Skip to main content

On the Impact of Environmental Sound on Perceived Visual Quality

  • Conference paper
  • First Online:
  • 2371 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10736))

Abstract

Most of existing visual quality assessment databases are created in controlled conditions where the experimental environments are always kept silent. However, the practical viewing environments often contain diverse environmental sounds. It is our daily experience that different sounds (e.g. chatter, honk and music) can affect our emotions, hence influencing our perceptions of images. So, there is a gap between visual quality under environmental sounds and existing researches of visual quality. Therefore, in this paper, we perform subjective quality evaluations with different types and volumes of environmental sounds. We build a rigorous experimental system to control various conditions of environmental sounds and construct the environmental sound–image database. Afterwards, the influence of environmental sounds on perceived visual quality are analysed from four perspectives: sound categories, sound volumes, distortion levels of images, and image contents.

This work was supported by the National Science Foundation of China (61422112, 61371146, 61521062, 61527804), National High–tech R&D Program of China (2015AA015905), and Science and Technology Commission of Shanghai Municipality (15DZ0500200).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Zhai, G., Wu, X., Yang, X., Lin, W., Zhang, W.: A psychovisual quality metric in free-energy principle. IEEE Trans. Image Process. 21(1), 41–52 (2012)

    Article  MathSciNet  Google Scholar 

  2. Zhai, G., Cai, J., Lin, W., Yang, X., Zhang, W.: Three dimensional scalable video adaptation via user-end perceptual quality assessment. IEEE Trans. Broadcast. 54(3), 719–727 (2008)

    Article  Google Scholar 

  3. Zhai, G.: Recent advances in image quality assessment. In: Deng, C., Ma, L., Lin, W., Ngan, K. (eds.) Visual Signal Quality Assessment, pp. 73–97. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-10368-6_3

    Chapter  Google Scholar 

  4. Gu, K., Zhai, G., Yang, X., Zhang, W.: Using free energy principle for blind image quality assessment. IEEE Trans. Multimed. 17(1), 50–63 (2015)

    Article  Google Scholar 

  5. Sheikh, H.R., Wang, Z., Cormack, L., Bovik, A.C.: Live image quality assessment database release 2. http://live.ece.utexas.edu/research/quality/

  6. Xu, Q., Huang, Q., Jiang, T., Yan, B., Lin, W., Yao, Y.: HodgeRank on random graphs for subjective video quality assessment. IEEE Trans. Multimed. 14(3), 844–857 (2012)

    Article  Google Scholar 

  7. Zeng, Z., Pantic, M., Roisman, G.I., Huang, T.S.: A survey of affect recognition methods: audio, visual, and spontaneous expressions. IEEE Trans. Pattern Anal. Mach. Intell. 31(1), 39–58 (2009)

    Article  Google Scholar 

  8. Perrott, D.R., Saberi, K., Brown, K., Strybel, T.Z.: Auditory psychomotor coordination and visual search performance. Attent. Percept. Psychophys. 48(3), 214–226 (1990)

    Article  Google Scholar 

  9. Min, X., Zhai, G., Gu, K., Yang, X.: Fixation prediction through multimodal analysis. ACM Trans. Multimed. Comput. Commun. Appl. 13(1), 6:1–6:23 (2016)

    Article  Google Scholar 

  10. Min, X., Zhai, G., Gao, Z., Hu, C., Yang, X.: Sound influences visual attention discriminately in videos. In: Sixth International Workshop on Quality of Multimedia Experience, pp. 153–158. IEEE (2014)

    Google Scholar 

  11. Min, X., Zhai, G., Hu, C., Gu, K.: Fixation prediction through multimodal analysis. In: Visual Communications and Image Processing (VCIP), pp. 1–4. IEEE (2015)

    Google Scholar 

  12. You, J., Reiter, U., Hannuksela, M.M., Gabbouj, M., Perkis, A.: Perceptual-based quality assessment for audio-visual services: a survey. Signal Process. Image Commun. 25(7), 482–501 (2010)

