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Abstract. Online communities have gained considerable importance in
recent years due to the increasing number of people connected to the
Internet. Moderating user content in online communities is mainly per-
formed manually, and reducing the workload through automatic methods
is of great financial interest for community maintainers. Often, the in-
dustry uses basic approaches such as bad words filtering and regular
expression matching to assist the moderators. In this article, we consider
the task of automatically determining if a message is abusive. This task
is complex since messages are written in a non-standardized way, includ-
ing spelling errors, abbreviations, community-specific codes... First, we
evaluate the system that we propose using standard features of online
messages. Then, we evaluate the impact of the addition of pre-processing
strategies, as well as original specific features developed for the commu-
nity of an online in-browser strategy game. We finally propose to analyze
the usefulness of this wide range of features using feature selection. This
work can lead to two possible applications: 1) automatically flag poten-
tially abusive messages to draw the moderator’s attention on a narrow
subset of messages ; and 2) fully automate the moderation process by
deciding whether a message is abusive without any human intervention.

1 Introduction

On the main achievements of the Internet is the freedom and anonymity it
brought into the way we communicate. Online communities, which are freely
accessible exchange spaces on the Internet, have enjoyed a surge of users as a re-
sult. They come in many shapes and forms but they all share a common aspect:
they have to be maintained by some party. Some online communities have gained
considerable socio-economical importance due to their huge user base. A correct
behavior in these communities is usually required to comply with a given set of
rules so that users may enjoy a hospitable and productive environment. How-
ever, freedom and anonymity often give rise to abusive behaviors. The definition
of an abusive behavior is often dependent on community rules. Almost always
though, users have to show respect to one another in the way they interact,
so verbal abuse as well as the expression of racist, homophobic and otherwise
discriminatory views constitutes abusive behaviors. As a result, moderation is
the task of responding to abusive behaviors by sanctioning the users exceeding
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the rules. This moderation work is mainly done manually, which makes it very
costly in terms of human and financial costs.

In this paper, we consider the problem of automatically determining if a
message from a user is abusive or not. We first present our automatic abusive
message classification system based on basic features. We then propose to enrich
our system by considering original preprocessing approaches, as well as corpus
selection and various new content features specific to the targeted community.
We finally propose a qualitative study that helps to analyze the impact of each
content feature on the automatic abusive message classification performance.
Two types of messages are considered in this paper: one source akin to email and
the other to discussions in a chatroom, both coming from a corpus of messages
originating from the community of the French massively multiplayer on-line game
SpaceOrigin.

This paper is organized as follows. In Section 2, we review the main works
related to abuse detection and automatic moderation. In Section 3, we describe
the features used to automatically detect abusive messages. In Section 4, we
present our dataset as well as the experimental protocol, and discuss the results
obtained. Finally, the main points of our work are summarized in Section 5,
which also shows how it could be extended.

2 Related Work

A number of works have tackled the problem of detecting abusive messages in
on-line communities. While most of them are evaluated on English datasets,
the majority of the methods used are language- and community-independent,
and can therefore be applied on messages from any online community, which
makes them relevant to us. This review is focused around two axes: Preprocessing
techniques and Features for abuse detection. Preprocessing consists in taking the
raw message text and attempting to alleviate most of the problems introduced
by the Internet medium, such as typos, abbreviations, use of smileys and so on.
The feature extraction process consists in processing a series of indicators from
the raw message text, that will reflect its class.

2.1 Preprocessing step

Preprocessing is usually a simple but important step when dealing with messages
posted on-line. The Internet medium introduces specific difficulties: disregard of
syntax and grammar rules, out-of-vocabulary words, heavy use of abbreviations,
typos, presence of URLs... The Denoising and Deobfuscation tasks both consist
in mapping an unknown word back into a dictionary of known words. In the first
case, a word is out of the vocabulary for unintentional reasons such as typos,
e.g. ”I uess so” for ”I guess so”. In the second case, it is due to a more deliberate
attempt to conceal the word, e.g. ”F8ck3r” for ”fucker”. Globally, mapping the
word back into the dictionary increases the performance of probabilistic learning

https://play.spaceorigin.fr/


methods, since these methods need the cleanest possible text to achieve their
maximum performance.

