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Abstract. We prove that the set of permutations sorted by a stack of
depth t ≥ 3 and an infinite stack in series has infinite basis, by constructing
an infinite antichain. This answers an open question on identifying the
point at which, in a sorting process with two stacks in series, the basis
changes from finite to infinite.
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1 Introduction

A permutation is an arrangement of an ordered set of elements. Two permutations
with same relative ordering are said to be order isomorphic, for example, 132
and 275 are order isomorphic as they have relative ordering ijk where i < k < j.
A subpermutation of a permutation p1 . . . pn is a word pi1 . . . pis with 1 ≤ i1 <
· · · < is ≤ n. A permutation p contains q if it has a subpermutation that is order
isomorphic to q. For example, 512634 contains 231 since the subpermutation 563
is order isomorphic to 231. A permutation that does not contain q is said to avoid
q. Let Sn denote the set of permutations of {1, . . . , n} and let S∞ =

⋃
n∈N+

Sn.
The set of all permutations in S∞ which avoid every permutation in B ⊆ S∞ is
denoted Av(B). A set of permutations is a pattern avoidance class if it equals
Av(B) for some B ⊆ S∞. A set B = {q1, q2, . . . } ⊆ S∞ is an antichain if no qi
contains qj for any i 6= j. An antichain B is a basis for a pattern avoidance class
C if C = Av(B).

Sorting mechanisms are natural sources of pattern avoidance classes, since
(in general) if a permutation cannot be sorted then neither can any permutation
containing it. Knuth characterised the set of permutations that can be sorted by
a single pass through an infinite stack as the set of permutations that avoid 231
[11]. Since then many variants of the problem have been studied, for example
[1,2,3,4,5,6,7,8,9,13,14,15,16,17,18]. The set of permutations sortable by a stack
of depth 2 and an infinite stack in series has a basis of 20 permutations [7], while
for two infinite stacks in series there is no finite basis [12]. For systems of a finite
stack of depth 3 or more and infinite stack in series, it was not known whether
the basis was finite or infinite.
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Here we show that for depth 3 or more the basis is infinite. We identify an
infinite antichain belonging to the basis of the set of permutations sortable by a
stack of depth 3 and an infinite stack in series. A simple lemma then implies the
result for depth 4 or more. A computer search by the authors ([10]) yielded 8194
basis permutations of lengths up to 13 (see Table 1; basis permutations are listed
at https://github.com/gohyoongkuan/stackSorting-3). The antichain used
to prove our theorem was found by examining this data and looking for patterns
that could be arbitrarily extended.

Table 1. Number of basis elements for S(3,∞) of length up to 13

Permutation length Number of sortable permutations Number of basis elements

5 120 0
6 711 9
7 4700 83
8 33039 169
9 239800 345
10 1769019 638
11 13160748 1069
12 98371244 1980
13 737463276 3901

2 Preliminaries

The notation N denotes the non-negative integers {0, 1, 2, . . . } and N+ the positive
integers {1, 2, . . . }.

Let Mt denote the machine consisting of a stack, R, of depth t ∈ N+ and
infinite stack, L, in series as in Fig. 1. A sorting process is the process of moving
entries of a permutation from right to left from the input to stack R, then to
stack L, then to the output, in some order. Each item must pass through both
stacks, and at all times stack R may contain no more than t items (so if at some
point stack R holds t items, the next input item cannot enter until an item is
moved from R to L).

A permutation α = a1a2 . . . an is in S(t,∞) if it can be sorted to 123 . . . n
using Mt. For example, 243651 ∈ S(t,∞) for t ≥ 3 since it can be sorted using
the following process: place 2, 4 into stack R, move 4, 3, 2 across to stack L, place
6, 5, 1 into stack R, then output 1, 2, 3, 4, 5, 6. Note 243651 6∈ S(2,∞) by [7].

The following lemmas will be used to prove our main result.

Lemma 1. Let α = a1a2 . . . an ∈ S(t,∞) for t ∈ N+. If i < j and ai < aj then
in any sorting process that sorts α, if both ai and aj appear together in stack L
then ai must be above aj.

Proof. If aj is above ai in stack L then the permutation will fail to be sorted. ut

https://github.com/gohyoongkuan/stackSorting-3
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inputoutput

R

L

a1a2 . . . an

Fig. 1. A stack R of depth t and an infinite stack L in series

Lemma 2. Let α = a1a2 . . . an ∈ S(t,∞) for t ≥ 3 and suppose 1 ≤ i < j <
k ≤ n with aiajak order-isomorphic to 132. Then in any sorting process that
sorts α, ai, aj , ak do not appear together in stack R.