    Article  Google Scholar 

  13. Xu, Q., Xiong, J., Huang, Q., Yao, Y.: Online HodgeRank on random graphs for crowdsourceable QoE evaluation. IEEE Trans. Multimed. 16(2), 373–386 (2014)

    Article  Google Scholar 

  14. Xu, Q., Wu, Z., Su, L., Qin, L., Jiang, S., Huang, Q.: Bridging the gap between objective score and subjective preference in video quality assessment. In: IEEE International Conference on Multimedia and Expo, pp. 908–913. IEEE (2010)

    Google Scholar 

  15. Colomes, C., Lever, M., Rault, J.B., Dehery, Y.F., Faucon, G.: A perceptual model applied to audio bit-rate reduction. J. Audio Eng. Soc. 43, 233–240 (1995)

    Google Scholar 

  16. Sporer, T.: Objective audio signal evaluation-applied psychoacoustics for modeling the perceived quality of digital audio (1997)

    Google Scholar 

  17. Vanam, R., Creusere, C.D.: Scalable perceptual metric for evaluating audio quality. In: Signals, Systems and Computers, pp. 319–323 (2005)

    Google Scholar 

  18. Video quality experts group (VQEG). http://www.vqeg.org

  19. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  20. Soundararajan, R., Bovik, A.C.: Video quality assessment by reduced reference spatio-temporal entropic differencing. IEEE Trans. Circuits Syst. Video Technol. 23(4), 684–694 (2013)

    Article  Google Scholar 

  21. Yang, F., Wan, S., Chang, Y., Wu, H.R.: A novel objective no-reference metric for digital video quality assessment. IEEE Signal Process. Lett. 12(10), 685–688 (2005)

    Article  Google Scholar 

  22. Winkler, S.: Video quality and beyond. In: European Conference on Signal Processing, pp. 150–153 (2007)

    Google Scholar 

  23. Beerends, J.G., Caluwe, F.E.D.: The influence of video quality on perceived audio quality and vice versa. J. Audio Eng. Soc. 47(5), 355–362 (1999)

    Google Scholar 

  24. Hands, D.S.: A basic multimedia quality model. IEEE Trans. Multimed. 6(6), 806–816 (2004)

    Article  Google Scholar 

  25. Frater, M.R., Arnold, J.F., Vahedian, A.: Impact of audio on subjective assessment of video quality in videoconferencing applications. IEEE Trans. Circuits Syst. Video Technol. 11(9), 1059–1062 (2001)

    Article  Google Scholar 

  26. Blakowski, G., Steinmetz, R.: A media synchronization survey: reference model, specification, and case studies. IEEE J. Sel. Areas Commun. 14(1), 5–35 (1996)

    Article  Google Scholar 

  27. Adobe Audition Sound Effects. http://offers.adobe.com/en/na/audition/offers/audition_dlc/AdobeAditionDLCSFX.html?cq_ck=1407955238126&wcmmode=disabled

  28. GB 3096-2008: Environmental quality standard for noise (2008)

    Google Scholar 

  29. ITU Recommendation BT.500-13: Methodology for the subjective assessment of the quality of television pictures (2012)

    Google Scholar 

  30. Sheikh, H.R., Sabir, M.F., Bovik, A.C.: A statistical evaluation of recent full reference image quality assessment algorithms. IEEE Trans. Image Process. 15(11), 3440–3451 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenhan Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, W. et al. (2018). On the Impact of Environmental Sound on Perceived Visual Quality. In: Zeng, B., Huang, Q., El Saddik, A., Li, H., Jiang, S., Fan, X. (eds) Advances in Multimedia Information Processing – PCM 2017. PCM 2017. Lecture Notes in Computer Science(), vol 10736. Springer, Cham. https://doi.org/10.1007/978-3-319-77383-4_71

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77383-4_71

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77382-7

  • Online ISBN: 978-3-319-77383-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics