

The National Institute of Standards and Technology (=NIST) of the US issued the document [27]

which we refer to as “NIST tests”. We quote the introduction of this documentum: “The need

for random and pseudorandom numbers arises in many cryptographic applications. For example,

common cryptosystem...” [e.g., the Vernam cipher] “...employs keys that must be generated in
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a random fashion... This document discusses the randomness testing of random numbers and

pseudorandom number generators that may be used for many purposes including cryptographic,

modeling and simulation applications. The focus of this document is on those applications where

randomness is required for cryptographic purposes. A set of statistical tests for randomness is

described in this document.” The NIST tests is a package consisting of 15 tests, and in each of

these 15 cases one has to compute the value of a certain statistics composed from the elements

of the given sequence. Then we have to check whether this value is close enough to the expected

value of this statistics for a random binary sequence. If, say, we want to check the quality of a

PRBG (=pseudorandom bit generator; an algorithm generating a long bit sequence from a short

random one called “seed”), then this can be done by testing several bit sequences generated from

random seeds by the PRBG; if these sequences pass the NIST tests then the PRBG is suitable

for further consideration. As the NIST tests writes: “These tests may be useful as a first step

in determining whether or not a generator is suitable for a particular cryptographic application.

However, no set of statistical tests can absolutely certify a generator as appropriate for usage in a

particular application, i.e., statistical testing cannot serve as a substitute for cryptanalysis.” The

weak point of this “first step” by using the NIST tests is that they are of a posteriori type, i.e.,

we do not have any a priori control of the pseudorandom quality of the output sequences of the

PRBG so that we do not know anything about the output sequences not tested by the NIST tests.

Thus one might like to replace this a posteriori type testing based on the NIST tests with a

method for a priori testing (called “theoretical testing” by Knuth) of all the output sequences

of the PRBG (which seems to be a too optimistic goal) or at least to combine and complete

the NIST tests by a method of this type (this is a more realistic goal). In 1997 Mauduit and

the third author [18] made a significant step in this direction: they introduced certain measures

of pseudorandomness, and they presented an example for binary sequence which possess strong

pseudorandom properties in terms of these measures. Since that more than 150 papers have been

written in which these measures are studied, further measures are introduced, or further “good”

constructions are presented; an excellent survey of these papers is given by Gyarmati [12]. It is a

natural question to ask: how is this direction related to the NIST tests? Can one, indeed, complete

the a posteriori testing by using these new results? A partial answer was given by the second and

third author in [26]: they studied the connection of 3 NIST tests and a further often used test

with the measures of pseudorandomness introduced in [18], and they showed that the values of

the statistics to be computed in each of these tests can be estimated well by using the measures of

pseudorandomness mentioned above, moreover, they also presented numerical calculations to show

that a “random” sequence selected from a family of binary sequences constructed by using the

Legendre symbol [10, 18] passes all the NIST tests (of 2005). In this paper our goal is to continue

that work in the following direction: we will study the connection between 3 further NIST tests

and our measures of pseudorandomness. (The 8 remaining NIST tests are too complicated to

study their theoretical connection with the measures of pseudorandomness.) Moreover, we will

present further numerical calculations to show that a “random” sequence selected from two other

families constructed by using other principles also passes or “almost passes” all the NIST tests.
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2 The measures of pseudorandomness

First we recall a few definitions and facts from [18] and other related papers that we will need in

this paper.

Consider a finite binary sequence

EN = (e1, . . . , eN) ∈ {−1,+1}N . (1)

(Note that in the analysis in some of the NIST tests the bit sequences are also transformed into

sequences consisting of -1 and +1.) Then the well-distribution measure of EN is defined as

W (EN ) = max
a,b,t

∣

∣

∣

∣

∣

∣

t−1
∑

j=0

ea+jb

∣

∣

∣

∣

∣

∣

, (2)

where the maximum is taken over all a, b, t ∈ N such that 1 ≤ a ≤ a + (t − 1)b ≤ N , while the

correlation measure of order k of EN is defined as

Ck(EN ) = max
M,D

∣

∣

∣

∣

∣

M
∑

n=1

en+d1en+d2 . . . en+dk

∣

∣

∣

∣

∣

, (3)

where the maximum is taken over allD = (d1 . . . , dk) andM such that 0 ≤ d1 < · · · < dk ≤ N−M .

Then the sequence is considered as a “good” pseudorandom sequence if both these measures

W (EN ) and Ck(EN ) (at least for “small” k) are “small” in terms of N (in particular, both are

o(N) as N → ∞). Indeed, it is shown in [4] that for a “truly random” EN ∈ {−1,+1}N both

W (EN ) and, for fixed k, Ck(EN ) are of order of magnitude N1/2 with probability “near 1” (see

also [2] and [14]). Thus for “really good” pseudorandom sequences we expect the measures (2)

and (3) to be not much greater than N1/2. In [18] a combination of the well-distribution and

correlation measures was also introduced: the combined pseudorandom measure of order k of the

sequence EN in (1) is defined as

Qk(EN ) = max
a,b,t,D

∣

∣

∣

∣

∣

∣

t
∑

j=0

ea+jb+d1ea+jb+d2 . . . ea+jb+dk

∣

∣

∣

∣

∣

∣

where the maximum is taken over all a, b, t ∈ N and k-tuples D = (d1, d2, . . . , dk) of non-negative

integers d1 < d2 < · · · < dk such that all the subscripts a+jb+dl belong to {1, 2, . . . , N}. (Clearly,

we have W (EN ) = Q1(EN ) and Ck(EN ) ≤ Qk(EN ) for k ≥ 2.) We will also need the definition

of normality measures also introduced in [18]. The normality measure of order k of the sequence

EN of form (1) is defined as

Nk(EN ) = max
X∈{−1,+1}k

max
0<M≤N+1−k

∣

∣

∣
|{n : 0 ≤ n ≤ M, (en+1, . . . , en+k) = X}| −

M

2k

∣

∣

∣
. (4)

It was also shown in [18] (see Proposition 1 and its proof there) that for all N , EN and k < N we
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have

Nk(EN ) ≤
1

2k

k
∑

t=1

(

k

t

)

Ct(EN ) ≤ max
1≤t≤k

Ct(EN ). (5)

Thus if Ct(EN ) is small for all t ≤ k, then Nk(EN ) is also small.

3 Three principles for constructing large families of binary

sequences with strong pseudorandom properties

It is well known that the Legendre polynomial has many pseudorandom properties [6, 7]. It was

shown in [18] that the Legendre symbol also possesses strong pseudorandom properties in terms

of the pseudorandom measures described in Section 2: if p is an odd prime, we write N = p − 1

and

EN = (e1, . . . , eN ) with en =

(

n

p

)

for n = 1, . . . , N,

then we have

W (EN ) ≪ N1/2 logN and Ck(EN ) ≪ kN1/2 logN

for all k < N (where ≪ is Vinogradov’s notation: f(x) ≪ g(x) means that f(x) = O(g(x)); in

both cases the implicit constants can be computed explicitly (and are relatively small constants).

Goubin, Mauduit and Sárközy [10] studied the generalization of this construction with f(n) in

place of n (where f(x) ∈ Fp[x]). Their results can be combined in the following way:

Theorem A. If p is a prime number, f(x) ∈ Fp[x] (Fp being the field of the modulo p residue

classes) has degree k(> 0), f(x) has no multiple zero in Fp (= the algebraic closure of Fp), and

the binary sequence Ep = (e1, . . . , ep) is defined by

en =

{

(

f(n)
p

)

for (f(n), p) = 1

+1 for p | f(n),
(6)

then we have

W (Ep) < 10kp1/2 log p.

Moreover, assume that also ℓ ∈ N, and one of the following assumptions holds:

(i) ℓ = 2;

(ii) ℓ < p, and 2 is a primitive root modulo p;

(iii) (4k)ℓ < p.

Then we also have

Cℓ(Ep) < 10kℓp1/2 log p.

The second principle is to utilize the fact that the multiplicative inverse modulo p is distributed

in a random way in (0, p). Denote the least non-negative residue of n modulo p by rp(n), and if the

prime p is fixed, then denote the multiplicative inverse of a modulo p by a−1 (so that a · a−1 ≡ 1

mod p). The following theorem (here we present the result in a slightly simplified form) was proved

in [20].
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Theorem B. Assume that p is an odd prime number, f(x) ∈ Fp[x] has degree k with 0 < k < p

and no multiple zero in Fp. Define the binary sequence Ep = (e1, . . . , ep) by

en =

{

+1 if (f(n), p) = 1, rp(f(n)
−1) < p

2

−1 if either (f(n), p) = 1, rp(f(n)
−1) > p

2 or p | f(n).
(7)

Then we have

W (Ep) ≪ kp1/2(log p)2.

Moreover, if ℓ ∈ N, 2 ≤ ℓ ≤ p
2k and f(x) ∈ Fp[x] is of the form f(x) = (x+ a1)(x+ a2) · · · (x+ ak)

with a1, . . . , ak ∈ Fp (ai 6= aj for i 6= j) then we also have

Cℓ(Ep) ≪ kℓp1/2(log p)ℓ+1. (8)

For further related results see also [5, 15, 16]. For example Liu [15] gave another (and simpler)

condition to control the correlation measure.

Theorem C. Assume that p is an odd prime number, f(x) ∈ Fp[x] is a polynomial of degree

(0 <)k(< p) such that 0 is its unique zero in Fp. If the sequence EN is defined as in Theorem B

and ℓ < p, then (8) also holds.

The third construction is based on elliptic curves. Let p > 3 be a prime number and let E be

an elliptic curve over Fp defined by the Weierstrass equation

y2 = x3 +Ax+B

with coefficients A,B ∈ Fp and non-zero discriminant (see [31]). The Fp-rational points E(Fp) of

E form an Abelian group with the point in infinity O as the neutral element, where the group

operation is denoted by ⊕. For a rational point R ∈ E(Fp), a multiple of R is defined by nR =
⊕n

i=1 R. Let Fp(E) be the function field of E over Fp and as usual for f ∈ Fp(E) let let deg f

denote of the degree of f in Fp(E), see [31]. For example, for the coordinate functions we have

deg x = 2 and deg y = 3.

Let G ∈ E(Fp) be of order T and f ∈ Fp(E). Define the binary sequence ET = (e1, . . . , eT ) by

en =

{

(

f(nG)
p

)

if (f(nG), p) = 1,

+1 otherwise.
(9)

The first author studied the pseudorandomness of this sequence [22]. His results can be com-

bined in the following way:

Theorem E. Let G ∈ E(Fp) be a generator of E(Fp) of prime order T . Let f ∈ Fp(E) which is

not a perfect square in Fp(E) with degree k = deg f . Then

W (ET ) ≤ 6kp1/2 logT.

Moreover, assume that also ℓ ∈ N, and one of the conditions (i),(ii),(iii) of Theorem A holds with
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p replaced by T . Then

Cℓ(ET ) < 2ℓkp1/2 logT.

4 The “frequency test within a block”

First we will study the connection of this test (which appears as Section 2.2 in [27]) with the

measures of pseudorandomness described in Section 2. We quote [27]: “The focus of this test is

to determine whether the frequency of ones in an M -bit block is approximatelyM/2, as would be

expected under an assumption of randomness. For block size M = 1, this test degenerates to test

1, the Frequency (Monobit) test” (which was analyzed in [26]).

Let EN = (e1, . . . , eN) ∈ {−1,+1}N be the sequence to be tested, M the length of each block,

and, as [27] writes,

“Partition the input sequence into t = [ NM ] non-overlapping blocks.”

(Here and later we adjust the notations of [27] to our notation.) The quotation continues:

“Discard any unused bits. Determine the proportion πi of ones in each block of length

M for 1 ≤ i ≤ t”

Now “Compute the χ2 statistic

X1 = 4M

t
∑

i=1

(

πi −
1

2

)2

.′′ (10)

Then the sequence EN passes this test if the value of this statistic is small enough in the sense

described in [27]; we skip the technical details.

In 2.2.7 [27] writes: “The block size M should be selected such that

M ≥ 20, M > N/100 and t < 100.” (11)

Theorem 1. Using the notation above and assuming (11), for every EN ⊂ {−1,+1}N we have

X1 ≤ 2 · 104
W (EN )2

N
. (12)

Proof. Clearly we have

πi =
|{ej : (i− 1)M < j ≤ iM, ej = +1}|

M

=
1

M

iM
∑

j=(i−1)M+1

1

2
(ej + 1) =

1

2M

iM
∑

j=(i−1)M+1

ej +
1

2
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whence, using the notation of Section 2,

∣

∣

∣

∣

πi −
1

2

∣

∣

∣

∣

=
1

2M

∣

∣

∣

∣

∣

∣

iM
∑

j=(i−1)M+1

ej

∣

∣

∣

∣

∣

∣

≤
1

2M
W (EN )

for every 1 ≤ i ≤ t. Thus it follows from (10) that

X1 ≤ 4M · t

(

1

2M
W (EN )

)2

=
2t

M
W (EN )2.

By using (11), (12) follows from this.

In each of the constructions described in Section 3 the upper bound in inequality (12) is less

than a constant multiple of a fixed power of logN , so that this upper bound falls just a little short

of the desired < c (with a small positive constant c). In many applications this can be interpreted

as a strong tendency towards pseudorandomness which is sufficient for our purposes, while if we

have to stick to the threshold bound belonging to the test, then this good upper bound points to

the direction that choosing successive random sequences from our family studied we have a good

chance to find soon a sequence which also satisfies the stronger inequality prescribed in the test.

5 The “test for the longest run of ones in a block”

This test appears in Section 2.4 of [27]. We quote [27]: “The focus of the test is the longest run

of ones within M bit blocks. The purpose of this test is to determine whether the length of the

longest run of ones within the tested sequence is consistent with the length of the largest run of

ones that would be expected in a random sequence.”. The test to answer this question is carried

out in [27] in the following way:

Assume the N,M, t are positive integers with

N =Mt, (13)

N is the length of the sequence EN = (e1, . . . , eN) ∈ {−1,+1}N to be tested (again we switch

from bit sequences to ±1 sequences), M is taken from a certain special sequence 8, 128, 104, . . .

(see [27]), EN is split in t blocks of length M , t and thus also N is large enough in terms of M (in

particular, for M = 8, 128, 104 the number N must be at least 128, 272, 750000, respectively) and

K (= 3, 5, 6, . . . ) is certain positive integer assigned to the given M value. The set {0, 1, . . . ,M}

is split in K + 1 disjoint parts P0,P1, . . . ,PK so that

{0, 1, . . . ,M} = P0 ∪ P1 ∪ · · · ∪ PK , Pi ∩ Pj = ∅ for 0 ≤ i < j ≤ K, (14)

e.g., for M = 104, K = 6 in [27] we have

{0, 1, . . . , 104} = {0, 1, . . . , 10} ∪ {11} ∪ {12} ∪ {13} ∪ {14} ∪ {15} ∪ {16, 17, . . . , 104}.

Then for i = 0, 1, . . . ,K we count how many of the t blocks is such that the length of the longest

7



run of +1’s in it belongs to the part Pi of {0, 1, . . . ,M}; let νi denote the number of blocks with

this property. Let πi be the probability of the event that the length of the longest run of +1’s

in a random sequence of +1 and −1 with length M is i. The test statistic to be computed is a

weighted square mean of the deviations of the νi’s from their expected values tπi:

X2 =

K
∑

i=0

(νi − tπi)
2

tπi
, (15)

“which, under the randomness hypothesis, has an approximate χ2-distribution with K degrees of

freedom”. Here the theoretical values πi can be replaced by approximating numerical values which

for certain pairsM,K are provided in Section 3.4 of [27]. (We remark that for fixed M , the choice

of K and the computation of the values approximating πi is based on the analysis of distribution

of the longest run in random walks; see, e.g. [25, Chapter 7].)

We will show that the statistic X2 in (15) can be estimated in the following way:

Theorem 2. We have

X2 ≤
M

N

(

M
∑

r=1

(

M

r

)

Qr(EN )

)2

.

Note that this estimate gives a good bound for X2 only if N is large in terms of M ; the first

table in [27], pp. 2-8 seems to indicate that this can be assumed.

Proof. We will use the following notations:

For Z ∈ N, let ΦZ be the set of the binary sequences

FZ = (f1, f2, . . . , fZ) ∈ {−1,+1}Z,

for such a sequence FZ let ψ(FZ) denote the length of the longest run of +1’s in FZ , and for j ∈ N,

jM ≤ Z, write F
(j,M)
Z = (f(j−1)M+1, f(j−1)M+2, . . . , fjM ).