Proof. If ai, aj , ak appear together in stack R, we must move ak then aj onto
stack L before we can move ai, but this means aj , ak violate Lemma 1. ut

Lemma 3. Let α = a1a2 . . . an ∈ S(t,∞) for t ≥ 3 and 1 ≤ i1 < i2 < · · · < i6 ≤
n with ai1ai2 . . . ai6 order isomorphic to 243651. Then in any sorting process that
sorts α, at some step of the process ai4 and ai5 appear together in stack R.

Proof. For simplicity let us write ai1 = 2, ai2 = 4, ai3 = 3, ai4 = 6, ai5 = 5, ai6 = 1.
Before 6 is input, 2, 3, 4 are in the two stacks in one of the following configurations:

1. 2, 4, 3 are all in stack R. In this case we violate Lemma 2.

2. two items are in stack R and one is in stack L. In this case by Lemma 1 we
cannot move 6 to stack L, so 6 must placed and kept in stack R. If t = 3
stack R is now full, so 5 cannot move into the system, and if t ≥ 4, when 5 is
input we violate Lemma 2.

3. one item, say a, is in stack R and two items are in stack L. In this case we
cannot move 6, 5 into stack L by Lemma 1 so they remain in stack R on top
of a, violating Lemma 2.

4. stack R is empty. In this case, 2, 3, 4 must be placed in stack L in order, else
we violate Lemma 1. We cannot place 6, 5 into stack L until it is empty, so
they must both stay in stack R until 4 is output.

In particular, the last case is the only possibility and in this case ai4 , ai5 appear
in stack R together. ut

Lemma 4. Let α = a1a2 . . . an ∈ S(t,∞) for t ≥ 3 and suppose 1 ≤ i1 < i2 <
· · · < i5 ≤ n with ai1ai2 . . . ai5 order-isomorphic to 32514. Then, in any sorting
process that sorts α, if ai1 , ai2 appear together in stack R, then at some step in
the process ai3 , ai4 appear together in stack L.
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Proof. For simplicity let us write ai1 = 3, ai2 = 2, ai3 = 5, ai4 = 1, ai5 = 4.
Figure 2 indicates the possible ways to sort these entries, and in the case that
2, 3 appear together in stack R we see that 4, 5 must appear in stack L together
at some later point. ut

R

L

2514

3
R

L

2514

3

2, 3 never appear together in stack R

R

L

514

2
3

R

L

514

2

3

R

L

14

2

5
3

R

L

412

5

3

4, 5 must appear together in stack L

R

L

14

5
2
3

R

L

14

5

2
3

4,5 must appear together in stack L

Fig. 2. Sorting 32514

Lemma 5. Let α = a1a2 . . . an ∈ S(t,∞) for t ≥ 3 and suppose 1 ≤ i1 < i2 <
· · · < i5 ≤ n with ai1ai2 . . . ai5 order-isomorphic to 32541. Then, in any sorting
process that sorts α, if ai1 , ai2 appear together in stack L, then at the step that
ai1 is output,

1. ai3 , ai4 are both in stack R, and
2. if ak is in stack L then k < i2.

Proof. For simplicity let us write ai1 = 3, ai2 = 2, ai3 = 5, ai4 = 4, ai5 = 1,
and α = u03u12u25u34u41u5. Figure 3 indicates the possible ways to sort these
entries. In the case that 2, 3 appear in stack R together, Lemma 1 ensures 2, 3 do
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not appear together in stack L. In the other case, before 3 is moved into stack L,
any tokens in stack L come from u0u1. Thus when 3 is output the only tokens in
stack L will be ak with k < i2. Lemma 1 ensures that 4, 5 are not placed on top
of 3 in stack L, so that the step that 3 is output they sit together in stack R. ut

R

L

2541

3
R

L

541

2
3

2, 3 cannot appear together in stack L

R

L

2541

3

tokens under 3 must be from u0u1

R

L

541

2

3

R

L

1

3

4
5
2

violates Lemma 2

R

L

541

2
3

R

L

1

2
3

4
5

R

L

12

3

4
5

(1) and (2) are satisfied

Fig. 3. Sorting 32541

3 An infinite antichain

We use the following notation. If α = a1 . . . an is a permutation of 12 . . . n and
m ∈ Z then let αm be the permutation obtained by adding m to each entry of α.
For example (1 2 3)4 = 5 6 7 and 136 = 19.

