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Competitive algorithms for demand response management in a smart
grid

Vincent Chau1 · Shengzhong Feng2,3 · Nguy ˜̂en Kim Th ´̆ang4

Abstract

We consider a scheduling problem that abstracts a model of demand response management in a smart grid. We investigate the
problem with a set of unrelated machines, and each job j (representing a client demand) is characterized by its release date, and
its power request function expressing its request demand at specific times. Each machine has an energy power function, and
the energy cost incurred at a time depends on the load of the machine at that time. The goal is to find a non-migrative schedule
that minimizes the total energy. We give a competitive algorithm for the problem in the online setting where the competitive
ratio depends (only) on the power functions of machines. In the setting with typical energy function P(z) = zν , the algorithm
is Θ(νν)-competitive, which is optimal up to a constant factor. Our algorithm is robust in the sense that the guarantee holds
for arbitrary request demands of clients. This enables flexibility on the choices of clients in shaping their demands—a desired
property in a smart grid. We also consider a particular case in the offline setting in which jobs have unit processing time,
constant power request, and identical machines with energy function P(z) = zν . We present a 2ν-approximation algorithm
for this case.
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1 Introduction

Electrical smart grid is one of the significant challenges in the
twenty-first-century (US Department of Energy 2009). It is a
network of the electricity distribution that promotes the traf-
fic information between producers and consumers to adjust
the electricity flow in real time, i.e., it aims to improve the
journey of electricity through information and communica-
tion technologies in contrast to the traditional power system.
It has been raised (Chen et al. 2013) that in the US power
grid, 10% of all generation assets and 25% of distribution
infrastructure are required for less than 400 hours per year,
which represents roughly 5% of the time (US Department of
Energy 2009). A smart grid is a power grid system that opti-
mizes the efficiency of the power generation, distribution,
and consumption, and eventually the storage, of the energy
to coordinate the electric network, from the production to
the consumer. It can be noticed that the power grid may not
be efficient during the peak demand hour if the management
of the smart grid is not well handled. Indeed, the cost of
electricity production can be high if there is a high demand
punctually, and the electricity suppliers may charge the con-
sumer according to the generation cost. Therefore, the cost
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of electricity can be different over time; intuitively, we have
a lower price during off-peak hours and a higher price during
peak hours. That is why Hamilton and Gulhar (2010) inves-
tigated the demand response management to overcome this
problem. The goal of each user is to minimize his own cost by
requesting the electricity during off-peak hours and reduce
the peak load while satisfying his demand. Thus, demand

response management is mainly beneficial to consumers.
It can be seen as a scheduling problem. Each user is a

job with the same release date and deadline in which the
job cannot be scheduled before the release date, nor after
the deadline. Furthermore, a user is defined by an electric-
ity demand over time, which can also be represented in the
scheduling problem. Finally, we have a cost that will be
charged to users depending on the load at each moment. The
goal is to minimize the total cost while satisfying all demands.
A more formal definition is given in the next section.

In this paper, we consider a general online scheduling
problem which models the demand response management,
and we design algorithms toward the following main pur-
poses of a smart grid:

– Optimizing energy consumption.
– Enabling customer choice and letting them react ratio-

nally.

1.1 Model definition

We consider the following scheduling problem. We are given
m unrelated machines and a set of n jobs. Here, machines rep-
resent different resources in a smart grid or different electrical
sub-networks. Each job represents the demand of a client, and
the client customizes the demand. Specifically, each job j is
characterized by its release date r j and an arbitrary power
request function hi, j,k : N → R

+, meaning that if a job
j starts at time k in machine i , then its request demand at
time t is hi, j,k(t). We denote the execution of job j as si, j,k

if job j is processed in machine i with the starting time k.
In the problem, migration of jobs between machines is not
allowed. In other words, a job must be executed in exactly
one machine since, in the case of migration, the communi-
cations and storage/reloading data of jobs are costly. Given
a schedule (executions of all jobs), the total load at time t in
machine i is

∑

j,k hi, j,k(t) where the sum is taken over all
job executions in machine i . The total energy is defined as
∑

i

∑

t Pi

(
∑

j,k hi, j,k(t)
)

where Pi is an energy power func-
tion of machine i . Typically, Pi (z) = zνi for some constant
parameter νi ≥ 1. In the problem, we consider Pi as arbitrary

non-decreasing functions, and possibly non-convex. The goal
is to find a feasible schedule that minimizes the total energy
consumption over all times.

In the paper, we consider both offline and online settings.
In the offline setting, the scheduler has full knowledge of all

Fig. 1 Example of a schedule with arbitrary power requests during
execution of jobs. Each color corresponds to a different job. Here, the
red job has two disjoint parts. Note that more than one job can be
scheduled at the same time since we are only interested in the total
power request over time.

parameters. In contrast, in the online setting, jobs arrive over
time, and the scheduler is aware of jobs (and their parameters)
only at their arrival time. The online setting is appropriate for
the dynamic nature of demand response management. The
presented model encompasses the previous ones (Koutsopou-
los and Tassiulas 2011) in the literature. In the latter, jobs have
release date r j , deadline d j , processing time pi, j and jobs
have to be processed non-preemptively. The power request
of a job j is some constant h j during its non-preemptive
execution. The model captures it by defining

hi, j,k(t) =

⎧

⎪

⎨

⎪

⎩

h j if r j ≤ k ≤ d j − pi j and t ∈ [k, k + pi j ],

0 if r j ≤ k ≤ d j − pi j and t /∈ [k, k + pi j ],

∞ otherwise.

(1)

Geometrically, in the model shown in Eq. (1), each job corre-
sponds to a rectangle, and the problem essentially consists of
packing rectangles to minimize the total energy. In this case,
the power request is constant from the beginning to the end
of the request. For short, we call the model defined by Eq. (1)
rectangle scheduling. We investigate this model in Sect. 3 in
the offline context.

We also consider a generalized version in which there is no
condition on the demand (i.e., energy request) of jobs, and
clients can specifically customize the demands. Geometri-
cally, each job in our model has an arbitrary form, which
represents different power requests during its execution (see
Fig. 1). Note that each job is not necessarily continuous, for
instance, a task may need to be interrupted and wait a fixed
amount of time before resuming. Additionally, we consider
that jobs are scheduled non-preemptively, i.e., once a job
starts, its power request follows the function hi, j,k . Hence,
the model offers flexible choices to clients along the line of
smart grid’s purposes. This model will be studied in Sect. 2
in the online context.
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Table 1 Summary of competitive ratios (resp. approximation ratio) in the rectangle scheduling model with power function zν for a single machine

Processing Power request h j Prior best-known results Our result
time p j

Online Unit uniform (i.e., h j = h j ′ ) min{(4ν)ν/2 + 1, 2ν(8eν + 1)} Liu et al. (2020)

Arbitrary 2ν(8eν + 1) Liu et al. (2020)

Arbitrary Arbitrary O
(

logν
(

pmax
pmin

))

Liu et al. (2020) Θ(νν)

Ω (νν) Liu et al. (2020)

Offline Unit Unit Optimal polynomial time Burcea et al. (2016)

Arbitrary 2ν+1 Liu et al. (2020) 2ν

Our result holds for unrelated machines

1.2 Related works

In this section, we summarize related works in the model of
rectangle scheduling, which, to the best of our knowledge,
is the only one that has been studied so far.

Koutsopoulos and Tassiulas (2011) formulated the rect-
angle scheduling model where the cost function is piecewise
linear. They show that the problem is NP-hard, and Burcea
et al. (2016) showed the NP-hardness of the general prob-
lem where the cost function is convex. In the offline setting,
Burcea et al. (2016) gave a polynomial-time algorithm for the
case of unit height (i.e., unit power request) and unit width
(i.e., duration of request). In the same work, they showed
several structural lemmas and proposed an online algorithm
that achieves a constant competitive ratio for some particular
cases. Furthermore, in the full version (see Liu et al. 2016),
Liu et al. showed that the offline case, where jobs have unit
processing time but with arbitrary power request, admits a
2ν+1-approximation algorithm which is based on the results
of the dynamic speed scaling problem (Albers 2010; Bell and
Wong 2015; Yao et al. 1995).

In the online setting, Feng et al. (2015) proposed a sim-
ple greedy algorithm which is 2-competitive for the unit
case and the power function is z2. However, Liu et al.
(2020) showed that the greedy algorithm is in fact at least
3-competitive by providing a counterexample. Liu et al.
(2019) showed that the greedy algorithm is optimal but left
the exact competitive ratio as open. Liu et al. (2020) con-
sidered the single machine setting in which they presented

an online Θ

(

logν
(

pmax
pmin

))

-competitive algorithm where

pmin = min j {p j : p j > 0} and pmax = max j p j . This
is the best-known algorithm (even in offline setting) where
jobs have arbitrary width and arbitrary height and the power
energy function is zν . Furthermore, for special cases of jobs
with unit processing time, Liu et al. (2020) also gave com-
petitive algorithms. A summary of the results can be found in
Table 1.