Then for i = 0, 1, . . . ,K, by the definition of νi and (13) we have

νi =
∑

1≤j≤t

ψ(E
(j,M)
N

)∈Pi

1, (16)

and the expectation of νi choosing any FN ∈ ΦN with equal probability 1/2N is

E(νi) = E











∑

1≤j≤t

ψ(E
(j,M)
N

)∈Pi

1











= t · E









∑

G∈ΦM

ψ(G)∈Pi

1









= tπi. (17)

LetG(1), G(2), . . . , G(γi) be the setsG counted in the last sum, and write Gi = {G(1), G(2), . . . , G(γi)}

and G(j) = (g
(j)
1 , g

(j)
2 , . . . , g

(j)
M ). Each of these sets G(j) contributes by 1 to this sum, and they are

to be selected with probability 1/2M uniformly. Thus it follows from (17) that

E(νi) = tπi = t
|Gi|

2M
=

t

2M
γi. (18)

8



Moreover, it follows from (14) that each of the 2M sets G ∈ ΦM is counted in exactly one Gi with

weight 1, thus we have
K
∑

i=0

|Gi| =
K
∑

i=0

γi = 2M . (19)

Now we will estimate νi for 0 ≤ i ≤ K. Consider a subset G(ℓ) = (g
(ℓ)
1 , g

(ℓ)
2 , . . . , g

(ℓ)
M ) ∈ Gi. Then

for j = 1, 2, . . . , t clearly we have

M
∏

x=1

1 + e(j−1)M+xg
(ℓ)
x

2
=

{

1 if E
(j,M)
N = G(ℓ),

0 if E
(j,M)
N 6= G(ℓ),

whence

γi
∑

ℓ=1

M
∏

x=1

1 + e(j−1)M+xg
(ℓ)
x

2
=

{

1 if E
(j,M)
N ∈ {G(1), G(2), . . . , G(γi)} = Gi,

0 if E
(j,M)
N 6∈ Gi,

so that by (16) we have

νi =
∑

1≤j≤t

ψ(F
(j,M)
N

)∈Pi

1 =
∑

1≤j≤t

∑

E
(j,M)
N

∈Gi

1 =

t
∑

j=1

γi
∑

ℓ=1

M
∏

x=1

1 + e(j−1)M+xg
(ℓ)
x

2

=

γi
∑

ℓ=1

t
∑

j=1





1

2M
+

1

2M

M
∑

r=1

∑

1≤x1<···<xr≤M

g(ℓ)x1
. . . g(ℓ)xr

e(j−1)M+x1
. . . e(j−1)M+xr





=
t

2M
γi +

1

2M

γi
∑

ℓ=1





M
∑

r=1

∑

1≤x1<···<xr≤M

g(ℓ)x1
. . . g(ℓ)xr

t
∑

j=1

e(j−1)M+x1
. . . e(j−1)M+xr



 . (20)

It follows from (18) and (20) that

|νi − tπi| =
1

2M

∣

∣

∣

∣

∣

∣

γi
∑

ℓ=1





M
∑

r=1

∑

1≤x1<···<xr≤M

g(ℓ)x1
. . . g(ℓ)xr

t
∑

j=1

e(j−1)M+x1
. . . e(j−1)M+xr





∣

∣

∣

∣

∣

∣

≤
1

2M

γi
∑

ℓ=1

M
∑

r=1

∑

1≤x1<···<xr≤M

∣

∣

∣g(ℓ)x1
. . . g(ℓ)xr

∣

∣

∣

∣

∣

∣

∣

∣

∣

t
∑

j=1

e(j−1)M+x1
. . . e(j−1)M+xr

∣

∣

∣

∣

∣

∣

=
γi
2M

M
∑

r=1

(

M

r

)

Qr(EN ) = πi

M
∑

r=1

(

M

r

)

Qr(EN ). (21)

By (13), (18), (19) and (21) we have

X2 =

K
∑

i=0

(νi − tπi)
2

tπi
≤

K
∑

i=0

πi
t

(

M
∑

r=1

(

M

r

)

Qr(EN )

)2

=
1

t

(

M
∑

r=1

(

M

r

)

Qr(EN )

)2 K
∑

i=0

πi =
M

N

(

M
∑

r=1

(

M

r

)

Qr(EN )

)2

which completes the proof of the theorem.
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We remark that in Theorem 2 the statistic X2 is estimated in terms of the combined pseu-

dorandom measure Qk, while in the most important constructions studied in Theorems A, B, C

and E only the measures W and Ck were estimated, and no estimates are known for the measures

Qk (and the situation is similar in most of the other constructions). However, this gap can be

bridged easily, since in most cases the estimate of Qk can be reduced easily to the estimate of Ck.

For example, in case of the Legendre symbol construction (6) studied in Theorem A, we can show

that if the sequence Ep is defined by (6) in Theorem A and we assume that all the assumptions

in the theorem hold, then we have

Qk(Ep) ≤ Ck(Ep) + 2k,

and in case of the two other constructions similar results could be proved.

6 The “linear complexity test”

The linear complexity L(ẼN ) of a bit sequence ẼN = (ẽ1, . . . , ẽN) ∈ {0, 1}N is defined as the

length L of a shortest linear recurrence relation (linear feedback shift register – LFSR)

ẽn+L ≡ cL−1ẽn+L−1 + · · ·+ c1ẽn+1 + c0ẽn (mod 2), 1 ≤ n ≤ N − L

where c0, . . . , cL−1 ∈ {0, 1}, that ẼN satisfies, with the convention that L(ẼN ) = 0 if ẼN =

(0, . . . , 0), and L(ẼN ) = N if ẼN = (0, . . . , 0, 1). For binary sequence EN of form (1) we also

define the linear complexity as L(EN ) = L(ẼN ) with ẽn = (1 + en)/2.