In [1], the Levenshtein distance (a type of edit distance) is used in an attempt
to match unknown words against words in a crowd-sourced list of manually
annotated messages containing profanity. The Levenshtein distance [2] measures
the number of insertions, deletions and replacements needed to convert a string
into another (e.g. The Levenshtein distance between ”@ss” and ”ass” is 1).
Computing the Levenshtein distance between two words of length n and m is
computationally expensive: the runtime is O(nm), and for this specific task each
word has to be matched against each word in the dictionary, which is huge. We
base some of our features on the Levenshtein Distance.

Other works, such as [3], proposed to improve on simple Levenshtein distance
based denoising (for the purpose of spell checking) by considering the context of
the string edition in a word (where the edited character is) and in a sentence (does
the edit maps the word into a high n-gram probability?). However, this approach
is based on the assumption that out-of-vocabulary words are mainly due to
unintentional spelling mistakes and is therefore not applicable to deobfuscation.

In [4], the authors use a Hidden Markov Model customized with dictionary
and context awareness for the purpose of deobfuscating spam messages. Those
types of messages often include deliberately misspelled words in an attempt to
bypass filters. Their model showed impressive results with the ability to correct
both unintentional misspellings as well as deliberate obfuscation using weird
characters or digits and could even map segmented words back into complete
words. (ie: ”ree movee” → ”remove”). This preprocessing approach, while effec-
tive, is computationally intensive and complex to implement.

Preprocessing is an important step in an automated abuse detection frame-
work, but it should be applied with caution. The goal of preprocessing is to
increase the amount of relevant information in a message, but it can have the
opposite effect. For example the tendency of a user to misspell words can be
viewed as an important feature to describe the user, but blind preprocessing
would hide that.

2.2 Text messaging classification

In this section we review existing classification approaches that consider the
content of the messages to detect abusive messages, and then the context of the
exchanged messages.

Content-based approaches. The work described in [5] was one of the first to
automate the detection of hostility in messages. While hostility does not imply
abuse, abuse often contains hostility. The paper defined a number of rules to
identify certain characteristics of the messages, such as Imperative Statement,
Profanity, Condescension, Insult, Politeness and Praise. A Decision Tree classifier
was then used to categorize messages into Hostile and Non-hostile classes. The
setup showed good results but was limited when dealing with sarcasm, noise or



innuendo. This approach is interesting but highly tuned for the grammar rules,
semantics and idioms of a specific language.

In [6], the authors note that the mere presence of an offensive word in a
message is not a strong enough indication that the message itself is offensive,
i.e. ”You are stupid.” is way more offensive than ”This is stupid.”. This is an
important observation and the authors showed that the lack of context can be
mitigated by looking at word n-grams instead of unigrams.

Another work [7] used features computed from tf -idf weights, a list of words
reflecting negative sentiment and widely used sentences containing verbal abuse
to detect cyberbullying in comments associated with Youtube videos. Their
model showed good results for instances of verbal abuse and profanity but was
limited with regard to sarcasm and euphemism.

Finally, in [8] the authors reviewed machine learning approaches for the clas-
sification of aggressive messages in On-line Social Networks, described a full
pipeline for achieving classification of raw comments and introduced two new
features: Pronoun Occurrence and Skip-Gram features. They allow for the de-
tection of targeted phrases such as ”He sucks” or ”You can go die”, and for the
identification of long distance relationship between words, respectively.

Content-based text classification performs relatively well as a starting point.
The computational cost to implement these approaches is usually reasonable.
Nonetheless, these approaches have severe limitations. For instance, abuse can
cross message boundaries, and therefore a message can be abusive only because
of the presence of an earlier message. In other cases, messages can be abusive
because they reference a shared history between two users. Therefore, studying
the context of a message, its recipient, and its author might also be important.

Context-based approaches. To go beyond the limitations of content-based ap-
proaches, some authors proposed to take into account the context of messages,
usually in addition to the textual content itself.

Some works explore the use of the content neighboring the targeted mes-
sage. In [9], the authors used a supervised classifier working on n-gram fea-
tures, sentence-level regular expression patterns and the features derived from
the neighboring phrases of a given message to detect abuse on the Web. Their
approach focused on detecting derivations in the context of a discussion around
a given topic and their context features significantly improved the performance
of their system. For this reason, we want to adopt a similar approach for our
own method, but by focusing on derivations of users themselves from their usual
patterns.