Besides, Salinas et al. (2013) considered a multi-objective
problem to minimize energy consumption cost and maximize

some utility that can be the profit for the operator as well
as for the clients. On the other hand, a related problem is to
manage the load by considering different prices of electricity
over time (Fang et al. 2016; Maharjan et al. 2013). Recent
surveys of the area can be found in (Hamilton and Gulhar
2010; Lui et al. 2010; Alford et al. 2012).

1.3 Our contribution and approaches

In this paper, we investigate the online and offline aspects of
the problem.

Online setting. The main result of the paper is a competi-
tive algorithm for the problem in the online setting, where the
competitive ratio is characterized by a notion called smooth-

ness (Roughgarden 2015; Thang 2020) of the machine energy
power functions. Informally, the algorithm assigns and exe-
cutes each job that arrives on a machine in such a way that
minimizes the marginal increase in the total cost.

In designing a competitive algorithm for the problem, we
consider a primal–dual approach. The main difficulty in prov-
ing the performance of the algorithm is that all known LPs
have an unbounded integrality gap, even for the particular
case of rectangle scheduling. Intuitively, the drawback of all
known LPs is that in the optimal fractional solution, jobs are
fractionally assigned to machines. In contrast, in the opti-
mal integer solution, migration of jobs is not allowed. To
bypass this obstacle, we consider the primal–dual framework
based on configuration linear programs in (Thang 2020). The
framework is presented to reduce the integrality gap and
also to study problems with nonlinear, non-convex objec-
tive functions. The approach is particularly useful since the
energy power functions are nonlinear. Employing the tech-
niques from Thang (2020), we derive a greedy algorithm with
competitive ratio characterized by the notion of smoothness,
which is defined as follows.

Definition 1 A function f : R
+ → R

+ is (λ, µ)-smooth if
for any sets of nonnegative numbers A = {a1, . . . , an} and
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B = {b1, . . . , bn}, the following inequality holds:

n
∑

i=1

[

f

(

ai +

i
∑

j=1

b j

)

− f

( i
∑

j=1

b j

)]

≤ λ · f

( n
∑

i=1

ai

)

+ µ · f

( n
∑

i=1

bi

)

A set of cost functions { fe : e ∈ E} is (λ, µ)-smooth if every
function fe is (λ, µ)-smooth.

Specifically, in the problem, assuming that all energy power
functions are (λ, µ)-smooth for some λ > 0 and 0 <

µ < 1, our algorithm is λ/(1 − µ)-competitive. For
energy power functions of forms Pi (z) = zνi , they are
(

O(νν−1), ν−1
ν

)

-smooth where ν = maxi νi . That leads
to the competitive ratio O(νν) which improves upon the

best-known Θ

(

logν
(

pmax
pmin

))

-competitive algorithm where

pmin = min j {p j : p j > 0} and pmax = max j p j . Our com-
petitive ratio is not only independent on the jobs’ parameters,
but it is indeed optimal up to a constant factor. The matching
lower bound is given by (Liu et al. 2020, Theorem 9) for a sin-
gle machine in the rectangle scheduling model. In particular,
Liu et al. (2020) gave a lower bound which is 1

3

(

log pmax
pmin

)ν

where log pmax
pmin

= ν.
Our greedy algorithm has several interesting features for

a smart grid. First, the algorithm is simple and easy to imple-
ment, which makes it practically appealing. Note that despite
the simplicity of our algorithm, no bounded competitive ratio
has been known even for the rectangle scheduling model.
Secondly, the algorithm performance guarantee holds for
jobs with arbitrary varying power requests (arbitrary forms).
Apart from answering open questions raised by Liu et al.
(2020), it is particularly useful for demand response man-
agement. Once the algorithm is publicly given, and clients
are charged accordingly to the marginal increase in the total
energy cost, clients can arbitrarily customize their demand
to minimize their payment. This property is desirable since it
enables the clients to react rationally. On the side of the smart
grid management, no modification in the algorithm is needed
while always maintaining the competitiveness (optimality in
case of typical energy functions).

