
Detecting Sockpuppets
in Deceptive Opinion Spam

Marjan Hosseinia and Arjun Mukherjee

University of Houston
Department of Computer Science

Houston, TX, USA
mhosseinia@uh.edu, arjun@cs.uh.edu

Abstract. This paper explores the problem of sockpuppet detection
in deceptive opinion spam using authorship attribution and verification
approaches. Two methods are explored. The first is a feature subsam-
pling scheme that uses the KL-Divergence on stylistic language models
of an author to find discriminative features. The second is a transduc-
tion scheme, spy induction that leverages the diversity of authors in the
unlabeled test set by sending a set of spies (positive samples) from train-
ing set to retrieve hidden samples in the unlabeled test set using nearest
and farthest neighbors. Experiments using ground truth sockpuppet data
show the effectiveness of the proposed schemes.

1 Introduction

Deceptive opinion spam refers to illegitimate activities, such as writing fake re-
views, giving fake ratings, etc., to mislead consumers. While the problem has
been researched from both linguistic [1,2] and behavioral [3,4] aspects, the case
of sockpuppets still remains unsolved. A sockpuppet refers to a physical author
using multiple aliases (user-ids) to inflict opinion spam to avoid getting filtered.
Sockpuppets are particularly difficult to detect by existing opinion spam detec-
tion methods as a sockpuppet invariably uses a user-id only a few times (often
once) thereby limiting context per user-id. Deceptive sockpuppets may thus be
considered as a new frontier of attacks in opinion spam.

However, specific behavioral techniques such as Internet Protocol (IP) and
session logs based detection in [5] and group spammer detection in [6] can provide
important signals to probe into few ids that form a potential sockpuppet. Par-
ticularly, some strong signals such as using same IP and session logs, abnormal
keystroke similarities, etc. (all of which are almost always available to a website
administrator) can render decent confidence that some reviews are written by
one author masked behind a sockpuppet. This can render a form of training data
for identifying that sockpuppeter; and the challenge is to find other fake reviews
which are also written by the same author but using different aliases in future.
Hence, the problem is reduced to an author verification problem. Given a few
instances (reviews) written by a (known) sockpuppet author a, the task is to
build an Author Verifier, AVa (classifier) that can determine whether another

ar
X

iv
:1

70
3.

03
14

9v
1

 [
cs

.C
L

]
 9

 M
ar

 2
01

7

(future) review is also written by a or not. This problem is related to authorship
attribution (AA)[7] where the goal is to identify the author of a given document
from a closed set of authors. However, having short reviews with diverse topics
render traditional AA methods, that mostly rely on content features, not very
effective (see section 7). While there have been works in AA for short texts such
as tweets in [8] and with limited training data [9], the case for sockpuppets is
different because it involves deception. Further, in reality sockpuppet detection
is an open set problem (i.e., it has an infinite number of classes or authors)
which makes it very difficult if not impossible to have a very good representa-
tive sample of the negative set for an author. In that regard, our problem bears
resemblance with authorship verification [10].
In this work we first find that under traditional attribution setting, the precision
of a verifier AVa degrades with the increase in the diversity and size of ¬a, where
¬a refers to the negative set authors for a given verifier AVa. This is detailed
in section 4.1. This shows that the verifier struggles with higher false positive
and cannot learn ¬a well. It lays the ground for exploiting the unlabeled test
set to improve the negative set in training. Next, we improve the performance
by learning verification models in lower dimensions (section 5). Particularly, we
employ a feature selection scheme, ∆KL Parse Tree Features (henceforth abbre-
viated as ∆KL-PTFs) that exploits the KL-Divergence of the stylistic language
models (computed using PTFs) of a and ¬a. Lastly, we address the problem
by taking advantage of transduction (section 6). The idea is to simply put a
carefully selected subset of positive samples, reviews authored by a (referred to
as a spy set) from the training set to the unlabeled test set (i.e., the test set
without seeing the true labels) and extract the nearest and farthest neighbors
of the members in the spy set. These extracted neighbors (i.e., samples in the
unlabeled test set which are close and far from the samples in the spy set) are
potentially positive and negative samples that can improve building the verifier
AVa. This process is referred to as spy induction. The basic rationale is that
since all samples retain their identity, a good distance metric should find hid-
den positive and negative samples in the unlabeled test set. The technique is
particularly effective for situations where training data is limited in size and
diversity. Although both spy induction and traditional transduction [11] exploit
the assumption of implicit clusters in the data [12], there is a major difference
between these two schemes; Spy induction focuses on sub-sampling the unla-
beled test set for potential positive and negative examples to grow the training
set whereas traditional transduction uses the entire unlabeled test set to find
the hyperplane that splits training and test sets in the same manner [13]. Our
results show that for the current task, spy induction significantly outperforms
traditional transduction and other baselines across a variety of classifiers and
even for cross domains.

2 Related Work

Authorship Attribution (AA): AA solves the attribution problem on a closed
set of authors using text categorization. Supervised multi-class classification al-
gorithms with lexical, semantic, syntactic, stylistic, and character n-gram fea-
tures have been explored in [14,15,16]. In [17], a tri-training method was proposed
to solve AA under limited training data that extended co-training using three
views: lexical, character and syntactic. The method however assumes that a large
set of unlabeled documents authored by the same given closed set of authors are
available which is different from our sockpuppet verification. In [18], latent topic
features were used to improve attribution. This method also requires larger text
collection per author to discover the latent topics for each author which is un-
available for a sockpuppet.

Authorship Verification (AV): In AV, given writings of an author, the
task is to determine if a new document is written by that author or not. Koppel
and Schler, (2004)[10] explored the problem on American novelists using one-
class classification and “unmasking” technique. Unmasking exploits the rate of
deterioration of the accuracy of learned models as the best features are iteratively
dropped. In [19], the task was to determine whether a pair of blogs were written
by the same author. Repeated feature sub-sampling was used to determine if
one document of the pair allowed selecting the other among a background set of
“imposters” reliably. Although effective unmasking requires a few hundred word
texts to gain statistical robustness and was shown to be ineffective for short
texts (e.g., reviews) in [20].