We construct a family of permutations G = {Gi | i ∈ N} as follows. Define

P = 2 4 3 7 6 1
xj = (10 5 9)6j
yj = (13 12 8)6j
Si = (14 15 11)6i
Gi = P x0 y0 x1 y1 . . . xi yi Si
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The first three terms are

G0 = 2 4 3 7 6 1 (10 5 9) (13 12 8) 14 15 11,
G1 = 2 4 3 7 6 1 (10 5 9) (13 12 8) (16 11 15) (19 18 14) 20 21 17,
G2 = P (10 5 9) (13 12 8) (16 11 15) (19 18 14) (22 17 21)(25 24 20) 26 27 23.

A diagram of G2 is shown in Figure 4 which shows the general pattern.

Fig. 4. Diagram of the permutation G2 = 2 4 3 7 6 1 x0 y0 x1 y1 x2 y2 26 27 23

We will prove that each Gi is an element of the basis of S(3,∞) for all i ∈ N.
Note that if we define x−1, y−1 to be empty, G−1 = 243761895 is also an element
of the basis. We noticed this and G0 had a particular pattern which we could
extend using xjyj . However, we exclude G−1 from our antichain to make the
proofs simpler.

Proposition 6. The permutation Gi 6∈ S(3,∞) for all i ∈ N.
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Proof. Suppose for contradiction that Gi can be sorted by some sorting process.
Since P is order isomorphic to 243651, by Lemma 3 in any sorting process 7, 6
appear together in stack R. Next, 7 6 10 5 9 is order isomorphic to 32514 so by
Lemma 4 since 7, 6 appear together in stack R we must have that 10, 9 appear
together in stack L at some point in the process.

Now consider xjyj = (10 5 9 13 12 8)6j , and assume that 106j , 96j both
appear in stack L together. Since (10 9 13 12 8)6j is order isomorphic to 32541
by Lemma 5 136j , 126j must be placed together in stack R and stay there until
106j is output.

Next consider yjxj+1 = (13 12 8 16 11 15)6j , and assume that 136j , 126j both
appear in stack R together. Then since (13 12 16 11 15)6j is order isomorphic
to 32514 by Lemma 4 we have 166j , 156j appear together in stack L. Note that
166j , 156j = 106(j+1), 96(j+1), so putting the above observations together we see
that for all 0 ≤ j ≤ i we have 106j , 96j both appear in stack L together and
136j , 126j appear together in stack R and stay there until 106j is output.

Now we consider the suffix

xiyiSi = (10 5 9 13 12 8 14 15 11)6i

where 106i, 96i are together in stack L. Lemma 5 tells us not only that 136i, 126i
appear together in stack R and stay there until 106i is output, but that anything
sitting underneath 106i in stack L comes before 96i in Gi, so in particular 146i, 156i
are not underneath 106i. All possible processes to sort xiyiS are shown in Fig. 5.
All possible sorting moves fail, which means Gi cannot be sorted. ut

The idea of the preceding proof can be summarised informally as follows. The
prefix P forces 7, 6 to be together in stack R, then Lemmas 4 and 5 alternately
imply that the 106j , 96j terms of xj must be in stack L and the 136j , 126j terms
of yj must be in stack R. When we reach the suffix Si the fact that certain entries
are forced to be in a particular stack means we are unable to sort the final terms.
We now show that if a single entry is removed from Gi, we can choose to place
the 106j , 96j terms in stack R and 136j , 126j terms in stack L, which allows the
suffix to be sorted.

Lemma 7. Let 0 ≤ j ≤ i. If stack R contains one or both of 106j , 96j in
ascending order, and yj . . . yiSi is to be input as in Fig. 6, then there is a sorting
procedure to output all remaining entries in order.

Proof. For j < i move 136j , 126j into stack L, output 86j , 96j , 106j , move 166j =
106(j+1) into stack R, output 116j = 56(j+1), output 136j , 126j from stack L and
input 156j = 96(j+1) so that the configuration has the same form as Fig. 6 with
j incremented by 1.