The linear complexity is a measure for the unpredictability of a sequence. A large linear

complexity is necessary (but not sufficient) for cryptographic applications. The linear complexity

test appears as Section 2.10 in [27]. We quote: “The purpose of this test is to determine whether or

not the sequence is complex enough to be considered random. Random sequences are characterized

by longer LFSRs. An LFSR that is too short implies non-randomness.”

Brandstätter and Winterhof [3] showed that a small correlation measure implies large linear

complexity:

L(EN ) ≥ N − max
1≤k≤L(EN )+1

Ck(EN ). (22)

This result provides a lower bound for the linear complexity of sequences generated by using the

Legendre symbol (6) and elliptic curves (9). Namely, if Ep is a sequence generated by (6) using a

squarefree polynomial f(x) ∈ Fp[x] of degree k and 2 is a primitive root modulo p, then Theorem

A and (22) imply that

p ≤ L(Ep) + max
1≤k≤L(Ep)+1

Ck(Ep) ≪ kLp1/2 log p,

so that

L(Ep) ≫
p1/2

k log p
. (23)

Similarly, if the sequence ET is generated by (9) using a squarefree function f(x, y) ∈ Fp[E]
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with degree k and 2 is a primitive root modulo T , then Theorem E and (22) imply that

L(ET ) ≫
p1/2

k logT
.

By the celebrated Hasse-Weil Theorem (see e.g. [31], Theorem 4.2) we have
∣

∣p + 1 − |E(Fp)|
∣

∣ ≤

2p1/2, thus

L(ET ) ≫
T 1/2

k logT
. (24)

In practice, the bounds (23) and (24) are sometimes sufficient. However, the linear complexity

of a truly random binary sequence of lengthN is aroundN/2, thus in more demanding applications

one may have to show that the linear complexity of the given sequence is near N/2 (or at least

it is ≫ N); the linear complexity of the sequence can be determined by using the well-known

Berlekamp-Massey algorithm [17].

In even more demanding cases one may need an even more precise study of the complexity

properties of the sequence. In [27] this is done by the “linear complexity test” described in [27, p.

2–24]. This test requires a more controlled distribution of the linear complexity of the sequences.

Namely, it compares the linear complexity within blocks of length M to the expected value of the

linear complexity

µM =
M

2
+

4 + r2(M)

18

(here again r2(M) is the non-negative remainder of M modulo 2).

We quote: “Partition the N -bit sequence into t independent blocks ofM bits, whereN = t·M .”

Then “determine the linear complexity Li of each of the t blocks (i = 1, . . . , t)”. “For each

substring, calculate a value of Ti where

Ti = (−1)M · (Li − µM ) +
2

9
.′′

Define the intervals:
I0 = (−∞,−2, 5],

Ij = (−2.5 + j − 1,−2.5 + j], j = 1, . . . , 5,

I6 = (2.5,∞),

and put vj = |{i : Ti ∈ Ij , i = 1, . . . , t}|.

Finally, we define the statistic

X3 =

6
∑

j=0

(vj − t · πj)
2

t · πj
,

where πj (i = 0, . . . , 6) are the probabilities for the classes Ij :

πj = P

(

(−1)M · (L(EM )− µM ) +
2

9
∈ Ij

)

,

where EM is chosen uniformly from {−1,+1}M . The acceptance of the sequence depends on the

value of the statistic X3: one has to compute the “P -value” defined in [27], p. 2-25, (7) and if the

“P -value” is ≥ 0.01, then the sequence passes the test.

11



If the sequence EN to be tested possesses strong pseudorandom properties in terms of the

measures described in Section 2, and the length M of the blocks is much smaller than the length

N of the sequence (say, we haveM = o(logN)), then one could give a reasonable upper bound for

the statistic X3 by the method used in Section 5 (although here even more work and computation

would be needed). However, according to “input size recommendation” in [27, Section 2.10.7],

M must be very large (500 ≤ M ≤ 5000) so that to have M = o(logN), N must be huge (say,

N > 1010000), thus we will not present the details here. This, of course, does not mean that shorter

sequences with good pseudorandom properties fail this test and, indeed, the numerical examples

in Section 8 will show that sequences of this type tend to pass this test, but we cannot show that

this is necessarily so.

Remark 3. As mentioned previously, small linear complexity implies non-randomness. However,

recent results show that there are many sequences whose linear complexity is very near to its

expected value but which also have some cryptographic weakness: Winterhof and the first author

provided a large class of highly predictable sequences whose linear complexity is close to its mean

[24]. A simple way to eliminate such sequences is to consider also the expansion complexity of the

sequences defined in [8, 23].

7 Discrete Fourier Transform (Spectral) Test

The “NIST tests” writes: “The purpose of this test is to detect periodic features (i.e., repetitive

patterns that are near each other) in the tested sequence that would indicate a deviation from the

assumption of randomness”.

This is one of the tests which are too complicated to estimate the statistic to be studied by

using our measures of pseudorandomness. Instead, we will do the following: we show that the goal

of the test described above can be also achieved by using our measures of pseudorandomness and,

indeed, the combined pseudorandom measure of order k described above is especially suitable for

this. Take the following example:

Example 7.1. Consider the 4-tuple +1, −1, −1, +1, and repeat it M = 500000 times. Then

letting N = 4M = 2000000, we get a binary sequence EN = (e1, e2, . . . , eN ) with e4k−3 = +1,

e4k−2 = −1, e4k−1 = −1, e4k = +1 for k = 1, 2, . . . ,M . This sequence is periodic with period 4.