Sockpuppet Detection: Sockpuppets were studied in [21] for detecting
fake identities in Wikipedia content providers using an SVM model with word
and Part Of Speech (POS) features. In [22], a similarity space based learning
method was proposed for identifying multiple userids of the same author. These
methods assume reasonable context (e.g., 30 reviews per userid). These may not
be realistic in opinion spamming (e.g., [6,23,24]) as the reviews per userid are
far less and often only one, as shown in singleton opinion spamming [25].

3 Dataset

[26] reports that crowdsourcing is a reasonable method for soliciting ground
truths for deceptive content. Crowdsourcing has been successfully used for opin-
ion spam generation in various previous works [1,27,28,29]. In this work, our
focus is to garner ground truth samples of multiple fake reviews written by one
physical author (sockpuppet). To our knowledge, there is no existing dataset
available for opinion spam sockpuppets. Hence, we used Amazon Mechanical
Turk.

Participating turkers were led to a website for this experiment where re-
sponses were captured. To model a realistic scenario such as singleton opinion
spamming [25], Turkers were asked to act as a sockpuppet having access to sev-
eral user-ids and each user-id was to be used exactly once to write a review as if

Fig. 1. Precision, recall and F-Score (y-axis) for different author diversity, λ =
25%, 50%, 75%, 100% (x-axis) under in-training setting.

written by that alias. The core task required writing 6 positive and 6 negative
deceptive reviews, each had more than 200 words, on an entity (i.e., 12 reviews
per entity). Each entity belonged to one of the three domains: hotel, restaurant
and product. We selected 6 entities across each domain for this task. Each turker
had to complete the core task for two entities each per domain (i.e., 24 reviews
per domain). The entities and domains were spread out evenly across 17 authors
(Turkers). It took us over a month to collect all samples and the mean writing
time per review was about 9 minutes.

To ensure original content, copy and paste was disabled in the logging web-
site. We also followed important rubrics in [1] (e.g., restricted to US Turkers,
maintaining an approval rating of at least 90%) and Turkers were briefed with
the domain of deception with example fake reviews (from Yelp). All responses
were evaluated manually and those not meeting the requirements (e.g., overly
short, incorrect target entity, unintelligible, etc.) were discarded resulting in an
average of 23 reviews per Turker per domain. The data and code of this work is
available at this link 1 and will be released to serve as a resource for furthering
research on opinion spam and sockpuppet detection.

Throughout the paper, for single domain experiments, we focus on the hotel
domain which had the same trends to that of product and restaurant domains.
However, we report results on all domains for cross domain analysis (section
7.4).

4 Hardness Analysis

This section aims to understand the hardness of sockpuppet verification via two
schemes.

1 https://www.dropbox.com/sh/xybjmxffmype3u2/AAA95vdkDp6z5fnTHxqjxq5Ga?dl=0

4.1 Employing Attribution

An ideal verifier (classifier) for an author a requires a representative sample of
¬a. We can approximate this by assuming a pseudo author representing ¬a and
populating it by randomly selecting reviews of all authors except a. Under the
AA paradigm, this is reduced to binary classification. We build author verifiers
for each author ai ∈ A = {a1, ..., a17}. As in AA paradigm, we use in-training
setting, i.e., negative samples (¬a) in both training and test sets are authored
by the same closed set of 16 authors although the test and training sets are
disjoint. Given our task, since there are not many documents per author to
learn from, the effect of author diversity on problem hardness becomes relevant.
Hence, we analyze the effect of the diversity and size of the negative set. Let
λ ∈ {25%, 50%, 75%, 100%} be the fraction of total authors in ¬a that are used
in building the verifier AVa. Here λ refers to author diversity under in-training
setting. We will later explore the effect of diversity under out-of-training setting
(section 5). For e.g., when λ = 50%, we randomly choose 8 authors, 50% of total
16 authors, from ¬a to define the negative set for AVa. Note that since we have
a total of 16 authors in ¬a for each a and all λ values, the class distribution
is imbalanced with the negative class ¬a in majority. We keep the training set
balanced throughout the paper as recommended in [30] to avoid learning bias due
to data skewness. We use 5-fold Cross Validation (5-fold CV) so, the training fold
consists of 80% of the positive (a) and equal sized negative (¬a) samples. But
the test fold includes the rest 20% of positive and remaining negative samples
except those in training. Under this scheme, since ¬a is the majority class in the
test set, accuracy is not an effective metric. For each AVa, we first compute the
precision, recall and F-Score (on the positive class a) using 5-fold CV. Next, we
average the results across all authors using their individual verifiers (Figure 1).
This scheme yields us a robust measure of performance of sockpuppet verification
across all authors and is used throughout the paper.

We report results of Support Vector Mechine (SVM), Logistic Regression
(LR) and k-Nearest Neighbor (kNN) classifiers (using the libraries LIBSVM [31]
for SVM with RBF kernel, LIBLINEAR[32] for LR with L2 regularization and
WEKA 2 for kNN with k=3 whose parameters were learned via CV). The feature
space consists of lexical units (word unigram) and Parse Tree Features (PTF)
extracted using Stanford parser [33] with normalized term frequency for feature
value assignment. Unless otherwise stated we use this feature set as well as the
classifires setting for all experiments in this paper. We followed some rules from
[34] in computing PTFs. The rules are generated by traversing a parse tree in
three ways i) a parent node to the combination of all its non-leaf nodes, ii) an
internal node to its grandparent, iii) a parent to its internal child. We also add
all interior nodes to the feature space (Table 1). From Figure 1, we note:

– With increase in diversity of negative samples, λ of ¬a, the test set size and
variety also increase and we find significant drops in precision across all clas-
sifiers. This shows a significant rise in false positives. In other words, as the

2 http://www.cs.waikato.ac.nz/ml/weka/

Table 1. Parse Tree Feature (PTF) Types

Parse tree for: “The staff were friendly.”