Other works have focused on modeling the users’ behaviors by introducing
higher-level features than the textual context. A comprehensive study of an-
tisocial behavior in on-line discussion communities has been proposed in [10].
Their exploratory work reinforced the weight of classic features used to classify
messages such as misspellings and length of words, and provided insight into the
devolution of users over time in a community, regarding both the quality of their
contributions and their reactions towards other members of the community. This
analysis is a good step towards modeling abusive behavior. One of the essential



results of the analysis is that instances of antisocial messages tend to generate a
bigger response from the community compared to benign messages. The number
of respondents to a given message is a feature we use in this work.

A selection of contextual features aiming at detecting abuse in on-line game
communities has also been investigated in [11]. These features form a model of
the users of the game by including information such as their gender, number of
friends, investment in the platform, avatars, and general rankings. The goal was
to help human moderators dealing with abuse reports, and the approach yielded
sufficiently good results to achieve this goal. The work was however limited in
applicability because of the specifics of that given community, and of the raw
amount of data needed to perform similar experiments in other games.

When quantifying controversy in social media [12], the structure of the com-
munity network is exploited to identify topics that are likely to trigger strong
disagreements between users. The approach relies on a network whose nodes
are Twitter users and links represent communications between them. It is inter-
esting, however hardly applicable to our case, since we cannot infer the exact
network structure from our dataset unless we restrict the network to private
conversations between two users.

3 Abusive Message Features

In this section, we describe the content-based features used in our automatic
abusive message classification system. They can be broadly categorized as mor-
phological, language, and context features. Some of them are quite generic, in the
sense they are used for different classification tasks in the literature. The others
were designed by us specifically for this experiment, and some are customized
for the community where our dataset originates, but they can sometimes be gen-
eralized to other communities (we reflect on this in Section 5). The features we
developed are denoted with a star (*) preceding their name and description.

Some features require the data to be preprocessed before being extracted, so
we start with the description of our preprocessing approach first.

3.1 Preprocessing

We distinguish two preprocessing phases. In the basic phase, we first lower-case
the raw text and tokenize it using spaces. Each token in the list is then stripped
of punctuation before the message is reassembled.

In the advanced phase, the data undergo some additional preparation steps.
First, we revert elision. Elision refers to the suppression of a final unstressed
vowel immediately before another word beginning with a vowel. For the French
language, we therefore replace instances of ”j’”, ”t’” by their respective long
forms ”je ”, ”te ”, so that, for instance, ”j’arrive” becomes ”je arrive”. Second, we
run a deobfuscation pass by mapping hexadecimal or binary encoded text in the
message back to ASCII. This is highly specific to the considered online commu-
nity, because users sometimes encode part of their messages in that way. Third,



we convert each URL into a sequence of tokens. The first describes whether this
URL is an internal link (to a server hosting the community) or an external one.
The rest are words that could possibly be extracted from the name of the web
page. For instance: http://edition.cnn.com/2017/01/31/politics/donald-
trump-immigration-white-house/index.html is mapped to: url external
cnn com politics donald trump immigration white house index. Finally,
we use the FrenchStemmer from the Natural Language Toolkit [13] to convert
words into their stem.

3.2 Morphological Features

Message Length. This feature corresponds to the length of a message, expressed
in number of characters, before any pre-processing. The intuition is that abusive
messages are usually either kept short (e.g. ”Go die.”), or extremely long, which
is symptomatic of a massive copy/paste.

We also consider the length expressed in terms of words. In conjunction
with the character count, it can match certain overly emphasized messages (e.g.:
”Shuuuuuuuuuuuuuuuuuuuuuuut uuuuuuuuuuuuuuuuuuuup!”).

Character Classes. We split characters into 5 classes: Letters, Digits, Punctu-
ation, Spaces and Others. We keep track of the number of characters in those
classes and the ratio of those classes in the message. This is done on the raw
message, before any preprocessing.

We selected these features based on several observations we made on the
abusive messages. First, some of them have an unusual number of characters
in the ”Other” class, e.g.: ”8==================D”. Second, some
use digits to obfuscate their meaning, in violation of the game rules. For instance,
”01000111011011110010000001100100011010010110010100101110” and ”476F20-
6469652E” are obfuscated versions of the text ”Go die.”: the first one is coded
in binary, and the second in hexadecimal.

