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Abstract. Learning something new from a text requires the reader to
build on existing knowledge and add new material at the same time.
Therefore, we propose collection-document (CDS) summaries that high-
light commonalities and differences between a collection (or a single doc-
ument) and a single document. We devise evaluation metrics that do not
require human judgement, and three algorithms for extracting CDS that
are based on single-document keyword-extraction methods. Our evalua-
tion shows that different algorithms have different strengths, e.g. TF-IDF
based approach best describes document overlap while the adaption of
Rake provides keywords with a broad topical coverage. The proposed
criteria and procedure can be used to evaluate document-collection sum-
maries without annotated corpora or provide additional insight in an
evaluation with human-generated ground truth.

Keywords: collection-document summaries, text summarization

1 Introduction

Learning from educational or scientific texts requires readers to integrate new
concepts into their existing background knowledge [1]. In the case of digital
libraries this means that every search result has to be judged on existing, new and
additional information compared to already acquired knowledge of the user. In
digital libraries, this judgment is usually based on explicit summary information
about the search result in questions, such as title and abstract and does not
include explicit information on what is new and what has already been covered by
previous searches or the user’s private library. Similarities between a document
collection and a document can be measured with a qualitative values (e.g. [4]) and
quantitatively judged using single-instance summaries (e.g. [6]). Both, however,
cannot provide comprehensive, explicit summaries about what content is covered
in both, the collection and the document (commonalities) and what content
is new in the document compared to the collection (novelties). In this paper
we propose collection-document summaries, i.e., textual summaries that stress
differences and commonalities between a collection of documents and candidate
documents. Concretely, the contributions of this paper are the following:



2 Nils Witt, Michael Granitzer, and Christin Seifert

– We identify requirements for keyword-based collection-document summaries.
– Based on the requirements, we propose evaluation metrics for collection-

document summaries that do not require human-centric ground-truth.
– Provide baseline algorithms for collection-document summaries by adapting

single-document summarizations methods.

The collection-document summaries are intended to be directly consumed by
users, for instance, to help them judge the suitability of a search result. Due to
the lack of available training data and the required effort to collect it, we aim
for a automatic evaluation that does not require human-centered ground-truth.
The focus for collection-document summaries is on transparency for users, but
they could also be used as features in recommendation and retrieval algorithms.

2 Related Work

Automatic text summarization aims to generate short-lenght text covering the
most important concepts and topics of the text [2]. Text summaries can either be
sentences, phrases or keyphrases, and the content of the summary can either be
chosen from the document itself (extractive summaries) or generated anew based
on the document (abstractive summaries) [5]. Most methods for text summariza-
tion either focus on single-documents or adapt single-document methods to mul-
tiple documents. Multi-document summarization aims to summarize a collection
of textual documents [9]. Methods for multi-document summarizaiton include
using single-document methods on super-documents (concatenation of all docu-
ments from a collection) or averaging the results for single-document methods
over the collection [9]. This work relates to multi-document summarization as
follows: we also extract summaries for collections of documents, but output the
differences and commonalities of a candidate document (not in the collection)
to the collection in terms of keyphrases. Keyphrase extraction attempts to ex-
tract phrases that concessively and most appropriately cover the concepts of the
text [3]. In this work, we extend keyphrase extractions to collection-document
summaries, by postprocessing the results of two well known-keyphrase extrac-
tion methods, namely TextRank [6] and Rake [8] and comparing the results with
a simple baseline considering TF-IDF term weights in the vectorspace-model.

3 Collection-Document Summaries

We define Collection-Document Summaries (CDS) as summarization of a col-
lection of documents and a document, representing how the document’s content
differs and which content it has in common with the collection. Similarly, we can
also compare two documents (i.e., as a collection containing a single document).
Consider the scenario of a person accessing a new field by reading literature. The
reader has already read n papers (D = {d0, ..., dn}) and wants to decide whether
to read the paper dc next. In that scenario the reader is interested to find docu-
ments that have some known content to start with and also have some content
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Fig. 1. Types relationships between collections D and documents. Left: dx differs from
D (CD,dx = ∅), center: dy is similar to D (ND,dy = ∅), right: collection and document
share some concepts, i.e. ND,dz 6= ∅ and CD,dz 6= ∅

that is new to the reader. In other words, the reader is looking for documents
with both, commonalities and novelties:

– Commonalities: dc contains concepts that are also contained in D. These
are concepts the reader is already familiar with.