Its combined pseudorandom measure of order 4 can be estimated in the following way:

Q4(EN ) ≥

∣

∣

∣

∣

∣

∣

M−1
∑

j=0

e4j+1e4j+2e4j+3e4j+4

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

M−1
∑

j=0

1

∣

∣

∣

∣

∣

∣

=M =
N

4
,

so that this measure is big, is as large as 1
4 times the length of the sequence, much larger than

the optimal ≍ N1/2. This fact is reflected in the periodicity, thus the sequence is far from being

of pseudorandom nature.

Of course, if a sequence is not completely periodic but is only almost periodic with period k,

than its Qk measure is still large.

Applying the Discrete Fourier Transform Test for testing the sequence EN defined above with

20 samples of length 100000, we find that it fails this test (strongly).

So that both approaches point out the periodic nature of EN , thus it fails both tests.
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Now let us study a more complicated example.

Example 7.2. Consider two especially important special sequences: the Rudin-Shapiro sequence

(defined by (−1)
∑

i
εi(n)εi+1(n) where εi denotes the i-th binary digit of n ) and the Thue-Morse

sequence (defined by (−1)
∑

i
εi(n) ). It is known [19] that in both cases if we take a sequence of

length N then its correlation measure of order 2 is very large, it is ≫ N which is again much

larger than the optimal ≍ N1/2 so that in terms of the measures of pseudo randomness described

above they are both far from being of pseudorandom nature.

But what about the Discrete Fourier Transform Test, do these sequences also fail this test?

First consider the Rudin-Shapiro sequence:

------------------------------------------------------------------------------

RESULTS FOR THE UNIFORMITY OF P-VALUES AND THE PROPORTION OF PASSING SEQUENCES

------------------------------------------------------------------------------

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROPORTION STATISTICAL TEST

------------------------------------------------------------------------------

3 3 0 2 3 3 1 2 3 0 0.637119 20/20 Frequency

4 0 0 0 3 2 0 0 0 11 0.000000 * 16/20 * BlockFrequency

2 3 5 2 1 2 1 1 1 2 0.637119 20/20 CumulativeSums

2 1 6 2 0 3 2 1 1 2 0.213309 20/20 CumulativeSums

0 0 0 0 0 0 0 0 0 20 0.000000 * 20/20 Runs

20 0 0 0 0 0 0 0 0 0 0.000000 * 0/20 * LongestRun

20 0 0 0 0 0 0 0 0 0 0.000000 * 0/20 * Rank

20 0 0 0 0 0 0 0 0 0 0.000000 * 0/20 * FFT

20 0 0 0 0 0 0 0 0 0 0.000000 * 0/20 * Universal

20 0 0 0 0 0 0 0 0 0 0.000000 * 0/20 * ApproximateEntropy

20 0 0 0 0 0 0 0 0 0 0.000000 * 0/20 * Serial

20 0 0 0 0 0 0 0 0 0 0.000000 * 0/20 * Serial

20 0 0 0 0 0 0 0 0 0 0.000000 * 0/20 * LinearComplexity

Figure 1: Results of 13 NIST tests for the Rudin-Shapiro sequence

(Here and in some further tables an asterisk indicates after the column “P -value” that the P -values

belonging to the sequence studied and the test named in the last column are non-uniform, while

after column “proportion” it denotes that many or all of these sequences fail the test in question.)

Now consider the Thue-Morse sequence:
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------------------------------------------------------------------------------

RESULTS FOR THE UNIFORMITY OF P-VALUES AND THE PROPORTION OF PASSING SEQUENCES

------------------------------------------------------------------------------

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROPORTION STATISTICAL TEST

------------------------------------------------------------------------------

0 0 0 0 0 0 0 0 0 20 0.000000 * 20/20 Frequency

0 0 0 0 0 0 0 0 0 20 0.000000 * 20/20 BlockFrequency

0 0 0 0 0 0 0 0 0 20 0.000000 * 20/20 CumulativeSums

0 0 0 0 0 0 0 0 0 20 0.000000 * 20/20 CumulativeSums

20 0 0 0 0 0 0 0 0 0 0.000000 * 0/20 * Runs

20 0 0 0 0 0 0 0 0 0 0.000000 * 0/20 * LongestRun

20 0 0 0 0 0 0 0 0 0 0.000000 * 0/20 * Rank

19 0 0 0 0 0 0 0 1 0 0.000000 * 2/20 * FFT

20 0 0 0 0 0 0 0 0 0 0.000000 * 0/20 * Universal

20 0 0 0 0 0 0 0 0 0 0.000000 * 0/20 * ApproximateEntropy

20 0 0 0 0 0 0 0 0 0 0.000000 * 0/20 * Serial

20 0 0 0 0 0 0 0 0 0 0.000000 * 0/20 * Serial

20 0 0 0 0 0 0 0 0 0 0.000000 * 0/20 * LinearComplexity

Figure 2: Results of 13 NIST tests for the Thue-Morse sequence

So that both sequences fail this test. The Fourier transform of the Rudin-Shapiro polynomial,

whose maximum modulus is very close to its L2 norm, and this is a very unusual property (see

[29]). Similarly, the Fourier transform of the Thue-Morse sequence has a very small L1 norm (see

[9]). This explains why they fail the Discrete Fourier Transform test which detects that they are

far from the DFT of a random sequence.

Our examples show that both approaches can be used effectively for detecting some sort of

periodicity.