Abusive users also commonly ”yell” insults using capital letters, which is why
we keep track of both the number of caps and the corresponding ratio of caps
in the message.

Compression Ratio. This feature is defined as the ratio of the length of the
compressed message to that of the original message, both expressed in characters.
It is based on the observation that certain users tend to repeat exactly and many
times the same text in their abusive messages. We use the Lempel–Ziv–Welch
(LZW) compression algorithm [14], and the feature therefore directly relates to
the number of copy/pastes made in the same message.

Unique Characters. By counting the number of distinct characters in the mes-
sage, we can detect the use of binary or hexadecimal obfuscation, as well as the
overuse of punctuation. For instance, for the message ”010001110110111101110”,
this feature has only a value of 2. This value is also computed before any pre-
processing.



Collapsed Characters. This feature is computed after the message is lowercased.
When three or more identical consecutive characters are found in the message,
they are collapsed down to two characters. For instance, ”looooooool” would
be collapsed to ”lool”. The feature is the difference between the length of the
original message and that of the collapsed one. This preprocessing step has been
widely used in the classification of Tweets, for instance in [15].

3.3 Language Features

Bag of Words. We transform the message into a Bag of Words (BoW). This is
a sparse binary vector that has the same dimension as the known vocabulary of
the corpus and where each component corresponds to one word. The component
has value 1 if the word is present in the message and 0 if it is not. We use the
output of a Naive Bayes classifier for a given BoW as an input feature into our
larger system.

Word Length. This feature is a component of the Automated Readability Index
(ARI) [16]. It measures how proficient someone is at creating text documents.
While abusive messages are sometimes surprisingly well written, this remains
rare.

Unique Words. We consider the number of unique words in the message. The
intuition is that messages with more words are likely to be more constructive in
terms of their content. Moreover, we observed that people are generally straight-
forward when verbally abusing others, and rarely take the time to elaborate.

tf -idf Scores. Those features are the sums of the tf -idf scores of each individual
word in the message. We use two distinct scores: the so-called non-abuse score
is processed relatively to the non-abuse class (randomly chosen messages that
have not been flagged as abusive), whereas the abuse score is processed over the
abuse class.

If the considered word is unknown, in the sense it does not appear in the
training set, we process an approximation of these scores. For this purpose, we
first search for known words located within a given Levenshtein distance from
the word of interest, and average their own scores.

Computing the full Levenshtein Distance between two words is computation-
ally expensive. For this reason, solutions proposed in this paper never compute
the full Levenshtein Distance between two words. Instead, a specialized tree-
based index data-structure with a search function that yields all words in the
tree within a given maximum edit distance is used. We use 2 as the maximum
edit distance. This is considerably faster because branches of the tree are pruned
as soon as we reach a state where the maximum edit distance is exceeded. It is
still the second most computationally intensive operation in our experiments.



Sentiment Scores. These features are numeric values derived from the number of
words in the message that have a sentiment weight. It is based on the sentiment
corpus presented in [17], which was automatically generated for the French lan-
guage. We augmented it manually by selecting words from a large list of insults.

Bad Words. This feature corresponds to the number of words in the message that
appear in a manually crafted list of bad words. The list of words was created from
a list of insults in French and then augmented with common Internet shorthand
and symbolism. (e.g : ’connard’, ’fdp’, ’stfu’ but also ’..—..’, ’8==D’ etc)

When we cannot match the considered word to any of the bad words in our
list, we try to perform a fuzzy match using the Levenshtein distance. This is
supposed to allow us picking up some obfuscated bad words.

We also perform the same tests using the collapsed version of the message
(as described for the Collapsed Characters feature).

Business Score*. We first mine messages for patterns specific to the community.
In the targeted context of this particular online strategy game, we chose to
focus on: names of buildings and military units, war vocabulary and other game-
specific jargon, sets of Coordinates, and report links. The latter refers to internal
URLs generated by some actions, and pointing towards summaries that the
players can share. For each pattern, we manually developed a regular expression
and used it to find the number of non-overlapping occurrences of the pattern in
the message. We then produced the Business Score by combining the individual
scores obtained for each pattern. This is a measure of how the message relates
to the focus of the community. By observing the corpus we noticed that abusive
messages tend to be strictly personal attacks with no pretense of roleplay and
no mention of game jargon.

