Skip to main content

Real-Time and Low Phase Shift Noisy Signal Differential Estimation Dedicated to Teleoperation Systems

  • Conference paper
  • First Online:
  • 2625 Accesses

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 743))

Abstract

The paper contains a description of a real-time differentiation algorithm dedicated to teleoperation systems. The algorithm is based on the least squares polynomial approximation method and it is a modified version of a local and nearest neighbors samples based approach. The algorithm fits a defined polynomial to an asymmetric data set. In this case, the nearest neighbor samples are only taken from the one side of the filtered vector of a signal samples. This feature allowed to reduce the value of the phase shift, especially for a low frequency spectrum, where man-machine control interfaces are usually operating. The strong reduction of a phase shift allowed to minimize the variable time delay of the estimated signal differential according to a measured control signal.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Anderson, R., Spong, M.W.: Bilateral control of teleoperators with time delay. IEEE Trans. Autom. Control 34, 494–501 (1989)

    Article  MathSciNet  Google Scholar 

  2. Atashzar, S.F., Polushin, I.G., Patel, R.V.: Projection-based force reflection algorithms for teleoperated rehabilitation therapy. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 477–482 (2013)

    Google Scholar 

  3. Ben-Dov, D., Salcudean, S.E.: A force-controlled pneumatic actuator for use in teleoperation masters. In: Proceedings of the 1993 IEEE International Conference on Robotics and Automation, vol. 933, pp. 938–943 (1993)

    Google Scholar 

  4. C GR: Remote-control manipulator. Google Patents (1953)

    Google Scholar 

  5. Chang, M.-K.: An adaptive self-organizing fuzzy sliding mode controller for a 2-DOF rehabilitation robot actuated by pneumatic muscle actuators. Control Eng. Pract. 18, 13–22 (2010)

    Article  Google Scholar 

  6. Cleveland, W.S., Devlin, S.J.: Locally weighted regression: an approach to regression analysis by local fitting. J. Am. Stat. Assoc. 83, 596–610 (1988)

    Article  MATH  Google Scholar 

  7. Cullum, J.: Numerical differentiation and regularization. SIAM J. Numer. Anal. 8, 254–265 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ferrell, W.R.: Delayed force feedback. Hum. Factors J. Hum. Factors Ergon. Soc. 8, 449–455 (1966)

    Article  Google Scholar 

  9. Ferrell, W.R.: Remote manipulation with transmission delay. IEEE Trans. Hum. Factors Electron. HFE 6, 24–32 (1965)

    Article  Google Scholar 

  10. Ferrell, W.R., Sheridan, T.B.: Supervisory control of remote manipulation. IEEE Spectr. 4, 81–88 (1967)

    Article  Google Scholar 

  11. Friedrichs, K.O.: The identity of weak and strong extensions of differential operators. Trans. Am. Math. Soc. 55, 132–151 (1944)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ge, X., Zheng, Y., Brudnak, M.J., et al.: Analysis of a model-free predictor for delay compensation in networked systems. In: Time Delay Systems, pp. 201–215. Springer, Cham (2017)

    Google Scholar 

  13. Hastrudi-Zaad, K., Salcudean, S.E.: On the use of local force feedback for transparent teleoperation. In: Proceedings of the 1999 IEEE International Conference on Robotics and Automation, vol. 1863, pp. 1863–1869 (1999)

    Google Scholar 

  14. Hulin, T., Albu-Schäffer, A., Hirzinger, G.: Passivity and stability boundaries for haptic systems with time delay. IEEE Trans. Control Syst. Technol. 22, 1297–1309 (2014)

    Article  Google Scholar 

  15. Hyun Chul, C., Jong Hyeon, P., Kyunghwan, K., et al.: Sliding-mode-based impedance controller for bilateral teleoperation under varying time-delay. In: Proceedings of the 2001. IEEE International Conference on Robotics and Automation, ICRA 2001, vol. 1021, pp. 1025–1030 (2001)

    Google Scholar 

  16. Janecki, D., Cedro, L.: Determining of signal derivatives with the use of regrressive differential filters. Prz. Elektrotech. 87, 253–259 (2011). (in Polish)

    Google Scholar 

  17. Khadraoui, S., Rakotondrabe, M., Lutz, P.: Interval modeling and robust control of piezoelectric microactuators. IEEE Trans. Control Syst. Technol. 20, 486–494 (2012)