Offline setting. In the offline setting, we consider the
rectangle scheduling model when jobs have unit process-
ing time. We give an 2ν-approximation algorithm, which
improves upon the 2ν+1-approximation algorithm by Liu
et al. (2016) in two aspects. First, it slightly improves the
competitive ratio. Secondly, our result holds for multiple
(identical) machine environment. Our algorithm makes use
of the approximation algorithm for scheduling problems with
convex norm objective functions given by Azar and Epstein
(2005). The latter is designed by solving a convex relaxation

and round to an integer solution using the Lenstra–Shmoys–
Tardos scheme (Lenstra et al. 1990).

2 A competitive online algorithm

Formulation. In the model, the execution of a job is specified
by two parameters: (1) a machine in which it is executed and
(2) a starting time. Note that these parameters fully represent
the demand of a job, including the power request at any time
t during its execution. Formally, we denote the execution of
job j as si, j,k if job j is processed in machine i with the
starting time k. Recall that if the execution of a job j is si, j,k ,
then the request demand of the job at time t is hi, j,k(t). Let
S j be a set of feasible executions of job j . For example, in
the rectangle scheduling model, S j consists of si, j,k for all
machines i and starting time k such that r j ≤ k ≤ d j − pi j .
As the set of machines and times1 are finite, so is the set S j

for every job j . Let xi, j,k be a variable indicating whether
the execution of job j is si, j,k ∈ S j . We say that A is a
scheduling configuration (configuration in short) in machine
i if A is a feasible schedule of a subset of jobs, i.e., the cost of
a feasible schedule is a finite value. Specifically, A consists of
tuples (i, j, k) meaning that the execution of job j is si, j,k .
Note that, given a feasible scheduling configuration A, for
each job j there exists exactly one tuple of form (·, j, ·).
For a scheduling configuration A and machine i , let zi,A be
a variable such that zi,A = 1 if and only if for every tuple
(i, j, k) ∈ A, we have xi, j,k = 1. In other words, given a
scheduling configuration A, zi,A = 1 if and only if for every
job j such that (i, j, k) ∈ A for some i and k, the execution
of job j is si, j,k . (Additionally, zi,A = 0 if there exists a
tuple (i, j, k) ∈ A, but the execution of job j is not si, j,k).
Given a scheduling configuration A, let A(t) be the load
(height) of the corresponding schedule at time t . We denote
the energy cost of a configuration A of machine i as ci (A) :=
∑

t Pi (A(t)). We consider the following formulation and the
dual of its relaxation.

Primal : min
∑

i,A

ci (A)zi,A

∑

i,k:si, j,k∈S j

xi, j,k = 1 ∀ j

∑

A:(i, j,k)∈A

zi,A = xi, j,k ∀i, j, k

∑

A

zi,A = 1 ∀i

xi, j,k, zi,A ∈ {0, 1} ∀i, j, k, A

1 For convenience, we consider schedules up to a time T , which can be
arbitrarily large but finite
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Dual : max
∑

j

α j +
∑

i

γi

α j ≤ βi, j,k ∀i, j, k

γi +
∑

(i, j,k)∈A

βi, j,k ≤ ci (A) ∀i, A

In the primal, the first constraint guarantees that a job j

has to be processed by some feasible execution (in some
machine). The second constraint ensures that if job j fol-
lows the execution si, j,k , then in the solution, the scheduling
configuration of machine i must contain the tuple (i, j, k)

corresponding to execution si, j,k . The third constraint says
that in the solution, there is always a scheduling configuration
(possibly empty set) associated with a machine i .

Algorithm. We first interpret the dual variables and dual
constraints, and we derive useful observations for a compet-
itive algorithm. Variable α j represents the increase in energy
to the arrival of a job j . Variable βi, j,k stands for the marginal
energy if job j follows execution si, j,k . By this interpreta-
tion, the first dual constraint indicates the greedy behavior
of an algorithm. That is, if a new job j is released, select an
execution si, j,k ∈ S j that minimizes the marginal increase in
the total energy. Formally, let A∗

i be the set of current sched-
ule of machine i , and initially, A∗

i ← ∅ for every machine i .
At the arrival of job j , select an execution si∗, j,k∗ ∈ S j such
that

si∗, j,k∗ ∈ arg min
si, j,k∈S j

[

ci (A∗
i ∪ si, j,k) − ci (A∗

i )
]

or equivalently,

si∗, j,k∗ ∈

arg min
si, j,k∈S j

∑

t

[

Pi

(

A∗
i (t) + hi, j,k(t)

)

− Pi

(

A∗
i (t)

)]

where (A∗
i ∪ si, j,k) is the current schedule with additional

execution si, j,k of job j . Note that in configuration (A∗
i ∪

si, j,k), the load at time t in machine i is Pi

(

A∗
i (t)+hi, j,k(t)

)

.
Then, assign job j to machine i∗ and process it according to
the corresponding execution of si∗, j,k∗ .

Dual variables. Assume that all energy power functions
Pi are (λ, µ)-smooth for some fixed parameters λ > 0 and
µ < 1, then we construct a dual feasible solution in the
following way. Let A∗

i,≺ j be the scheduling configuration of
machine i (due to the algorithm) prior to the arrival of job j .
Define α j as 1/λ times the increase in the total cost due to

the arrival of job j . In other words, if the algorithm selects
the execution si∗, j,k∗ for job j , then

α j =
1

λ

[

ci∗(A∗
i∗,≺ j ∪ si∗, j,k∗) − ci∗(A∗

i∗,≺ j )

]

=
1

λ

∑

t

[

Pi∗

(

A∗
i∗,≺ j (t) + hi∗, j,k∗(t)

)

− Pi∗

(

A∗
i∗,≺ j (t)

)]

For each machine i and job j , we set

βi, j,k =
1

λ

[

ci (A∗
i,≺ j ∪ si, j,k) − ci (A∗

i,≺ j )

]

=
1

λ

∑

t

[

Pi

(

A∗
i,≺ j (t) + hi, j,k(t)

)

− Pi

(

A∗
i,≺ j (t)

)]

.

Finally, for every machine i , we define the dual variable

γi = −
µ

λ
ci (A∗

i )

where A∗
i is the schedule on machine i (at the end of the

instance).

Lemma 1 The dual variables defined above are feasible.

Proof By the definition of dual variables, the first constraint
reads

1

λ

[

ci∗(A∗
i∗,≺ j ∪ si∗, j,k∗) − ci∗(A∗

i∗,≺ j )

]

≤
1

λ

[

ci (A∗
i,≺ j ∪ si, j,k) − ci (A∗

i,≺ j )

]

This inequality follows immediately from the choice of the
algorithm.

We now show that the second constraint holds. Fix a
machine i and an arbitrary configuration A on machine i .
The corresponding constraint reads

−
µ

λ
ci (A∗

i ) +
1

λ

∑

(i, j,k)∈A

[

ci (A∗
i,≺ j ∪ si, j,k) − ci (A∗

i,≺ j )

]

≤ ci (A)

⇔
∑

(i, j,k)∈A

[

ci (A∗
i,≺ j ∪ si, j,k) − ci (A∗

i,≺ j )

]

≤ λci (A) + µci (A∗
i )

⇔
∑

(i, j,k)∈A

∑

t

[

Pi (A∗
i,≺ j (t) + hi, j,k(t)) − Pi (A∗

i,≺ j (t))

]

≤ λ
∑

t

Pi (A(t)) + µ
∑

t

Pi (A∗
i (t)) (2)

where A∗
i,≺ j (t) is the load (height) of machine i (due to the

algorithm) at time t before the arrival of job j .
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Observe that A∗
i,≺ j (t) is the sum of power requests

(according to the algorithm) at time t of jobs assigned to
machine i prior to job j . As the power function Pi is (λ, µ)-
smooth, for any time t we have

∑

(i, j,k)∈A

[

Pi

(

A∗
i,≺ j (t) + hi, j,k(t)

)

− Pi

(

A∗
i,≺ j (t)

)

]

≤ λPi

(

∑

(i, j,k)∈A

hi, j,k(t)

)

+ µPi

(

A∗
i (t)

)

Summing over all times t , Inequality (2) holds. Therefore,
the lemma follows. ⊓⊔

We are now ready to prove the main theorem.

Theorem 1 If all energy power functions are (λ, µ)-smooth,

then the algorithm is λ/(1 − µ)-competitive. In particular,

if Pi (z) = zνi for νi ≥ 1, then the algorithm is O(νν)-

competitive where ν = maxi νi .