8 Numerical calculation

In the previous sections we showed that those binary sequences EN ∈ {−1,+1}N whose pseudo-

random measures W (EN ) and Ck(EN ) are small, also have strong pseudorandom properties in

terms of the NIST tests a priori, i.e. they provably pass or “almost pass” most of the NIST tests.

In this section we test sequences constructed by principles described in Section 3 a posteriori. The

examples show that these sequences typically pass the NIST tests, even if we can only prove a

slightly weaker pseudorandomness.

We use “Statistical Test Suite for random and pseudorandom number generators for crypto-

graphic application” (sts-1.4) from the National Institute of Standards and Technology (NIST).

We chose the following parameters for the test suite.

In order to save space we omit the results of the non-overlapping template matching (NonOver-

lappingTemplate), the random excursions (RandomExcursions) and the random excursions vari-

ant tests (RandomExcursionsVariant).

The results of the tests are given in Figures 4, 5 and 6. Columns C1 up to C10 correspond to

14



BlockFrequency M = 128
OverlappingTemplate m = 9
ApproximateEntropy m = 10
LinearComplexity M = 500

Figure 3: Parameter choices for NIST test suite

the frequency specific to the test. Then the P-VALUE is the result of the application of a χ2-test,

and PROPORTION is the proportion of sequences that pass the test.

8.1 Sequences generated using the Legendre symbol

We constructed 20 sequences with length p = 105+3 by (6) with the first 20 squarefree polynomial

of degree 31 with respect to the lexicographic ordering: fi(x) = x31 + i (i = 1, . . . , 20). Since 2 is

a primitive root modulo p = 105 + 3, Theorem A implies that all the sequences Ep(i) generated

with fi(x) (i = 1, . . . , 20) have small well-distribution and correlation measures.

------------------------------------------------------------------------------

RESULTS FOR THE UNIFORMITY OF P-VALUES AND THE PROPORTION OF PASSING SEQUENCES

------------------------------------------------------------------------------

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROPORTION STATISTICAL TEST

------------------------------------------------------------------------------

0 0 0 0 0 0 0 0 0 20 0.000000 * 20/20 Frequency

1 4 2 2 2 2 3 3 1 0 0.739918 20/20 BlockFrequency

0 1 0 0 0 1 1 4 7 6 0.000199 20/20 CumulativeSums

0 1 0 0 0 1 1 4 7 6 0.000199 20/20 CumulativeSums

4 4 1 1 3 1 1 3 0 2 0.437274 20/20 Runs

1 2 2 1 5 1 2 3 1 2 0.637119 20/20 LongestRun

2 1 0 3 1 0 4 2 5 2 0.213309 20/20 Rank

0 0 0 0 0 10 0 10 0 0 0.000000 * 20/20 FFT

2 6 0 0 1 6 2 1 2 0 0.006196 19/20 OverlappingTemplate

0 20 0 0 0 0 0 0 0 0 0.000000 * 20/20 Universal

1 1 6 1 1 2 2 1 4 1 0.162606 20/20 ApproximateEntropy

1 2 1 1 3 2 2 5 1 2 0.637119 20/20 Serial

0 4 1 3 1 5 0 2 0 4 0.066882 20/20 Serial

1 4 1 2 2 3 0 1 3 3 0.637119 20/20 LinearComplexity

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Figure 4: Results of 14 NIST tests for sequences generated by using the Legendre symbol

8.2 Sequences generated using the multiplicative inverse

We took p = 2 · 105 + 3 and considered the polynomials

fi(x) = x ·
15i
∏

j=15(i−1)+1

(x2 + j2), i = 1, . . . , 20.
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Since 2 · 105 + 3 ≡ 3 (mod 4), −1 is quadratic non-residue, and the least non-negative remain-

ders of −j2 (j = 1, . . . , 300) modulo p, rp(−j2), are also quadratic non-residues. Then these

polynomials satisfy the conditions of Theorem C, thus they have small well-distribution and cor-

relation measures. However the sequences generated by (7) with the polynomials fi(x) have a

non-trivial symmetry. Namely, fi(−x) = −fi(x), so en = −ep−n for all 1 ≤ n < p if the se-

quence Ep = (e0, . . . , ep−1) ∈ {−1,+1}p is generated such a way. (For tools to detect such

symmetries see [11]). To avoid this phenomenon we just considered the first half of the sequences:

E(i)(p+1)/2 = {e0(i), . . . , e(p−1)/2(i)}, where en(i) (0 ≤ n < p/2) is defined by the rule (7). In this

way we obtained 20 sequences of length 100002.

------------------------------------------------------------------------------

RESULTS FOR THE UNIFORMITY OF P-VALUES AND THE PROPORTION OF PASSING SEQUENCES

------------------------------------------------------------------------------

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROPORTION STATISTICAL TEST

------------------------------------------------------------------------------

3 2 1 3 0 2 3 4 1 1 0.637119 20/20 Frequency

5 2 0 1 3 4 2 1 1 1 0.275709 19/20 BlockFrequency

3 1 0 2 2 1 3 0 3 5 0.275709 20/20 CumulativeSums

3 2 2 1 4 0 3 1 4 0 0.350485 20/20 CumulativeSums

2 3 2 5 3 1 1 2 0 1 0.437274 20/20 Runs

2 1 1 2 5 2 3 0 2 2 0.534146 20/20 LongestRun

2 3 3 3 0 0 2 1 4 2 0.534146 20/20 Rank

2 2 1 5 3 3 1 0 2 1 0.437274 20/20 FFT

4 1 1 1 3 0 2 4 1 3 0.437274 20/20 OverlappingTemplate

0 0 0 0 0 0 20 0 0 0 0.000000 * 20/20 Universal

5 4 1 2 2 2 1 1 2 0 0.350485 20/20 ApproximateEntropy

1 2 1 2 1 0 2 7 4 0 0.017912 20/20 Serial

2 1 2 0 3 3 3 2 0 4 0.534146 19/20 Serial

1 3 3 0 3 2 1 4 1 2 0.637119 20/20 LinearComplexity

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Figure 5: Results of 14 NIST tests for sequences generated by using the multiplicative inverse