For j = i the remaining input is (13 12 8 14 15 11)6j . Put 136i, 126i in stack L
in order, output 86i, 96i, 106i, put 146i, 156i in stack R and output 116i, 126i, 136i,
move 156i into stack L and output 146i then 156i.

If one of 96j , 106j is missing, use the same procedure ignoring the missing
entry. ut
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R

L

146i 156i 116i

126i

136i

106i

(Si)

R

L

156i 116i

146i

126i

136i

106i

R

L

146i 156i 116i106i

126i

136i

R

L

156i 116i106i

146i

136i

126i

R

L

116i106i

156i

146i

136i

126i

cannot be sorted

R

L

156i 116i106i

146i

126i

136i

R

L

156i 116i106i

126i

136i

146i

R

L

116i106i

156i

126i

136i

146i

cannot be sorted

R

L

106i

116i

156i

136i

126i

146i

cannot be sorted

Fig. 5. All possible ways to sort xiyiS

Lemma 8. Let 0 ≤ j ≤ i. If stack L contains one or both of 126j , 136j in
ascending order, and xj+1 . . . Si (or just Si if j = i) is to be input as in Fig. 7,
then there is a sorting procedure to output all remaining entries in order.

Proof. If j < i move 106(j+1) into stack R, output 56(j+1), 126j , 136j , move 96(j+1)

to stack R to reach the configuration in Fig. 6, which we can sort by Lemma 7. If
j = i then the remaining input is just Si = (14 15 11)6i: move 146i, 156i to stack
R, then output all entries.

If one of 126j , 136j is missing, use the same procedure ignoring the missing
entry. ut

Proposition 9. Let G′i be a permutation obtained by removing a single entry
from Gi. Then G′i ∈ S(3,∞).

Proof. We give a deterministic procedure to sort G′i. There are three cases
depending on from where the entry is removed.

Term removed from P . Let P ′ be the factor P with one entry removed. We claim
that there is a sorting sequence for P ′x0 which outputs the smallest six items in
order and leaves 10, 9 in stack R. To show this we simply consider all cases.
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R

L

136j 126j 86j (xj+1 . . . or Si)

(yj)

96j

106j

Fig. 6. A sortable configuration

R

L

xj+1 . . . or Si

126j

136j

Fig. 7. Another sortable configuration

1. If 1 is removed, 2, 4, 3 can be output in order, then 7, 6 placed in stack L, 10
in stack R, then 5, 6, 7 output, and 9 placed on top of 10 in stack R.

2. If 2, 3, or 4 are removed, write P ′ = ab761 with a, b ∈ {2, 3, 4}. Place a, b
in stack R, move 7, 6 into stack L, output 1, then output a, b in the correct
order, then move 10 into stack R, output 5, 6, 7 and move 9 into stack R.

3. If 6 or 7 is removed, write P ′ = 243a1 with a ∈ {7, 6}. Place 4, 3, 2 in stack
L in order, move a into stack R, output 1 then 2, 3, 4, then move a into stack
L, move 10 into stack R, output 5, a and move 9 into stack R.

Thus after inputting P ′x0 we have the configuration shown in Fig. 6 with
j = 0, which we can sort by Lemma 7.

Term removed from xs, 0 ≤ s ≤ i.
Input P leaving 6, 7 in stack R, which brings us to the configuration in Fig. 8

with j = 0. Now assume we have input P . . . xj−1yj−1 with j ≤ s (note the
convention that x−1, y−1 are empty) and the configuration is as in Fig. 8.

If j < s we can input xjyj into the stacks to arrive at the same configuration
with j incremented by 1, as follows: move 106j to stack L, output 56j , 66j =
126(j−1), 76j = 136(j−1), move 96j to stack L, move 136j , 126j to stack R, output
86j , 96j , 106j .

If j = s, we proceed as follows:
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R

L

xj yj . . . or x′sys . . .

126(j−1)

136(j−1)

Fig. 8. Configuration after P . . . xj−1yj−1 is input

1. If 56s removed, output 66s = 126(s−1), 76s = 126(s−1), move 96s, 106s to stack
R, to reach the configuration in Fig. 6 with j = s. From here the remaining
entries can be sorted by Lemma 7.

2. If 106s is removed, output 56s, 66s, 76s and place 96s in stack R, to reach the
configuration in Fig. 6 with j = s and 106s missing. From here the remaining
entries can be sorted Lemma 7.