PTF(I) S → NP VP
PTF(II) JJ ˆ ADJP → VP
PTF (III) S→ NP
Interior nodes DT, NP

approximated negative set approaches the universal negative set (¬̃a → ¬a
with increase in diversity of ¬a), learning ¬a becomes harder.

– Recall, however, does not experience major changes with increase in the di-
versity of negative set as it is concerned with retrieving the positive class
(a).

– F-Score being the harmonic mean of precision and recall, aligns with the
precision performance order. We also note that F-Score in SVM and LR behave
similarly followed by kNN.

Thus, sockpuppet verification is non-trivial and the hardness increases with the
increase in ¬a diversity.

4.2 Employing Accuracy and F1 on Balanced Class Distribution

Under binary text classification and balanced class distribution, if accuracy or F1
are high, it shows that the two classes are well separated. This scheme was used in
[10] for authorship verification. In our case, we adapt the method as follows. We
consider two kinds of balanced data scenarios for a verifier for author a, AVa: S1

and S2. Under S1, we have the positive class P that consists of half of all reviews
authored by a Ra, i.e., P = {ri ∈ Ra; |P | = 1/2|Ra|}. The negative class NS1

comprises of the other half, NS1
= {ri ∈ Ra−P ; |NS1

| = |P |} and S1 = P ∪NS1
.

Under S2, we keep P intact but use a random sampling of ¬a for its negative
class, NS2

= {ri ∈ R¬a; |NS2
| = |P |} yielding us S2 = P ∪ NS2

. Essentially,
with this scheme, we wish to understand the effect of negative training set when
varied from false negative (NS1) to approximated true negative (NS2). Using
lexical and parse tree features and 5-fold CV we report performance under each
scenario S1 and S2 in Table 2. We note the following:

– The precision, recall, F1 and accuracy of all models under S2 is higher than
S1. While this is intuitive, it shows for deceptive sockpuppets, writings of an
author (P) bear separation from other sockpuppeters (NS2

).
– Sockpuppet verification is a difficult problem because under balanced binary

classification (S2), there is just 5-10% gain in accuracy than random (50%
accuracy). Yet it does show the models are learning some linguistic knowl-
edge that separate a and ¬a and using writings of authors other than a is a
reasonable approximation for universal ¬a.

Table 2. Classification results P: Precision, R: Recall, Acc: Accuracy, F1: F-
Score under two balanced data scenarios S1 and S2 for different classifiers.

Model

S1 S2

P R Acc F1 P R Acc F1

SVM 47.1 48.4 49.0 45.6 62.5 66.5 61.8 61.1
LR 47.4 46.4 49.5 44.6 63.5 67.4 61.7 62.1
kNN 41.9 57.4 49.8 44.9 51.0 68.9 56.1 53.8

5 Learning in Lower Dimensions

From the previous experiment, it hints that in the case of deceptive sockpuppets,
only a small set of features differentiate a and ¬a. As explored in [34], there often
exists discriminative author specific stylistic elements that can characterize an
author. However, the gamut of all PTFs per author (greater than 2000 features
in our data) may be overlapping across authors (e.g., due to native language
styles). To mine those discriminative PTFs, we need a feature selection scheme.
We build on the idea of linguistic KL-Divergence in [30] and model stylistic
elements to capture how things are said as opposed to what is said. The key
idea is to construct the stylistic language model for author, a and its pseudo
author ¬a. Let A and ¬A denote the stylistic language models for author a and
¬a comprising the positive and negative class of AVa respectively, where A(t)
and ¬A(t) denote the probability of the PTF, t in the reviews of a and ¬a.
KL(A||¬A) =

∑
t(A(t) log2 (A(t)/¬A(t))) provides a quantitative measure of

stylistic difference between a and ¬a. Based on its definition, PTF t that appears
in A with higher probability than in ¬A, contributes most to KL(A||¬A). Being
asymmetric, it also follows that PTF t′ that appears in ¬A more than in A
contributes most to KL(¬A||A). Clearly, both of these types of PTF are useful
for building AVa. They can be combined by computing the per feature, f , ∆KLf

as follows:

∆KLf
t = KLt(At||¬At)−KLt(¬At||At) (1)

KLt(At||¬At) = A(t) log2 (A(t)/¬A(t)) (2)

KLt(¬At||At) = ¬A(t) log2 (¬A(t)/A(t)) (3)

Discriminative features are found by simply selecting the top PTF t based
on the descending order of |∆KLf

t | until |∆KLf
t | < 0.01. This is a form of

sub-sampling the original PTF space and lowers the feature dimensionality. In-
tuitively, as KLt is proportional to the relative difference between the probability
of PTF t in positive (a) and negative (¬a) classes, the above selection scheme
provides us those PTF t that contribute most to the linguistic divergence be-
tween stylistic language models of a and ¬a.