3.4 User Behavior Features

Number of respondents. Given a fixed size window after a target message, this
feature tracks how many distinct users replied to this message. This feature is
likely to be relevant, because it has been shown that abusive comments tend to
trigger big responses from the community.

Probability of n-gram emission (PNE)*. We investigate if the abusiveness of a
user’s message can be detected by considering the effect it has on the other users
participating to the same conversation. To do this, we compare the writing be-
havior of the other users before and after the apparition of the targeted message.
We model this behavior through a user-specific Markov chain, which we use to
compute how likely some text is to have been generated by the considered user.

We first sort the messages in chronological order. For each participant other
than the user who wrote the targeted message, we build a word n-gram Markov
chain using all but the last W n-grams in the messages posted before the target
message.



Fig. 1. A sequence of messages broken down into n-grams. Each square repre-
sents an n-gram: red for the targeted message, blue for the surrounding messages
written by other users.

The Markov chain is a convenient way to store the transition probabilities
for all couples of n-grams in a participant’s history. We compute two values: the
average emission probabilities of the n-grams in the W -length window before
and after the target message, as represented in Figure 1.

Let Pi,i+1 be the emission probability of a transition between the ith and
i+1th n-grams in the window of length W . Then we define the average emission
probability S over the set of W n-grams as:

S =

∑W−1
i=0 Pi,i+1

W
(1)

We note SB(u) and SA(u), respectively, the average probabilities processed
before and after the targeted message, for the same user u. The final score S(u)
for user u corresponds to their difference:

S(u) = SA(u)− SB(u) (2)

This score is processed for every respondent to a message in a window of
fixed length after the message. We then compute our feature by averaging this
score over all the responding users.

Applicability Criterion for PNE*. The previous feature requires averaging scores,
which makes sense only if the considered users have sufficient history: we define
a limit of at least 300 bigrams. This feature reflects the fulfillment of this con-
straint.

4 Experiments

In this section, we describe the data used in our experiments (Subsection 4.1)
as well as the experimental protocol (Subsection 4.2). We then evaluate the
proposed system, including the various features and original preprocessing ap-
proaches (Subsection 4.3).

4.1 Dataset

We have access to a database of users’ in-game interactions for the considered
MMO. This user-generated content was manually verified, in the sense the game



users had the ability to flag parts of the content as inappropriate (i.e. abusive).
There are many types of reportable contents, but, in this paper, we focus on two
of them: ingame-messages (iM) and chat messages (cM), collectively referred to
as messages.

Ingame-messages (iM) are on-line messages with a clearly defined reach.
They are the equivalent of e-mails and can be sent to specific users or groups
of users. They can be edited a posteriori by moderators when an abuse case
is reported. The reach of chat messages (cM) is loosely defined because it is
limited to users currently active in a chatroom. However, there is no way to
determine which user has actually seen a specific chat-message based on the
available data. Users are fed recent scroll history for a chatroom upon joining,
but it is not possible to reliably determine who has joined when from the chat
logs. Chat-messages cannot be edited by moderators afterwards.

The database contains 474, 599 in-game messages and 3, 554, 744 chat-messages.
We extract 779 abusive messages (0.02%), which constitute what we call the Pos-
itive Class (Class 1) of messages. These messages were first flagged by the game
users using a built-in reporting tool, and then confirmed as being abuse cases
by the game community moderators. Of these 779 abusive messages, 14% are
ingame-messages, and the rest are chat-messages. We then extract non-abuse
messages from the database, in order to constitute the so-called Negative Class
(Class 0). They are chosen at random from a pool of messages written by users
which have never been flagged by a confirmed abuse report. For each message,
we also gather context data: a window of messages occurring before and after
each message.

We run the experiments with different versions of the corpus: in-game mes-
sages only (iM ), chat-messages only (cM ) and messages of both types combined
(iM+cM ). Sizes of each considered corpus configuration are reported in Table 1.
These configurations are considered as “unbalanced” (U), since there are twice as
many non-abusive messages as abusive messages. As a result, we also experiment
with the use of “balanced” data (B), where the number of abusive messages is
equals to the non-abusive ones.

Configuration Abusive Messages Non-Abusive Messages

iM+cM 779 1558
iM 111 222
cM 668 1336

Table 1. Corpus sizes depending on the considered experimental setup (unbal-
anced data).