    Article  MATH  Google Scholar 

  18. Kim, W.S.: Developments of new force reflecting control schemes and an application to a teleoperation training simulator. In: Proceedings of the 1992 IEEE International Conference on Robotics and Automation, vol. 1412, pp. 1412–1419 (1992)

    Google Scholar 

  19. Kim, W.S., Hannaford, B., Fejczy, A.K.: Force-reflection and shared compliant control in operating telemanipulators with time delay. IEEE Trans. Robot. Autom. 8, 176–185 (1992)

    Article  Google Scholar 

  20. Knowles, I., Renka, R.J.: Methods for numerical differentiation of noisy data. Electron. J. Differ. Equ. 21, 235–246 (2014)

    MathSciNet  MATH  Google Scholar 

  21. Knowles, I., Wallace, R.: A variational method for numerical differentiation. Numer. Math. 70, 91–110 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  22. Miadlicki, K., Pajor, M., Sakow, M.: Loader crane working area monitoring system based on LIDAR scanner. In: Advances in Manufacturing, p. 465 (2017)

    Google Scholar 

  23. Miądlicki, K., Pajor, M.: Real-time gesture control of a CNC machine tool with the use Microsoft Kinect sensor. Int. J. Sci. Eng. Res. 6, 538–543 (2015)

    Google Scholar 

  24. Miądlicki, K., Pajor, M., Saków, M.: Ground plane estimation from sparse LIDAR data for loader crane sensor fusion system. In: 2017 22nd International Conference on Methods and Models in Automation and Robotics (MMAR), pp. 717–722. IEEE (2017)

    Google Scholar 

  25. Miądlicki, K., Pajor, M., Saków, M.: Real-time ground filtration method for a loader crane environment monitoring system using sparse LIDAR data. In: 2017 IEEE International Conference on INnovations in Intelligent SysTems and Applications (INISTA), pp. 207–212. IEEE (2017)

    Google Scholar 

  26. Moreau, R., Pham, M.T., Tavakoli, M., et al.: Sliding-mode bilateral teleoperation control design for master–slave pneumatic servo systems. Control Eng. Pract. 20, 584–597 (2012)

    Article  Google Scholar 

  27. Nguyen, T., Leavitt, J., Jabbari, F., et al.: Accurate sliding-mode control of pneumatic systems using low-cost solenoid valves. IEEE/ASME Trans. Mechatron. 12, 216–219 (2007)

    Article  Google Scholar 

  28. Niemeyer, G., Slotine, J.J.E.: Stable adaptive teleoperation. IEEE J. Ocean. Eng. 16, 152–162 (1991)

    Article  Google Scholar 

  29. Pajor, M., Miądlicki, K., Saków, M.: Kinect sensor implementation in fanuc robot manipulation. Arch. Mech. Technol. Autom. 34, 35–44 (2014)

    Google Scholar 

  30. Polushin, I.G., Takhmar, A., Patel, R.V.: Projection-based force-reflection algorithms with frequency separation for bilateral teleoperation. IEEE/ASME Trans. Mechatron. 20, 143–154 (2015)

    Article  Google Scholar 

  31. Rakotondrabe, M., Ivan, I.A., Khadraoui, S., et al.: Simultaneous displacement/force self-sensing in piezoelectric actuators and applications to robust control. IEEE/ASME Trans. Mechatron. 20, 519–531 (2015)

    Article  Google Scholar 

  32. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D Nonlinear Phenom. 60, 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sakow, M., Parus, A., Pajor, M., et al.: Unilateral hydraulic telemanipulation system for operation in machining work area. In: Advances in Manufacturing, p. 415 (2017)

    Google Scholar 

  34. Saków, M., Miądlicki, K., Parus, A.: Self-sensing teleoperation system based on 1-DOF pneumatic manipulator. J. Autom. Mob. Robot. Intell. Syst. 11, 64–76 (2017)

    Google Scholar 

  35. Saków, M., Pajor, M., Parus, A.: Estimation of environmental forces impact on remote control system with force-feedback and upper limb kinematics. Modelowanie Inz. 58, 113–122 (2016). (in Polish)

    Google Scholar 

  36. Saków, M., Pajor, M., Parus, A.: Self-sensing control system determining the environmental force influence on the manipulator during the operation of the telemanipulation system. In: Projektowanie Mechatroniczne - Zagadnienia Wybrane, pp. 139–150. Katedra Robotyki i Mechatroniki, Akademia Górniczo-Hutnicza w Krakowie (2016). (in Polish)