To evaluate the effect of learning in lower dimensions, we consider a more
realistic “out-of-training” setting instead of the in-training setting as in previous
experiments. Under out-of-training setting, the classifier cannot see the writings

of those authors that it may encounter in the test set. In other words test and
training sets of a verifier AVa are completely disjoint with respect to ¬a which is
realistic and also more difficult than in-training setting. Further, we explore the
effect of author diversity under out-of-training setting, δ for the negative set (not
to be confused with λ as in section 4). For each experiment, the reviews from
δ% of all authors except the intended author, ¬a participate in the training of a
verifier AVa while the rest (100−δ%) authors make the negative test set. We also
consider standard lexical units (word unigram) (L), L + PTF, and top k = 20%
(tuned via CV) PTF selected using χ2 metric (L + PTF χ2) as baselines. We
examine different values of δ ∈ {25%, 50%, 75%} but not δ = 100% as that leaves
no test samples due to out-of-training setting. From Table 3, we note:

– For each feature space, as the ¬a diversity (δ) increases, across each classifier,
we find gains in precision with reasonably lesser drops in recall resulting in
overall higher F1. This shows that with increase in diversity in training, the
verifiers reduced false positives improving their confidence. Note that verifica-
tion gets harder for smaller δ as the size and skewness of the test set increases.
This trend is different from what we saw in Figure 1 with λ which referred to
diversity under in-training setting.

– Average F1 based on three classifiers (column AVG, Table 3) improves for
δ = 25%, 50% using L+PTF than L showing parse tree feature can capture
style. However feature selection using χ2 (L+PTF χ2) is not doing well as for
all δ values there is reduction in F1 for SVM and LR. L+∆KL PTF feature
selection performs best in AVG F1 across different classifiers. It recovers the
loss of PTF χ2 and also improves over the L+PTF space by about 2-3%.

6 Spy Induction

We recall from section 1 that our problem suffers with limited training data
per author as sockpuppets only use an alias few times. To improve verification,
we need a way to learn from more instances. Also from section 4, we know
that precision drops with increase in diversity of ¬a. This can be addressed
by leveraging the unlabeled test set to improve the ¬a set in training under
transduction.

Figure 2 provides an overview of the scheme. For a given training set and a
test set for AVa, spy induction has three main steps. First is spy selection where
some carefully selected positive samples are sent to the unlabeled test set. The
second step is to find certain Nearest and Farthest Neighbors (abbreviated NN,
FN henceforth) of the positive spy samples in the unlabeled test set. As the
instances retain their original identity, a good distance metric should be able to
retrieve potentially hidden positive (using common NN across different positive
spies) and negative (using common FN across different positive spies) samples
in the unlabeled test set. These newly retrieved samples from unlabeled test set
are used to grow the training set. The previous step can have some label errors
in NN and FN as they may not be true positive (a) and negative (¬a) samples,

Table 3. P: Precision, R: Recall, F1: F-Score for out-of-training with different
values of δ for three classifiers. AVG reports the average F1 across three classi-
fiers. Feature Set: L: Lexical unit (word unigram), PTF: Parse tree feature, PTF
χ2 : PTF selected by χ2 , ∆KL PTF: PTF selected via ∆KL

δ=25%
SVM LR kNN AVG

Feature Set P R F1 P R F1 P R F1 F1

L 23.6 82.0 34.3 23.1 74.7 30.8 19.4 84.6 25.8 30.3
L+PTF 25.6 73.4 35.2 22.9 82.5 33.4 24.8 66.7 24.5 31.0
L+PTFχ2 21.7 73.5 30.8 14.8 53.5 21.3 22.6 75.3 25.9 26.0
L+∆KL PTF 25.6 79.2 36.3 21.7 80.2 32.1 22.3 81.5 27.8 32.1

(a)

δ =50%
SVM LR kNN AVG

Feature Set P R F1 P R F1 P R F1 F1

L 30.7 83.6 41.8 28.7 83.1 38.7 21.1 85.1 27.1 35.9
L+PTF 33.2 73.4 42.7 30.6 78.1 40.9 28.0 73.8 28.8 37.5
L+PTFχ2 24.8 69.2 33.7 21.0 47.8 26.9 23.4 81.6 30.2 30.3
L+∆KL PTF 33.7 75.9 42.8 31.1 79.4 41.9 26.9 79.5 30.3 38.3

(b)

δ =75%
SVM LR kNN AVG

Feature Set P R F1 P R F1 P R F1 F1

L 47.1 77.7 55.1 44.4 80.4 52.7 28.7 83.5 37.8 48.5
L+PTF 51.4 72.6 56.0 43.7 78.8 53.0 28.1 64.8 31.7 46.9
L+PTFχ2 42.4 71.2 49.5 33.9 49.6 36.4 35.6 79.8 40.0 42.0
L+∆KL PTF 50.5 71.9 56.2 46.3 79.4 54.9 42.2 80.8 46.1 52.4

(c)

which can be harmful in training. These are shown in Figure 2(B) by α− and
β+ samples. To reduce such potential errors, a third step of label verification is
employed where the labels of the newly retrieved samples from unlabeled test
set are verified using agreement of classifiers on orthogonal feature spaces. with
this step, we benefit from the extended training data without suffering from
the possible issue of error propagation. Lastly, the verifier undergoes improved
training with additional samples and optimizes the F-Score on the training set.

6.1 Spy Selection

This first step involves sending highly representative spies that can retrieve
new samples to improve training. For a given verification problem, AVa, let
D = D.Train∪D.Test denotes the whole data. Although any positive instance
in D.Train can be a spy sample, only few of them might satisfy the representa-
tiveness constraint. Hence, we select the spies as those positive samples that have

Fig. 2. Spy Induction : (A)Spies (Red plus signs) selected based on positive
class centrality being put to the unlabeled test set. (B) Common nearest and
farthest neighbors (Green plus and minus signs) across different spies neighbor-
hood shown by oval boundaries found in unlabeled test set being put back in
the training set.

maximum similarity with other positive instances. In other words, the selection
respects class based centrality and employs minimum overall pairwise distance
(OPD) as its selection criterion:

OPD(s) = argmins∈P (
∑
x∈P

d(s, x)) (4)

where P is the positive class of training set, s denotes a potential spy sample
and d(·) is distance function. Our spy set, S = {s} consists of different spies that
have the least pairwise distance to all other positive samples. We also consider
different sizes of the spy set |S| = nS and experiment with different values of nS ∈
NS = {1, 3, 5, 7}. The method SelectSpy(·) (line 4, Algorithm 1) implements this
step.