4.2 Experimental Setup

Our experiment is designed as a multi-stage classifier pipeline, as described in
Figure 2 (each box corresponds to a stage). The first stage (Raw Messages)
consists in building the corpus. Messages from both the Abuse and Non-abuse



classes are extracted from the database as explained in Subsection 4.1. The
corpus is then split into a Train set containing 70% of the messages, and a Test
set containing the remaining 30%.

Raw message

 Feature vector 

SVM 
classifier 

Feature extraction 

BoW features / 

Naive Bayes classifier 

Fig. 2. The full experimental setup

In the second stage (Bag of Words Features), messages are normalized, to-
kenized and converted into Bag Of Words. In the third stage (Naive Bayes
Classifier), the Bag Of Words representations of the Train messages are used to
build a Naive Bayes classifier. This classifier is then used to generate predictions
for the class of the Test messages.

In the fourth stage (Feature Extraction), we extract the features described
in Section 3 from the messages. As explained before, some of these are derived
from the messages before any normalization or preprocessing, whereas some
others require a specific preprocessing. We then use another classifier, a Support
Vector Machine (SVM). We could directly feed the Bag Of Words to the SVM.
However, given the size of the vocabulary in our experiments, this would lead to
a dimensionality issue, with a number of features greatly exceeding the number
of instances in the corpus. Therefore, we prefer to consider the decision from the
Naive Bayes classifier (third stage) as an additional feature given to the SVM.
We get a total of 67 distinct features, including the Naive Bayes decision, which
are all gathered into an array.

The fifth stage (SVM Classifier) is the final classification: the feature arrays
from the Train set are fetched to an SVM classifier, and the resulting model is
then used to generate class predictions for the Test set.

4.3 Results

We evaluate the performance of our proposed abusive message detection system
in terms of the traditional Recall, Precision and F -Measure. Given the relatively
low number of abusive samples of the targeted corpus, the whole dataset was
split into 10 parts and every result given in this section is the average value over a
10-fold cross validation. In order to show the contribution of the features as well
as pre-processing approach proposed, three system configurations are studied.
The first is the baseline, which relies on the classic feature set and the basic



preprocessing, as previously described. The two others are our contributions: on
the one hand the full feature set with basic preprocessing, and on the other hand
the full feature set with advanced preprocessing.

Table 2 presents the performance obtained by the proposed system for all the
studied configurations, using unbalanced data. We can firstly see that, no matter
the considered message type (iM only, cM only, or iM+cM), improvements in
terms of Precision, Recall and F -measure are observed when completing the
baseline system (classic features and basic preprocessing) with our new features.
This gain is even more important when using our advanced preprocessing, with
F -measure increases of 3.1 points (iM only), 3.3 points (cM only) and 3.2 points
(iM+cM) compared to the baseline system. The same observations can be made
for the results obtained on the balanced data, displayed in Table 3, but with
smaller gains (3.3, 1.4 and 1.3 points, respectively).

Data Features Preprocessing Precision Recall F -Measure

iM only Classic set Basic 66.9 72.8 69.7
Full set Basic 67.2 73.4 70.2
Full set Advanced 69.6 76.2 72.8

cM only Classic set Basic 65.2 71.6 68.2
Full set Basic 65.5 72.2 68.7
Full set Advanced 67.6 75.9 71.5

iM+cM Classic set Basic 65.7 72.3 68.9
Full set Basic 65.9 73.2 69.3
Full set Advanced 68.3 76.4 72.1

Table 2. Classification results (in %) of the automatic abusive message clas-
sification system, obtained by applying different feature sets and preprocessing
configurations to the unbalanced data.

Let us now compare the results obtained for the different types of messages.
When considering the unbalanced data (Table 2), iM and cM only lead to glob-
ally similar performances for all three considered measures. Combining them
(iM+cM) does not bring any significant change. However, this is not the case
for the balanced data (Table 3): the performance obtained for cM only is quite
different, with a much higher Precision (+7.6 points on the advanced setup) and
a lower Recall (−2.9 points). This pulls up the overall performance when using
both message types (iM+cM), leading to a 76.5 F -Measure for the advanced
setup, which is 4.4 points higher than with the unbalanced data.