– Novelties: dc contained concepts that are not contained in D. These are
the concepts the reader is going to encounter when reading dc.

Few commonalities and many novelties indicate a big conceptual gap between D
and dc. The reader may have difficulties to grasp the content of dc. Few novelties
and many commonalities on the other hand indicate dc lacks worthwhile con-
tent. We assume the reader is interested in documents with a balanced amount
of novelties and commonalities, which may not always be true (e.g. when known
concepts are to be revived). While generally, commonalities and novelties as
conceptual views on the documents can be represented in multiple ways (e.g.
subparts of an ontology), in the remainder of this paper we assume that com-
monalities and novelties are represented as words. Therefore, we define CDS as
follows: The collection-document summary of a collection D and a document d
(i.e. ∆(D, d)) is the pair (CD,d, ND,d) where CD,d represents the common key-
words and ND,d the novel keywords of document d with respect to D.

Figure 1 shows three types of relations between collections and documents.
We will motivate and discuss desired properties of CDS and then propose ac-
cording evaluation measures for these properties in the next section.

– Comparability: a document dc similar to the collection D should introduce
no (or only few) new keywords, i.e., if the content of d is already covered by
the collection this should be reflected in the keywords.

– Differentiability: a document dc that is not similar to the collection D
introduces new keywords, i.e., the difference should be visible by viewing
the keywords.

– Diversity: the keywords of either commonalities or novelties of a document
should cover all concepts that the document deals with.

– Specificity: the keywords of either commonalities or novelties should be
specific rather than abstract, e.g. university education is preferred over edu-
cation.
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– Utility: The above criteria are necessary but not sufficient, as they do not
assess whether the results are meaningful for users. Generally, it requires
humans to assess whether CDS are meaningful for a given task, standard
metrics to measure utility are precision, recall and F1 w.r.t. to the human-
annotated ground-truth.

4 Experiments

In the experiments we evaluated three different algorithms for DCS with the
criteria presented in section 3. Source code and data sets are publicly available1.

Data Sets. The data set consists of 140,341 scientific papers from the eco-
nomic domain available in the digital collection EconStor2. The data set contains
information about author, paper abstract, paper type, publication year, venue
and a set of JEL-classification codes3 in meta-data fields. For our experiments we
selected those papers that have an abstract and at least one JEL code assigned
resulting in 67,813 documents. We annotated phrase candidates of at most 3
terms using the phrase collocation detection described by Mikolov et al. [7]. We
constructed artificial user collections D containing k documents with the follow-
ing property: All documents in the collection must have at least n JEL codes
in common, where n ∈ {1, . . . , 8} is an agreement parameter. Additionally, we
randomly generate documents dx and dy with the following properties: dx must
have all JEL codes present in the collection and dy must not have any of the
collection’s JEL codes (cf. figure 1 for a visualization). We chose the agreement
on JEL codes for constructing the collection and determining the similarities
because JEL codes provide an abstract, topical view on the documents, com-
prise multiple topics and are high-quality human-annotated meta-data fields.
The parameters were set to k = 10 and n = 5 in our experiments.

Algorithms. For the simple baseline, ∆TF , we rank the words of a documents
by their TF-IDF score and select the upper 20% of that list. For ∆TR, we ap-
plied TextRank [6] on the documents, keeping the top 20% of the words. We
used the TextRank implementation of the Python summa library. For ∆Rake,
we used Rake [8] from the Python library rake nltk. All the algorithms create
a set of keywords for a single document. The keywords for a collection were
derived using the set union operator for all documents in a collection. The com-
monalities C(D, d) were calculated as the set intersection between the keywords
of the collection D and the document d. Novelties N(D, d) were calculated by
subtracting the set of keywords of the collection D from the set of keywords
from the document d.