6.2 New Instance Retrieval via Nearest and Farthest Neighbors

After the selected spies are put into the unlabeled test set, the goal is to find
potential positive and negative samples. Intuitively, one would expect that the
closest data points to positive spy samples belong to the positive class while
those that are farthest are likely negative samples. For each spy, s ∈ S, we
consider nQ nearest neighbors forming the likely positive set Qs and nR farthest
neighbors forming the likely negative set Rs specific to s. Then, we find the
common neighbors across multiple spies to get confidence on the likely positive
or negative samples which yields us the final set of potentially Q positive and R
negative samples,

Q = ∩s∈S Qs; R = ∩s∈S Rs (5)

This is implemented by the methods ObtainNN(·), ObtainFN(·) (lines 5, 6,
Algorithm 1). In most cases, we did not find the common neighbors Q,R to be
empty, but if it is null, it implies no reliable samples were found. Further, like
nS (in section 6.1), we try different values for |Qs| = nQ;nQ ∈ NQ = {1, 3}
and |Rs| = nR;nR ∈ NR = {5, 10, 25, 40, 50, 60}. These values were set based

Algorithm 1: Spy induction

SpyInduction(D,NS , NQ, NR)
1 : P ← {x ∈ D.Train, x.label > 0}//positive class
2 : I ← {(nS , nQ, nR)|nS ∈ NS , nQ ∈ NQ, nR ∈ NR}
3 : for each(i = (nS , nQ, nR) ∈ I)
4 : S ← SelectSpy(P, nS)
5 : Q← ObtainNN(D.Test, S, nQ)
6 : R← ObtainFN(D.Test, S, nR)
7 : (Qv, Rv)← CoLabelingV erification(Q,R,D.Train)
8 : F1(i)← CV ImprovedTraining(D.Train,Qv, Rv)
9 : endfor
10 : (nS , nQ, nR)∗ ← argmax i∈I(F1(i))
11 : AV ← Classifier(D.Train,D.Test, (nS , nQ, nR)∗)

Fig. 3. Spy induction

on pilot experiments. The above scheme of new sample retrieval works with any
distance metric.

We consider two distance metrics on the feature space L+∆KL PTF to
compute all pairwise distances in the methods SelectSpy(·), ObtainNN(·) and
ObtainFN(·) (line 4-6, Algorithm 1): (1) Euclidean, (2) Distance metric learned
from data. Specifically, we use the large margin method in [35] which learns
a Mahalanobis distance metric dM (·) that optimizes kNN classification in the
training data using dM . The goal is to learn dM (·) such that the k-nearest neigh-
bors (based on dM (·)) of each sample have the same class label as itself while
different class samples are separated by a large margin.

6.3 Label Verification via Co-Labeling

As it is not guaranteed that the distances between samples can capture the
notion of authorship, the previous step can have errors, i.e., there may be some
positive samples in R and negative samples in Q. To solve this, we apply co-
labeling [36] for label verification. In co-labeling, multiple views are considered
for the data and classifiers are built on each view. Majority voting based on
classifier agreement is used to predict labels of unlabeled instances. In our case,
we consider D.Train to train an SVM on five feature spaces (views): i) unigam,
ii) unigram+bigram, iii) PTF, iv) POS , v) ∆KL PTF+unigram+bigram as five
different label verification classifiers. Then, the labels of samples in Q and R are
verified based on agreements of majority on classifier prediction. Samples having
label discrepancies are discarded to yield the verified retrieved samples, (Qv, Rv)
(line 7, Algorithm 1). The rationale here is that it is less probable for majority
of classifiers (each trained on a different view) to make the same mistake in
predicting the label of a data point than a single classifier.

6.4 Improved Training

The retrieved and verified samples from the previous steps are put back into the
training set. However, the key lies in estimating the right balance between the
amount of spies sent, and the size of the neighborhood considered for retrieving
potentially positive or negative samples, which are governed by the parameters
nS , nQ, nR. To find the optimal parameters, we try different values of the param-
eter triple, i = (nS , nQ, nR) ∈ I (lines 2, 3 Algorithm 1) and record the F-Score
of 5-fold CV on D.Train ∪ Qv ∪ Rv as F1(i) (line 8, Algorithm 1). This step
is carried out by the method CV ImprovedTraining(.). Finally, the parameters
that yield the highest F1 in training are chosen (line 10, Algorithm 1) to yield
the output spy induced verifier (line 11, Algorithm 1).

7 Experimental Evaluation

This section evaluates the proposed spy method. We keep all experiment settings
same as in section 5 (i.e., use out-of-training with varying author diversity δ).
We fix our feature space to L+∆KL PTF as it performed best (see Table 3). As
mentioned earlier, we report average verification performance across all authors.
Below we detail baselines, followed by results and sensitivity analysis.

7.1 Baselines and Systems

We consider the following systems:
MBSP runs the Memory-based shallow parsing approach [9] to authorship ver-
ification that is tailored for short text and limited training data.
Base runs classification without spy induction and dovetails with Table 3 (last
row) for each δ.
TSVM uses the transductive learner of SVMLight [13] and aims to leverage the
unlabeled (test) set by classifying a fraction of unlabeled samples to the positive
class and optimizes the precision/recall breakeven point.
Spy (Eu.) & Spy (LM) are spy induction systems without co-labeling but use
Euclidean (Eu.) and learned distance metric (LM) to compute neighbors.
Spy (EuC) & Spy (LMC) are extensions of previous models that consider
label verification via co-labeling approach.

7.2 Results

Table 4 reports the results. We note the following:

– Except for two cases (F1 of SVM and kNN for Spy(LM) with δ = 75%), almost
all spy models are able to achieve significantly higher F1 than base (without
spy induction) and TSVM for all classifiers SVM, LR, kNN and across all
diversity values δ. MBSP performs similarly as Base showing memory based
learning does not yield a significant advantage in sockpuppet verification.
TSVM is not doing well on F1 but improves recall. One reason could be that

Table 4. P: Precision, R: Recall, F1: F-Score results for spy induction under
out-of-training with different values of δ for three classifiers. AVG reports the
average F1 across three classification models. Feature Set: L+∆KL PTF. Gains
in AVG F1 using spy (EuC) and (LMC) over baselines are significant at p<0.001
using a t-test

δ=25%
SVM LR kNN AVG

Model P R F1 P R F1 P R F1 F1

MBSP 22.9 84.1 32.0 22.1 82.1 31.1 20.7 77.5 23.5 28.9
Base 25.6 79.2 36.3 21.7 80.2 32.1 22.3 81.5 27.8 32.1
TSVM 30.6 43.9 34.3 - - - - - - 34.3
Spy(Eu.) 39.1 51.2 40.6 51.6 42.3 43.7 43.3 52.5 39.4 41.2
Spy(LM) 42.2 49.3 42.0 44.4 49.6 43.9 34.9 62.8 33.7 39.9

Spy(EuC) 42.0 57.8 42.7 51.2 61.3 52.5 41.5 57.9 38.4 44.5
Spy(LMC) 38.1 60.5 40.6 42.9 64.9 47.1 35.3 68.1 36.0 41.2

(A)

δ=50%
SVM LR kNN AVG

Model P R F1 P R F1 P R F1 F1

MBSP 31.9 85.3 42.1 25.0 81.6 34.6 21.1 84.4 28.7 35.1
Base 33.7 75.9 42.8 31.1 79.4 41.9 26.9 79.5 30.3 38.3
TSVM 20.2 83.6 31.1 - - - - - - 31.1
Spy(Eu.) 39.1 71.2 45.9 38.1 67.9 46.2 45.1 58.7 41.7 44.6
Spy(LM) 40.1 68.5 45.9 44.7 55.5 45.6 42.7 66.2 40.2 43.9

Spy(EuC) 62.3 52.0 52.3 62.5 64.6 61.0 46.6 62.3 43.2 52.2
Spy(LMC) 46.8 60.9 48.0 51.5 67.4 53.7 40.7 67.6 39.2 47.0

(B)

δ=75%
SVM LR kNN AVG

Model P R F1 P R F1 P R F1 F1

MBSP 49.9 80.4 57.2 53.9 81.9 59.1 33.8 82.2 38.6 51.6
Base 50.5 71.9 56.2 46.3 79.4 54.9 42.2 80.8 46.1 52.4
TSVM 34.4 80.4 45.8 - - - - - - 45.8
Spy(Eu.) 55.6 70.8 58.2 50.9 77.5 57.9 57.7 57.6 50.7 55.6
Spy(LM) 53.1 62.8 54.3 51.1 69.6 56.1 51.8 57.7 45.8 52.1

Spy(EuC) 71.9 59.1 62.4 68.9 75.6 70.2 63.6 59.0 54.7 62.4
Spy(LMC) 55.6 72.3 58.4 60.8 68.5 61.4 53.4 60.8 48.7 56.2

(C)

due to class imbalance, TSVM has some bias in classifying unlabeled examples
to positive class that improves recall but suffers in precision.

– The AVG F1 column shows that on average, across three classifiers spy induc-
tion yields at least 4% gain or more. The gains in AVG F1 are pronounced for
δ = 25% with gains upto 12% with spy (EuC). For δ = 75%, we find gains of

about 10% in F1 with spy (EuC). Note that we employ out-of-training setting
with varying author diversity (δ) so the test set is imbalanced (i.e., the random
baseline is no longer 50%). Across all classifiers, the relative gains in F1 for
spy methods over base reduce with increase in author diversity δ which is due
(a) better ¬a samples in training that raise the base result and (b) test set
size and variety reduction limiting spy induction. Nonetheless, we note that
for δ = 25% (harder case of verification), spy induction does well across all
classifiers.

– Anchoring on one distance metric (Eu./LM), we find that spy induction with
co-labeling does markedly better than spy induction without co-labeling across
all δ in AVG F1 across three classifiers. This shows label verification using co-
labeling is helpful in filtering label noise and an essential component in spy
induction.

– Between Euclidean and distance metric learned via large-margin (LM), Eu-
clidean does better than LM in AVG F1 for both spy induction with and
without co-labeling. However, using the LM metric yields higher recall than
Euclidean in certain cases (underlined) which shows LM metric can yield gains
in F1 beyond base with relatively lesser drops in recall which is again useful.

In summary, we can see that spy induction works in improving the F1 across
different classifiers and author diversity and distance metrics. Overall, the scheme
LR+Spy (EuC) does best across each δ (highlighted in gray) and is used for
subsequent experiments to compare against Base.

7.3 Spy Parameter Sensitivity Analysis

To analyze the sensitivity of the parameters, we plot the range of precision, recall
and F1 values as spy induction learns the optimal values in training. We focus
on the variation for δ = 25%, 75% capturing both extremes of diversity. Figure
3 shows the performance curves for different spy parameter triples (nS , nQ, nR)
sorted in the increasing order of F1. We find that for both δ = 25%, 75%, the
spy induction steadily improves precision with the increase in likely ¬a samples
(nR). Although the recall drops more and has more fluctuations for the harder
case of δ = 25%, it stabilizes early for δ = 75% with much lesser drop in recall.
This shows that the spy induction scheme is robust in optimizing F1 with only
a few (5-7) spy samples (nS) sent to unlabeled test set.