Our experiments show that, even if acceptable results could be obtained with
our abusive message detection system (best F -measure of more than 70%), per-
formance is still not good enough to be directly used as a fully automatic system
that replaces human moderation. Nonetheless, we think that this system could
be useful to help moderators focus on messages considered as potentially abu-
sive, instead of having to analyze all messages. This is illustrated by the left plot
in Figure 3, which represents the Precision-Recall curve (traditionally obtained
by varying the decision threshold on the SVM posterior probability obtained by



Data Features Preprocessing Precision Recall F -Measure

iM only Classic set Basic 67.2 70.4 68.7
Full set Basic 67.6 70.8 69.2
Full set Advanced 70.8 73.3 72.0

cM only Classic set Basic 77.2 67.5 72.0
Full set Basic 77.1 67.4 71.9
Full set Advanced 76.8 70.3 73.4

iM+cM Classic set Basic 76.9 73.6 75.2
Full set Basic 77.3 74.5 75.9
Full set Advanced 76.1 76.9 76.5

Table 3. Classification results (in %) of the automatic abusive message clas-
sification system, obtained by applying different feature sets and preprocessing
configurations to the balanced data.

applying the Platt Scalling implementation of the Scikit-Learn Library [18]).
For a fully automatic system, requiring to be very precise on the decision to
take (i.e. be sure that the message is abusive), a higher threshold should be
used, with a loss in terms of number of detected abusive messages (i.e. lower
Recall). On the contrary, for a software assisting a moderator, needing to re-
cover as many abusive messages as possible, a lower threshold should be used,
resulting in a higher recall (more abusive messages are retrieved) associated to a
lower precision (more non-abusive messages be wrongly returned by the system).
The plot shows a short plateau in the middle, which means it would be possible
to increase the Recall without losing much Precision. However, estimating the
exact optimal decision threshold will require more data. We now take a look at
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Fig. 3. Left: Precision-Recall curve of the SVM classifier. Right: Evolution of
the classifier performance when sequentially dropping all features but one.

how the features are contributing to the result. We use a tree-based estimator
from the Scikit-Learn library to estimate the importance of the features for our
classification problem. This tool is stochastic, so the score measuring this im-
portance can vary from one run to the other. Thus, we ran it 200 times to get
stable results. The right plot in Figure 3 shows all of these runs as well as the
average curve. It displays how the F -Measure evolves as the features are removed



one by one, by increasing order of estimated importance. Our SVM classifier is
trained and evaluated at each feature removal. Despite the stochastic nature of
the process, the last removed (and therefore most important) feature is always
the Naive Bayes decision: this makes sense, since it is already the output of a
full-fledged classifier. This is confirmed by the tree-based estimator, which gives
an importance score of 42.5%.

Each of the 200 runs shows a sharp drop at the end. We detected that this
drop is due to the removal of any feature in the following group: Number of
bad words in the collapsed comment, Average word length, PNE and Appli-
cability criterion for PNE. We therefore conclude that these features are com-
plementary, and result in a strong classifier when combined. According to the
tree-based estimator, these four features have a combined importance score of
15.9%. So, our results show that a small group of 5 features account for 58.4%
of the classifier performance. The rest of the features improve the performance
only marginally. Other noteworthy features include the ratio of letters and other
characters (5%), the ratio of capitalized letters (2.1%), and the positive and neg-
ative scores (4.23%). The Business Score feature, defined by us specifically for
the targeted online community, has only an importance of 1.13%: it accounts for
a small part of the classifier decision, but on the positive side it is fast to com-
pute. This is not the case for the PNE feature: computing it is expensive both
in terms of CPU time and memory since we need to build and store a complete
model of multiple user speech patterns.

5 Conclusion

In this paper, we developed a system to classify abusive messages from an on-
line community. It is developed on top of a first-stage Naive Bayes classifier
and relies on multiple types of features: morphological, language- and context-
based features, that have proven their usefulness in previous research. We added
several features that we derived directly from observations of our corpus, and
developed a context-based feature that aims to capture abnormal reactions from
users caused by an abusive message. Our goal here was to explore a large number
of features to identify the most relevant one for the problem at hand.

Our results show that abusive messages have characteristics that can be
caught by an automatic system, our proposed system achieving a Recall and
a Precision of more than 76% on our dataset. While the performance of the
system is not good enough yet to be deployed as fully automatic moderation
tool, this can already help moderators focus on messages being identified as
abusive, before a manual verification is made. However, because some features
used in the system are specific to the community in which it is meant to operate,
care must be taken when adapting the system to work on a different dataset.
Our results also show that a small number of features, including both generic
and problem-specific ones, account for most of the classifier decision.

We now plan to pursue our work in several ways. First, because preprocessing
has been shown to have an important effect on overall performance, we will



experiment with computationally more demanding preprocessing methods, such
as the HMM-based preprocessor from [4], and evaluate their contribution to the
classifier performance. Second, we want to derive variants of our PNE feature,
and assess which one is the most appropriate in our situation. More generally,
we plan to propose other context-based features, especially ones based on the
network of user interactions.

References

1. Sood, S.O., Antin, J., Churchill, E.F.: Using crowdsourcing to improve profanity
detection. In: AAAI Spring Symposium: Wisdom of the Crowd. (2012)

2. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions and
reversals. In: Soviet Physics Doklady. Volume 10. (1966) 707

3. Brill, E., Moore, R.C.: An improved error model for noisy channel spelling cor-
rection. In: 38th Annual Meeting on Association for Computational Linguistics.
(2000) 286–293

4. Lee, H., Ng, A.Y.: Spam deobfuscation using a hidden markov model. In: 2nd
Conference on Email and Anti-Spam. (2005)

5. Spertus, E.: Smokey: Automatic recognition of hostile messages. In: 14th National
Conference on Artificial Intelligence and 9th Conference on Innovative Applications
of Artificial Intelligence. (1997) 1058–1065

6. Chen, Y., Zhou, Y., Zhu, S., Xu, H.: Detecting offensive language in social media to
protect adolescent online safety. In: International Conference on Privacy, Security,
Risk and Trust and International Confernece on Social Computing. (2012) 71–80

7. Dinakar, K., Reichart, R., Lieberman, H.: Modeling the detection of textual cy-
berbullying. The Social Mobile Web 11 (2011) 02

8. Chavan, V.S., Shylaja, S.S.: Machine learning approach for detection of cyber-
aggressive comments by peers on social media network. In: International Confer-
ence on Advances in Computing, Communications and Informatics. (2015) 2354–
2358

9. Yin, D., Xue, Z., Hong, L., Davison, B.D., Kontostathis, A., Edwards, L.: Detection
of harassment on web 2.0. In: WWW Workshop: Content Analysis in the WEB
2.0. (2009) 1–7

10. Cheng, J., Danescu-Niculescu-Mizil, C., Leskovec, J.: Antisocial behavior in online
discussion communities. preprint arXiv:1504.00680 (2015)

11. Balci, K., Salah, A.A.: Automatic analysis and identification of verbal aggression
and abusive behaviors for online social games. Computers in Human Behavior 53
(2015) 517–526

12. Garimella, K., De Francisci Morales, G., Gionis, A., Mathioudakis, M.: Quantifying
controversy in social media. In: 9th ACM International Conference on Web Search
and Data Mining. (2016) 33–42

13. Bird, S.: Nltk: the natural language toolkit. In: Proceedings of the COLING/ACL
on Interactive presentation sessions, Association for Computational Linguistics
(2006) 69–72

14. Batista, L.V., Meira, M.M.: Texture classification using the lempel-ziv-welch algo-
rithm. In: Brazilian Symposium on Artificial Intelligence. (2004) 444–453

15. Roy, S., Dhar, S., Bhattacharjee, S., Das, A.: A lexicon based algorithm for noisy
text normalization as pre processing for sentiment analysis. International Journal
of Research in Engineering and Technology 2 (2013) 67–70



16. Senter, R.J., Smith, E.A.: Automated readability index. Technical Report AMRL-
TR-6620, Wright-Patterson Air Force Base (1967)

17. Chen, Y., Skiena, S.: Building sentiment lexicons for all major languages. In: 52nd
Annual Meeting of the Association for Computational Linguistics. (2014) 383–389

18. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine
learning in python. Journal of Machine Learning Research 12 (2011) 2825–2830


	Impact Of Content Features For Automatic Online Abuse Detection
	 Etienne Papegnies, Vincent Labatut, Richard Dufour, Georges Linarès 