Proof By the definitions of dual variables, the dual objective
is

∑

j

α j +
∑

i

γi =
∑

i

1

λ
ci (A∗

i ) −
∑

i

µ

λ
ci (A∗

i )

=
1 − µ

λ

∑

i

ci (A∗
i )

Besides, the cost of the solution due to the algorithm is
∑

i ci (A∗
i ). Hence, the competitive ratio is at most λ/(1−µ).

Particularly, energy power functions of forms Pi (z) = zνi

for νi ≥ 1 are
(

O(νν−1), ν−1
ν

)

-smooth for ν = maxi νi .
In fact, the smoothness follows (smooth) inequalities in (
Cohen et al. (2012)), which states: for ν > 1 and for any
sets of nonnegative numbers A = {a1, . . . , an} and B =

{b1, . . . , bn}, it always holds that

n
∑

i=1

⎡

⎣

(

ai +

i
∑

j=1

b j

)ν

−

( i
∑

j=1

b j

)ν

⎤

⎦

≤ O(νν−1) ·

( n
∑

i=1

ai

)ν

+
ν − 1

ν
·

( n
∑

i=1

bi

)ν

That implies the competitive ratio νν of the algorithm for
power functions Pi (z) = zνi . ⊓⊔

3 An approximation algorithm for unit
processing time jobs

In this section, we investigate the offline case with a set of
identical machines where jobs have unit processing time but

different power requests on different machines. Note that this
corresponds to the restricted model of rectangle scheduling.
We consider typical energy power function P(z) = zν for
every machine, and we assume that jobs need to be assigned
to time slot. Burcea et al. (2016) showed that this problem is
NP-hard by a reduction to the 3-partition problem even for
the case where jobs have common release time and common
deadline.

Let Θ = ∪n
j=1{r j +a | a = −n, . . . , n}∪n

j=1{d j +a | a =

−n, . . . , n} to be a set of time slots. We show that it is suffi-
cient to consider only schedules in which jobs are processed
within these time slots. In particular, this set contains O(n2)

time slots and will help to design a polynomial-time approx-
imation algorithm.

Lemma 2 The schedules in which jobs start at a date in Θ are

dominant. In other words, any schedule can be transformed

into one in which jobs start at a date in Θ without increasing

the cost.

Proof It is sufficient to consider a single machine and show
how to transform the schedule of the machine to the new one
such that each job starts at a date in Θ without increasing the
cost.

Let t be the first moment where jobs that are assigned to
this time slot do not belong to Θ . We consider the maximal
continuous interval from time slot t in which every time slot
has at least one job that is assigned. If the considered interval
is [t, u), then the time slot u + 1 is idle.

First, we observe that the length of this interval is lower or
equal to n. Indeed, in the worst case, each job is assigned to
different time slots. We shift this interval, as well as the jobs,
by one unit time to the right, i.e., after the shift, the interval
will be [t + 1, u + 1). Three cases may occur (see Fig. 2):

– we reach another job. We then consider the new maximal
continuous interval and continue to shift it.

– we reach a deadline. The starting time of the interval must
be in Θ since the length of the interval is at most n.

– none of the above cases, we continue to shift the interval
to the right.

By this operation, we observe that the cost of the schedule
remains the same because the costs of time slots are inde-
pendent. By doing such modification, jobs are executed in
the same way, with the same order, and with the same cost,
the only difference is the time slots in which the jobs are
executed. ⊓⊔

The main idea is to reduce the smart grid problem to the
following Lν-norm problem. In the latter, we are given a set
J of n jobs and a set M of m unrelated machine. Each job
j ∈ J has a processing time pi, j if it is assigned to machine
i . We define the decision variable yi, j = 1 if the job j is
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time

power request

t u

time

power request

t u

u + 1

u + 1

t + 1

t + 1

Fig. 2 Illustration of a shift of an interval. After the shift, the former
interval meets another job. We then need to consider the continuous
interval from time slot t + 1. It corresponds to the first case in the proof
of Lemma 2

assigned to machine i , and yi, j = 0 otherwise. The goal is
to minimize the following function:

ν

√

√

√

√

√

∑

i∈M

⎛

⎝

n
∑

j=1

yi, j pi, j

⎞

⎠

ν

(3)

Lemma 3 The problem of a smart grid with unit process-

ing time jobs and identical machines can be polynomially

reduced to the Lν-norm minimization problem on unrelated

machines.