8.3 Sequences generated using elliptic curves

In order to generate sequences with elliptic curves we chose pseudorandom curves and points

following the NIST recommendation (FIPS 186-3). We took the prime p = 105 + 3 and a pseudo-

random elliptic curve of the form

y2 = x3 − 3x+ b

over Fp with the additional restriction, that the number T of the Fp-rational points is prime and

2 is a primitive root modulo T . Then we selected a pseudorandom point P on the curve.

Our parameters were the following:

E : y2 = x3 − 3x+ 74439 over F105+3.
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Its cardinality T is 100523. The point was P = (85611, 76395). We took the functions fi(x, y) =

x31+x+y+ i (i = 0, . . . , 19). Since 2 is a primitive root modulo T , and the functions fi(x, y) (i =

0, . . . , 19) are not perfect squares, Theorem E implies, that the well-distribution and correlation

measures of sequences generated by the polynomials fi(x, y) (i = 0, . . . , 19) are small.

------------------------------------------------------------------------------

RESULTS FOR THE UNIFORMITY OF P-VALUES AND THE PROPORTION OF PASSING SEQUENCES

------------------------------------------------------------------------------

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROPORTION STATISTICAL TEST

------------------------------------------------------------------------------

4 1 3 0 1 2 2 2 2 3 0.739918 20/20 Frequency

0 3 4 0 3 2 2 1 2 3 0.534146 20/20 BlockFrequency

1 5 2 1 3 1 0 2 3 2 0.437274 20/20 CumulativeSums

4 0 2 4 2 1 3 1 2 1 0.534146 20/20 CumulativeSums

4 2 4 3 2 0 2 1 1 1 0.534146 20/20 Runs

5 3 1 3 4 0 0 3 1 0 0.090936 20/20 LongestRun

3 4 1 0 2 1 1 1 4 3 0.437274 19/20 Rank

3 3 2 2 4 1 1 1 1 2 0.834308 20/20 FFT

4 1 1 2 1 1 6 2 0 2 0.122325 20/20 OverlappingTemplate

0 0 0 0 0 0 0 0 0 20 0.000000 * 20/20 Universal

5 1 2 1 0 5 3 1 1 1 0.122325 20/20 ApproximateEntropy

1 2 2 3 4 0 1 3 2 2 0.739918 19/20 Serial

1 1 4 2 1 2 4 1 2 2 0.739918 19/20 Serial

1 3 3 6 0 2 2 1 1 1 0.162606 20/20 LinearComplexity

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Figure 6: Results of 14 NIST tests for sequences generated by using the elliptic curves

Summarizing: we have considered altogether 60 binary sequences which have been proved

to possess good pseudorandom properties in terms of the pseudorandom measures described in

Section 2, and we tested them by 14 NIST tests. 834 times out of 840 the sequences passed the

test so that the NIST tests confirmed the good pseudorandom quality of the sequence.

9 Conclusion Remarks

The tables in Section 8 show that the sequences “good” in terms of the measures defined in Section

2 are usually also “good” in terms of the NIST tests. Does this mean that we may eliminate the

NIST tests, replace them by estimating the pseudorandom measures described above? Certainly

not: both methods have advantages and disadvantages. The greatest advantage of using the

measures of pseudorandomness described above is that at least for certain special sequences they

enable us to provide “a priori”, “theoretical” testing without any further computations. An other

advantage of this method is that in many constructions (like the ones described in Section 3) we

can give a good upper bound (simultaneously by just a single computation) for the correlation

measure of order k of a sequence of length N for every k with k < N c (say, with c = 1/4), and
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since it is known [4] that the correlation measures of order k, resp. ℓ are independent if k ∤ ℓ and

ℓ ∤ k, thus by estimating the correlation measures whose order is less than N c, we test N c′ (with

c′ < c) independent pseudorandom properties of the sequence, while in the NIST tests only 15

properties are tested. On the other hand, the disadvantage of this approach is that in most cases it

is very difficult to estimate these measures, e.g. there are no algorithms for estimating correlation

measure of high order. On the other hand, NIST provides good and fast algorithms for performing

these tests, while its disadvantage is that it can not be used for “a priori”, “theoretical” testing.

In Section 2 we described only the most important measures of pseudorandomness and in Sec-

tion 3 we presented only three constructions for sequences having good pseudorandom properties

in terms of these measures. There are also other measures of pseudorandomness and many fur-

ther constructions; a survey of these measures and constructions; a survey of these measures and

constructions is presented in [12]. In this paper we have been focusing on studying pseudorandom

properties of single binary sequences. However, as we mentioned in Section 1, if our goal is to

test the quality of a pseudorandom generator, then it is not enough to restrict ourselves to testing

single sequences; one also has to continue the work by using the tools of cryptanalysis for testing

the family of the sequences generated by the given algorithm. Tools for helping this work also have

been introduced (in the spirit of the measures described in Section 2): family complexity [1], cross-

correlation measure [13], distance minimum and avalanche effect [30], etc., and in each of these

cases constructions have been presented for families possessing good pseudorandom properties in

terms of these measures. A survey of this type of papers is presented in [28].
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