3. If 96s is removed, move 66s to stack L, move 106s on top of 76s in stack R,
output 56s, 66s, move 136s, 126s into L, then output 86s, 106s. This gives the
configuration in Fig. 7 with j = s. From here the remaining entries can be
sorted by Lemma 8.

Term removed from ys, 0 ≤ s ≤ i or Si. Input Px0 to reach the configuration in
Fig. 9 with j = 0: move 2, 3, 4 into stack L, 7, 6 to R, output 1, 2, 3, 4, move 10
into L, output 5, 6, 7 then move 9 into L.

R

L

106j

96j

Fig. 9. Configuration after Px0y0 . . . xj is input

Now suppose we have input Px0y0 . . . xj to reach the configuration in Fig. 9.
If no entry is removed from yj and j < i then we can input yjxj+1 to return to the
configuration in Fig. 9 with j incremented by 1 as follows: move 136j , 126j to stack
R, output 86j , 96j , 106j , move 106(j+1) to L, output 56(j+1) = 116j , 126j , 136j ,
then move 96(j+1) to stack L.

If j = s (ys is removed):
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1. If 86s is removed, output 96s, 106s, move 136s, 126s to stack L to reach the
configuration in Fig. 7, from which the remaining entries can be sorted by
Lemma 8.

2. If b ∈ {136s, 126s} is removed, place b in stack R, output 86s, 96s, 106s, move b
to stack L to reach the configuration in Fig. 7 with one of 126s, 136s removed,
from which the remaining entries can be sorted a by Lemma 8.

If j = i and the entry is removed from Si, sort the remaining entries as
follows:

1. If 116i is removed, place 136i, 126i into stack R, output 86i, 96i, 106i, then
126i, 136i, 146i, 156i.

2. If b ∈ {146i, 156i} is removed, place 136i, 126i into stack R, output 86i, 96i, 106i,
move 126i into stack L, place b on top of 136i in stack R, output 116i then
126i, move b into stack L, output 136i then b.

ut

Theorem 10. The set of permutations that can be sorted by a stack of depth 3
and an infinite stack in series has an infinite basis.

Proof. Proposition 6 shows that each Gi cannot be sorted, and Proposition 9
shows that no Gi can contain Gj for j 6= i as a subpermutation since any
subpermutation of Gi can be sorted. Thus G = {Gi | i ∈ N} is an infinite
antichain in the basis for S(3,∞). ut

4 From finite to infinitely based

Let Bt be the basis for S(t,∞) for t ∈ N+. Modifying Lemma 1 in [7] for the
sorting case, we have the following:

Lemma 11. If σ ∈ Bt has length n then either σ or (213)nσ belongs to Bt+1.

Proof. If σ 6∈ S(t+1,∞) then since σ ∈ Bt, deleting any entry gives a permutation
in S(t,∞) ⊆ S(t + 1,∞), so σ ∈ Bt+1. Else σ ∈ S(t + 1,∞). In any sorting
process for (213)nσ the entries 1n, 2n, 3n cannot appear together in stack L, so
at least one entry must remain in stack R which means we must sort σ with
stack R of depth at most t, which is not possible, so (213)nσ cannot be sorted. If
we remove an entry of the prefix then the two entries a, b ∈ {1n, 2n, 3n} can be
placed in stack L in order, leaving stack R depth t+ 1 so the permutation can
be sorted, and if an entry is removed from σ then since σ ∈ Bt it can be sorted
with R having one space occupied. ut

Theorem 12. The set of permutations that can be sorted using a stack of depth
t ∈ N+ and an infinite stack in series is finitely based if and only if t ∈ {1, 2}.

Proof. We have |B1| = 1 and |B2| = 20 [11,7]. Theorem 10 shows that B3 is
infinite. Lemma 11 implies if Bt is infinite then so is Bt+1. ut

A small modification of Propositions 6 and 9 shows that for t ≥ 4 the set
Gt = {Gi,t}, where Gi,t = P (x0y0) . . . (xiyi)(14 15 16 . . . 12t 11)6i, is an explicit
antichain in the basis of S(t,∞). Details can be seen in [10].
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4. Atkinson, M.D., Murphy, M.M., Ruškuc, N.: Sorting with two ordered stacks
in series. Theoret. Comput. Sci. 289(1), 205–223 (2002), http://dx.doi.org/10.
1016/S0304-3975(01)00270-5
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