7.4 Domain Adaptation

We now test the effective of spy induction under domain transfer. As mentioned
in section 3, we obtained reviews of Turkers for hotel, restaurant and product
domains. Keeping all other settings same as in Table 4, Table 5 reports results for
cross domain performance by training the verifiers (AVa) using two domains and
testing on the third domain. We compare sockpupet verification using LR+Spy
(EuC) vs. base (LR without spy induction). We report the F1 scores as the trends
of precision and recall for cross domain were similar to the trends in Table 4. The

Table 5. Cross domains results of LR + Spy (EuC). Gains in F1 using spy
induction over base are significant at p<0.01 for all test domains and each δ
using a t-test.

δ =25% δ=50% δ =75%

Base Spy Base Spy Base Spy
Test Domain F1 F1 F1 F1 F1 F1
Hotel 30.3 36.4 40.0 47.0 50.3 52.6
Product 29.5 36.6 34.0 40.8 51.5 53.5
Restaurant 30.1 41.1 41.7 51.5 55.2 59.3

Fig. 4. Spy Parameter Sensitivity. Variation of precision, recall and F1 across
different parameter triples (nS , nQ, nR).

Table 6. Performance gains of Spy (EuC) in F1 over Base on Wikipedia Sock-
puppet Dataset. Gains are significant (p<0.01) except for LR =50%, 75%

δ =25% δ=50% δ =75%

Base Spy Base Spy Base Spy
Classifier F1 F1 F1 F1 F1 F1
SVM 50.7 57.6 59.6 62.9 68.0 70.3
LR 40.4 42.4 49.8 51.1 60.0 61.5
kNN 23.9 29.5 32.0 37.1 43.0 51.1

F1 of base in cross domain (Table 5, Hotel row) is lower than corresponding LR
results with base (Table 4) for all δ showing cross domain verification is harder.
Nonetheless, spy induction is able to render statistically significant gains in F1
for all δ (see Table 5).

7.5 Performance on Wikipedia Sockpuppet (WikiSock) Dataset

In [37], a corpus of Wikipedia sockpuppet authors was produced. It contains 305
authors with an average of 180 documents per author and 90 words per docu-
ment which we use as another benchmark for evaluating our method.
It is important to note that the base results reported in [37] are not directly

comparable to this experiment (Table 6). This is because [37] used all 623 cases
that were found as candidates but we focus on only 305 of them which were
actually confirmed sockpuppets by Wikipedia administrators. Next, we perform
experiments under realistic out-of-training setting and varying the author diver-
sity (as in Table 4) which is different from [37]. This explains the rather lower
F1 as reported in [37] for Base. We focus on F1 performance of spy (EuC) versus
base (without spy) as the precision and recall trends were same as in Table 4.
Compared to Table 4 base results, base does better for SVM and LR on WikiSock
dataset that hints the data to be slightly easier. The relative gains of spy over
base although are a bit lower than those in Table 4, spy induction consistently
outperforms base.

8 Conclusion

This work performed an in-depth analysis of deceptive sockpuppet detection. We
first showed that the problem is different from traditional authorship attribu-
tion or verification and gets more difficult with the increase in author diversity.
Next, a feature selection scheme based on KL-Divergence of stylistic language
models was explored that yielded improvements in verification beyond baseline
features. Finally, a transduction scheme, spy induction, was proposed to leverage
the unlabeled test set. A comprehensive set of experiments showed that the pro-
posed approach is robust across both (1) different classifiers, (2) cross domain
knowledge transfer and significantly outperforms baselines. Further, this work
produced a ground truth corpus of deceptive sockpuppets across three domains.

Acknowledgments

This work is supported in part by NSF 1527364. We also thank anonymous
reviewers for their helpful feedbacks.

References

1. Ott, M., Choi, Y., Cardie, C., Hancock, J.T.: Finding deceptive opinion spam by
any stretch of the imagination. In: Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human Language Technologies-Volume
1, Association for Computational Linguistics (2011) 309–319

2. Feng, S., Banerjee, R., Choi, Y.: Syntactic stylometry for deception detection. In:
Proceedings of the 50th Annual Meeting of the Association for Computational Lin-
guistics: Short Papers-Volume 2, Association for Computational Linguistics (2012)
171–175

3. Mukherjee, A., Kumar, A., Liu, B., Wang, J., Hsu, M., Castellanos, M., Ghosh,
R.: Spotting opinion spammers using behavioral footprints. In: Proceedings of the
19th ACM SIGKDD international conference on Knowledge discovery and data
mining, ACM (2013) 632–640

4. Lim, E.P., Nguyen, V.A., Jindal, N., Liu, B., Lauw, H.W.: Detecting product
review spammers using rating behaviors. In: Proceedings of the 19th ACM in-
ternational conference on Information and knowledge management, ACM (2010)
939–948

5. Li, H., Chen, Z., Mukherjee, A., Liu, B., Shao, J.: Analyzing and detecting opin-
ion spam on a large-scale dataset via temporal and spatial patterns. In: Ninth
International AAAI Conference on Web and Social Media. (2015)

6. Mukherjee, A., Liu, B., Glance, N.: Spotting fake reviewer groups in consumer
reviews. In: Proceedings of the 21st international conference on World Wide Web,
ACM (2012) 191–200

7. Stamatatos, E.: A survey of modern authorship attribution methods. Journal of
the American Society for information Science and Technology 60 (2009) 538–556

8. Layton, R., Watters, P., Dazeley, R.: Authorship attribution for twitter in 140
characters or less. In: Cybercrime and Trustwor-thy Computing Workshop (CTC),
2010 Second, IEEE (2010) 1–8

9. Luyckx, K., Daelemans, W.: Authorship attribution and verification with many
authors and limited data. In: Proceedings of the 22nd International Conference on
Computa-tional Linguistics-Volume 1, Association for Compu-tational Linguistics
(2008) 513–520

10. Koppel, M., Schler, J.: Authorship verification as a one-class classification problem.
In: Proceedings of the twenty-first international conference on Machine learning,
ACM (2004) 62