Evaluation Measures. We measure Comparability and Differentiability

as the size of the keyword overlap: kwm(dc)∩kwm(D)
kwm(dc)

, where, in the case of com-

parability dc = dx and in the case of differentiability dc = dy (cf. figure 1).

1 http://doi.org/10.5281/zenodo.1133311
2 https://www.econstor.eu, last accessed 2017-10-27
3 https://www.aeaweb.org/jel/guide/jel.php, last accessed 2017-10-27
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Table 1. Example Keywords.

∆Rake ∆TF ∆TR

unanticipated reform, major change, compensate, hampered, fully compensated,
cultural conditions, mothers income, births, essentially, essential incentives,
order births, favorable institutional, unanticipated, mothers, largely driven,
strong labor market attachment unfavorable, mothers earlier

Table 2. Overview of results. Showing mean and variance aggregated for all measures

Method Keywords Comparability Differentiability Specificity Diversity
per doc

∆Rake 13.5 ± 6.6 0.37 ± 0.04 0.10 ± 0.03 2.9% ± 0.4% 0.60 ± 0.10
∆TF 6.2 ± 2.9 0.50 ± 0.06 0.13 ± 0.04 1.2% ± 0.3% 0.15 ± 0.03
∆TR 3.6 ± 2.2 0.45 ± 0.03 0.17 ± 0.09 2.2% ± 0.8% 0.18 ± 0.06

Samples 100 100 500 10,000

kwm(d) is the number of keywords extracted by method m on the document d.
For Diversity we construct a binary JEL code-keyword matrix (M) for each
keyword extraction algorithm on the entire data set. Each entry mij in M in-
dicates whether a specific JEL code i occurs in at least t documents for which
keyword i has also been extracted. The parameter t is set to 10 for Rake, 20 for
TF-IDF and 5 for TextRank in the experiments. These values were obtained by
manual optimization. Thus, the columns of M contain representations of key-
words in terms of JEL codes. In a second step, given a candidate document,
keywords are extracted and their respective columns of M are combined by log-
ical OR yielding a vector v. The ground-truth JEL codes for the document are
compared to the candidate vector v using Jaccard similarity. To measure the
Specificity we generate two disjoint collections, i.e. two collections that do not
share any JEL code. Afterwards the keywords of both collections are extracted
and the set intersection and set symmetric difference are computed. The intu-
ition behind this is, that, since the two collections share no JEL codes, they are
topically different. Hence, for keyword extractors that generate specific keywords
the intersection should be empty. Keywords in the intersection are expected to
be unspecific. This measure is normalize by the amount of generated keywords.
We divide the intersection size by the size of the symmetric difference.

5 Results

The results of our experiments are summarized in table 2. We see that the aver-
age amount of keywords produced varies considerably, with Rake producing too
many keywords given the assumption that the results should be consumed by
people. ∆TF scores best at Comparability and achieves proper results in Differ-
entiability, leading to the larges gap between these two related measures. That
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means that ∆TF is the preferred method to model the assumption depicted in
figure 1. Presumably, ∆Rake’s bad Comparability performance can be partially
explained by its much larger number of unique keywords, which makes match-
ing keywords less probable whereby the comparability score drops. ∆Rake’s bad
Specificity performance is surprising, as it has the largest repertoire of keywords
available, which should allow it extract specific keywords. ∆TF on the other
hand performs much better albeit its much smaller keyword repertoire. High
Diversity scores indicate that the keywords a method extracts are good clas-
sification features to predict the JEL codes of documents. This is the measure
where ∆Rake excels, due to its multi-token keywords (cf. table 2) and probably
also because of the higher keyword per document count.

6 Summary

We have introduced the notion of collection-document summaries and identified
criteria by which the quality of those summaries can be measured. Furthermore,
we have conducted experiments with three keyword extraction methods. The
applied keyword extraction methods are state-of-the-art methods for single doc-
ument summarization, and therefore should be considered a lower bound baseline
for collection-document summarization. Future work includes the devision of new
algorithms, for instance by combining ∆Rake (best diversity) and ∆TF (best
comparability) and an evaluation of the methods on a human-generated ground-
truth to answer the question about the utility of the extracted keywords.
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