Proof By Lemma 2, there is a polynomial number of time-
slots to which jobs can be assigned. We create a correspond-
ing machine (i, t) for each time slot t ∈ Θ and each machine
i . Similarly, we create a new job j ′ ∈ J (in Lν-norm prob-
lem) which corresponds to job j ∈ J (in the smart grid
problem) in the following way:

p(i,t), j ′ =

{

h j if t ∈ [r j , d j )

+∞ otherwise
(4)

Given a schedule for the Lν-norm problem with cost C ,
we show how to build a feasible schedule for the smart grid
problem with cost Cν .

For each job j ∈ J that is assigned to machine (i, t) ∈ M

in the Lν-norm problem, we schedule this job at the time slot
t on machine i in the initial problem. By doing that, the load at
any time slot t on machine i in the initial problem equals the
load of the machine (i, t) in the Lν -norm problem. Therefore,
the constructed schedule for the initial problem has cost Cν ,
where C is the cost of the schedule in the Lν-norm problem.
⊓⊔

By Lemma 3, solving the smart grid problem with unit
processing time jobs and identical machines is essentially
solving the Lν-norm problem. Hence, in our algorithm
(Algorithm 1), we invoke the Azar–Epstein algorithm (Azar
and Epstein 2005) to get an approximation algorithm for
the latter. Roughly speaking, the Azar–Epstein algorithm
consists of solving a relaxed convex program and round-
ing fractional solutions to integral ones using the standard
scheme of Lenstra et al. (1990). Given a solution for the
Lν-norm problem, we reconstruct a feasible solution for the
smart grid problem with an approximation ratio of 2ν .

Algorithm 1 Approximation algorithm for the smart grid
scheduling problem with unit processing time jobs and iden-
tical machines
1: Θ = ∪n

j=1{r j +a | a = −n, . . . , n}∪n
j=1 {d j +a | a = −n, . . . , n}

2: Let Π = ∅ be the set of machines and J = ∅ be the set of jobs
3: for each t ∈ Θ and each machine i do

4: Create a machine (i, t) and Π ← Π ∪ {(i, t)}

5: end for

6: for each job j do

7: Create a new job j ′ with p(i,t), j ′ = h j if t ∈ [r j , d j ), otherwise
we have p(i,t), j ′ = +∞

8: J ← J ∪ { j ′}

9: end for

10: Apply the Azar-Epstein algorithm (Azar and Epstein 2005) on
instance (Π, J ).

11: Build the schedule for the smart grid problem as in Lemma 3.

Theorem 2 Algorithm 1 achieves an approximation ratio of

2ν .

Proof By Lemma 3, we know that given an assignment of
jobs for the Lν-norm problem on unrelated machines of cost
C , we can construct a schedule for the smart grid prob-
lem with a cost of Cν in polynomial time. Thus, we have
(O PTL)ν = O PTSG where O PTL is the optimal cost of
the Lν-norm problem and O PTSG is the optimal cost of the
smart grid problem.

Besides, Azar–Epstein algorithm (Azar and Epstein 2005)
is 2-approximation for the Lν-norm problem. Therefore, we
have O PTL ≤ C ≤ 2O PTL . Finally, by raising each term
of the inequality by a power of ν, we have (O PTL)ν ≤ Cν ≤

2ν(O PTL)ν , so O PTSG ≤ Cν ≤ 2ν O PTSG . The theorem
follows. ⊓⊔

4 Concluding remarks

In the paper, we have considered a general model of demand
response management in a smart grid. We have given a com-
petitive algorithm that is optimal (up to a constant factor) in
typical settings. Our algorithm is robust to arbitrary demands
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and so enables the flexibility of the choices of clients in shap-
ing their needs. The paper gives rise to several directions for
future investigations. First, in the scheduling aspect, it would
be interesting to consider problems in the general model with
additional requirements such as precedence constraints. Sec-
ondly, in the game theory aspect, designing pricing schemes
that allow clients to react reasonably while maintaining the
efficiency in the energy consumption has received particular
interests from both theoretical and practical studies in smart
grid. Through the primal–dual viewpoint, dual variables can
be interpreted as the payments of clients. An interesting direc-
tion is to design a pricing scheme based on primal–dual
approaches.

Acknowledgements We thank Prudence W. H. Wong for insightful
discussion and anonymous reviewers for useful comments that help to
improve the presentation.
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