11. Vapnik, V.: The nature of statistical learning theory. Springer Science & Business
Media (2013)

12. Chapelle, O., Zien, A.: Semi-supervised classification by low density separation.
In: AISTATS. (2005) 57–64

13. Joachims, T.: Transductive inference for text classification using support vector
machines. In: ICML. Volume 99. (1999) 200–209

14. Graham, N., Hirst, G., Marthi, B.: Segmenting documents by stylistic character.
Natural Language Engineering 11 (2005) 397–415

15. Gamon, M.: Linguistic correlates of style: authorship classification with deep lin-
guistic analysis features. In: Proceedings of the 20th international conference on
Computational Linguistics, Association for Computational Linguistics (2004) 611

16. Sapkota, U., Bethard, S., Montes-y Gómez, M., Solorio, T.: Not all character n-
grams are created equal: A study in authorship attribution. In: Human Language
Technologies: The 2015 Annual Conference of the North American Chapter of the
ACL. (2015) 93–102

17. Qian, T., Liu, B., Chen, L., Peng, Z., Zhong, M., He, G., Li, X., Xu, G.: Tri-
training for authorship attribution with limited training data: a comprehensive
study. Neurocomputing 171 (2016) 798–806

18. Seroussi, Y., Bohnert, F., Zukerman, I.: Authorship attribution with author-aware
topic models. In: Proceedings of the 50th Annual Meeting of the Association for
Computational Linguistics: Short Papers-Volume 2, Association for Computational
Linguistics (2012) 264–269

19. Koppel, M., Winter, Y.: Determining if two documents are written by the same
author. Journal of the Association for Information Science and Technology 65
(2014) 178–187

20. Sanderson, C., Guenter, S.: Short text authorship attribution via sequence kernels,
markov chains and author unmasking: An investigation. In: Proceedings of the 2006
Conference on Empirical Methods in Natural Language Processing, Association for
Computational Linguistics (2006) 482–491

21. Solorio, T., Hasan, R., Mizan, M.: A case study of sockpuppet detection in
wikipedia. In: Workshop on Language Analysis in Social Media (LASM) at NAACL
HLT. (2013) 59–68

22. Qian, T., Liu, B.: Identifying multiple userids of the same author. In: EMNLP.
(2013) 1124–1135

23. Jindal, N., Liu, B.: Opinion spam and analysis. In: Proceedings of the 2008
International Conference on Web Search and Data Mining, ACM (2008) 219–230

24. Fusilier, D.H., Montes-y Gómez, M., Rosso, P., Cabrera, R.G.: Detection of opinion
spam with character n-grams. In: International Conference on Intelligent Text
Processing and Computational Linguistics, Springer (2015) 285–294

25. Xie, S., Wang, G., Lin, S., Yu, P.S.: Review spam detection via temporal pattern
discovery. In: Proceedings of the 18th ACM SIGKDD international conference on
Knowledge discovery and data mining, ACM (2012) 823–831

26. Gokhman, S., Hancock, J., Prabhu, P., Ott, M., Cardie, C.: In search of a gold stan-
dard in studies of deception. In: Proceedings of the Workshop on Computational
Approaches to Deception Detection, Association for Computational Linguistics
(2012) 23–30

27. Li, J., Ott, M., Cardie, C., Hovy, E.H.: Towards a general rule for identifying
deceptive opinion spam. In: ACL (1), Citeseer (2014) 1566–1576

28. Li, J., Ott, M., Cardie, C.: Identifying manipulated offerings on review portals.
In: EMNLP. (2013) 1933–1942

29. Banerjee, R., Feng, S., Kang, J.S., Choi, Y.: Keystroke patterns as prosody in dig-
ital writings: A case study with deceptive reviews and essays. Empirical Methods
on Natural Language Processing (EMNLP) (2014)

30. Mukherjee, A., Venkataraman, V., Liu, B., Glance, N.S.: What yelp fake review
filter might be doing? In: ICWSM. (2013)

31. Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology 2 (2011) 27:1–27:27 Software
available at http://www.csie.ntu.edu.tw/ cjlin/libsvm.

32. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: LIBLINEAR: A li-
brary for large linear classification. Journal of Machine Learning Research 9 (2008)
1871–1874 Software available at http://www.csie.ntu.edu.tw/ cjlin/liblinear/.

33. Klein, D., Manning, C.D.: Accurate unlexicalized parsing. In: Proceedings of
the 41st Annual Meeting on Association for Computational Linguistics-Volume 1,
Association for Computational Linguistics (2003) 423–430 Software available at
http://nlp.stanford.edu/software/lex-parser.shtml.

34. Feng, S., Banerjee, R., Choi, Y.: Characterizing stylistic elements in syntactic
structure. In: Proceedings of the 2012 Joint Conference on Empirical Methods
in Natural Language Processing and Computational Natural Language Learn-ing,
Association for Compu-tational Linguistics (2012) 1522–1533

35. Weinberger, K.Q., Blitzer, J., Saul, L.K.: Distance metric learning for large mar-
gin nearest neighbor classification. In: Advances in neural information processing
systems. (2005) 1473–1480

36. Xu, X., Li, W., Xu, D., Tsang, I.: Co-labeling for multi-view weakly labeled learn-
ing. IEEE Transactions on Pattern Analysis and Machine Intelligence PP (2015)
1–1

37. Solorio, T., Hasan, R., Mizan, M.: Sockpuppet detection in wikipedia: A corpus of
real-world deceptive writing for linking identities. In: Proceedings of the Ninth In-
ternational Conference on Language Resources and Evaluation (LREC’14), Reyk-
javik, Iceland, European Language Resources Association (ELRA) (2014)

	Detecting Sockpuppets in Deceptive Opinion Spam
	 Marjan Hosseinia and Arjun Mukherjee