    Google Scholar 

  37. Saków, M., Parus, A.: Sensorless control scheme for teleoperation with force-feedback, based on a hydraulic servo-mechanism, theory and experiment. Measur. Autom. Monit. 62, 417–425 (2016)

    Google Scholar 

  38. Saków, M., Parus, A., Miądlicki, K.: Predictive method of force determination in the force-feedback communication channel of remotely controlled system. Modelowanie Inż. 31, 88–97 (2017). (in Polish)

    Google Scholar 

  39. Saków, M., Parus, A., Pajor, M., et al.: Nonlinear inverse modeling with signal prediction in bilateral teleoperation with force-feedback. In: 2017 22nd International Conference on Methods and Models in Automation and Robotics (MMAR), pp. 141–146. IEEE (2017)

    Google Scholar 

  40. Schoenberg, I.J.: Spline functions and the problem of graduation. Proc. Natl. Acad. Sci. 52, 947–950 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  41. Sheridan, T.B.: Space teleoperation through time delay: review and prognosis. IEEE Trans. Robot. Autom. 9, 592–606 (1993)

    Article  Google Scholar 

  42. Sheridan, T.B., Ferrell, W.R.: Human control of remote computer-manipulators. In: Proceedings of the 1st International Joint Conference on Artificial Intelligence, Washington, DC, pp. 483–494. Morgan Kaufmann Publishers Inc. (1969)

    Google Scholar 

  43. Sheridan, T.B., Verplank, W.L.: Human and computer control of undersea teleoperators. Massachusetts Inst of Tech Cambridge Man-Machine Systems Lab. (1978)

    Google Scholar 

  44. Stuart, K.D., Majewski, M.: Intelligent opinion mining and sentiment analysis using artificial neural networks. In: International Conference on Neural Information Processing, pp. 103–110. Springer, Cham (2015)

    Google Scholar 

  45. Stuart, K.D., Majewski, M., Trelis, A.B.: Intelligent semantic-based system for corpus analysis through hybrid probabilistic neural networks. In: International Symposium on Neural Networks, pp. 83–92. Springer, Heidelberg (2011)

    Google Scholar 

  46. Tadano, K., Kawashima, K.: Development of 4-DOFs forceps with force sensing using pneumatic servo system. In: Proceedings of the 2006 IEEE International Conference on Robotics and Automation, ICRA 2006, pp. 2250–2255 (2006)

    Google Scholar 

  47. Tavakoli, M., Patel, R.V., Moallem, M.: A force reflective master-slave system for minimally invasive surgery. In: Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003), vol. 3073, pp. 3077–3082 (2003)

    Google Scholar 

  48. Tomovic, R., Boni, G.: An adaptive artificial hand. IRE Trans. Autom. Control 7, 3–10 (1962)

    Article  Google Scholar 

  49. Wei Tech, A., Khosla, P.K., Riviere, C.N.: Feedforward controller with inverse rate-dependent model for piezoelectric actuators in trajectory-tracking applications. IEEE/ASME Trans. Mechatron. 12, 134–142 (2007)

    Article  Google Scholar 

  50. Wen-Hong, Z., Salcudean, S.E.: Stability guaranteed teleoperation: an adaptive motion/force control approach. IEEE Trans. Autom. Control 45, 1951–1969 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  51. Zhai, D.H., Xia, Y.: Adaptive control for teleoperation system with varying time delays and input saturation constraints. IEEE Trans. Ind. Electron. 63, 6921–6929 (2016)

    Article  Google Scholar 

  52. Zhai, D.H., Xia, Y.: Adaptive control of semi-autonomous teleoperation system with asymmetric time-varying delays and input uncertainties. IEEE Trans. Cybern., 1–13 (2016)

    Google Scholar 

  53. Zhou, M., Ben-Tzvi, P.: RML glove – an exoskeleton glove mechanism with haptics feedback. IEEE/ASME Trans. Mechatron. 20, 641–652 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

The work was carried out as part of the PBS3/A6/28/2015 project, “The use of augmented reality, interactive voice systems and operator interface to control a crane”, financed by NCBiR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mateusz Saków .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saków, M. (2018). Real-Time and Low Phase Shift Noisy Signal Differential Estimation Dedicated to Teleoperation Systems. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds) Automation 2018. AUTOMATION 2018. Advances in Intelligent Systems and Computing, vol 743. Springer, Cham. https://doi.org/10.1007/978-3-319-77179-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77179-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77178-6

  • Online ISBN: 978-3-319-77179-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics