Skip to main content

Multi-modality Fusion Network for Action Recognition

  • Conference paper
  • First Online:
Book cover Advances in Multimedia Information Processing – PCM 2017 (PCM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10736))

Included in the following conference series:

  • 2371 Accesses

Abstract

Deep neural networks have outperformed many traditional methods for action recognition on video datasets, such as UCF101 and HMDB51. This paper aims to explore the performance of fusion of different convolutional networks with different dimensions. The main contribution of this work is multi-modality fusion network (MMFN), a novel framework for action recognition, which combines 2D ConvNets and 3D ConvNets. The accuracy of MMFN outperforms the state-of-the-art deep-learning-based methods on the datasets of UCF101 (94.6%) and HMDB51 (69.7%).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  2. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2009), pp. 248–255. IEEE (2009)

    Google Scholar 

  3. Yang, H., Zhou, J.T., Zhang, Y., Gao, B.B., Wu, J., Cai, J.: Exploit bounding box annotations for multi-label object recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 280–288 (2016)

    Google Scholar 

  4. Herranz, L., Jiang, S., Li, X.: Scene recognition with CNNs: objects, scales and dataset bias. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 571–579 (2016)

    Google Scholar 

  5. Xiong, Y., Zhu, K., Lin, D., Tang, X.: Recognize complex events from static images by fusing deep channels. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1600–1609 (2015)

    Google Scholar 

  6. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., FeiFei, L.: Large-scale video classification with convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1725–1732 (2014)

    Google Scholar 

  7. Varol, G., Laptev, I., Schmid, C.: Long-term temporal convolutions for action recognition. arXiv preprint arXiv:1604.04494 (2016)

  8. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. In: Advances in Neural Information Processing Systems, pp. 568–576 (2014)

    Google Scholar 

  9. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3D convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4489–4497 (2015)

    Google Scholar 

  10. Wang, L., Xiong, Y., Wang, Z., Qiao, Yu., Lin, D., Tang, X., Van Gool, L.: Temporal segment networks: towards good practices for deep action recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 20–36. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_2

    Chapter  Google Scholar 

  11. Ji, S., Xu, W., Yang, M., Yu, K.: 3D convolutional neural networks for human action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 221–231 (2013)

    Article  Google Scholar 

  12. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  13. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 1, pp. 886–893. IEEE (2005)

    Google Scholar 

  14. Laptev, I., Marszalek, M., Schmid, C., Rozenfeld, B.: Learning realistic human actions from movies. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2008), pp. 1–8. IEEE (2008)

    Google Scholar 

  15. Dalal, N., Triggs, B., Schmid, C.: Human detection using oriented histograms of flow and appearance. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 428–441. Springer, Heidelberg (2006). https://doi.org/10.1007/11744047_33

    Chapter  Google Scholar 

  16. Laptev, I.: On space-time interest points. Int. J. Comput. Vis. 64(2–3), 107–123 (2005)

    Article  Google Scholar 

  17. Dollár, P., Rabaud, V., Cottrell, G., Belongie, S.: Behavior recognition via sparse spatio-temporal features. In: 2nd Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, pp. 65–72. IEEE (2005)

    Google Scholar 

  18. Klaser, A., Marszalek, M., Schmid, C.: A spatio-temporal descriptor based on 3D-gradients. In: 19th British Machine Vision Conference (BMVC 2008), p. 275-1. British Machine Vision Association (2008)

    Google Scholar 

  19. Wang, H., Kläser, A., Schmid, C., Liu, C.L.: Action recognition by dense trajectories. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3169–3176. IEEE (2011)

    Google Scholar 

  20. Wang, H., Schmid, C.: Action recognition with improved trajectories. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3551–3558 (2013)

    Google Scholar 

  21. Yue-Hei Ng, J., Hausknecht, M., Vijayanarasimhan, S., Vinyals, O., Monga, R., Toderici, G.: Beyond short snippets: deep networks for video classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4694–4702 (2015)

    Google Scholar 

  22. Sun, L., Jia, K., Yeung, D.Y., Shi, B.E.: Human action recognition using factorized spatio-temporal convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4597–4605 (2015)

    Google Scholar 

  23. Wu, Z., Jiang, Y.G., Wang, J., Pu, J., Xue, X.: Exploring inter-feature and inter-class relationships with deep neural networks for video classification. In: Proceedings of the 22nd ACM International Conference on Multimedia, pp. 167–176. ACM (2014)

    Google Scholar 

  24. Zhu, W., Hu, J., Sun, G., Cao, X., Qiao, Y.: A key volume mining deep framework for action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1991–1999 (2016)

    Google Scholar 

  25. Zach, C., Pock, T., Bischof, H.: A duality based approach for realtime TV-L1 optical flow. Pattern Recognition, pp. 214–223 (2007)

    Google Scholar 

  26. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456 (2015)

    Google Scholar 

  27. Soomro, K., Zamir, A.R., Shah, M.: UCF101: a dataset of 101 human actions classes from videos in the wild. arXiv preprint arXiv:1212.0402 (2012)

  28. Kuehne, H., Jhuang, H., Garrote, E., Poggio, T., Serre, T.: HMDB: a large video database for human motion recognition. In: IEEE International Conference on Computer Vision (ICCV), pp. 2556–2563. IEEE (2011)

    Google Scholar 

  29. Jiang, Y., Liu, J., Zamir, A.R., Toderici, G., Laptev, I., Shah, M., Sukthankar, R.: Thumos challenge: action recognition with a large number of classes (2014)

    Google Scholar 

  30. Cai, Z., Wang, L., Peng, X., Qiao, Y.: Multi-view super vector for action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 596–603 (2014)

    Google Scholar 

  31. Gan, C., Yang, Y., Zhu, L., Zhao, D., Zhuang, Y.: Recognizing an action using its name: a knowledge-based approach. Int. J. Comput. Vis. 120(1), 61–77 (2016)

    Article  MathSciNet  Google Scholar 

  32. Wang, L., Qiao, Y., Tang, X.: MoFAP: a multi-level representation for action recognition. Int. J. Comput. Vis. 119(3), 254–271 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Qin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, K., Qin, Z., Xu, K., Ye, S., Wang, G. (2018). Multi-modality Fusion Network for Action Recognition. In: Zeng, B., Huang, Q., El Saddik, A., Li, H., Jiang, S., Fan, X. (eds) Advances in Multimedia Information Processing – PCM 2017. PCM 2017. Lecture Notes in Computer Science(), vol 10736. Springer, Cham. https://doi.org/10.1007/978-3-319-77383-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77383-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77382-7

  • Online ISBN: 978-3-319-77383-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics