
Don’t Rock the Boat:

Algorithms for Balanced Dynamic Loading and Unloading∗

Sándor P. Fekete1, Sven von Höveling1, Joseph S. B. Mitchell†2, Christian Rieck1,
Christian Scheffer1, Arne Schmidt1, and James R. Zuber2

1Department of Computer Science, TU Braunschweig, 38106 Braunschweig, Germany.
{s.fekete,v.sven,c.rieck,c.scheffer,arne.schmidt}@tu-bs.de

2Department of Applied Mathematics and Statistics, Stony Brook University, Stony
Brook, NY 11794, USA. joseph.mitchell@stonybrook.edu, zuber139@gmail.com

Abstract

We consider dynamic loading and unloading problems for heavy geometric objects. The challenge
is to maintain balanced configurations at all times: minimize the maximal motion of the overall center
of gravity. While this problem has been studied from an algorithmic point of view, previous work only
focuses on balancing the final center of gravity; we give a variety of results for computing balanced
loading and unloading schemes that minimize the maximal motion of the center of gravity during
the entire process.

In particular, we consider the one-dimensional case and distinguish between loading and unloading.
In the unloading variant, the positions of the intervals are given, and we search for an optimal
unloading order of the intervals. We prove that the unloading variant is NP-complete and give a
2.7-approximation algorithm. In the loading variant, we have to compute both the positions of
the intervals and their loading order. We give optimal approaches for several variants that model
different loading scenarios that may arise, e.g., in the loading of a transport ship with containers.

1 Introduction

Packing a set of objects is a classic challenge that has been studied from a wide range of angles: how can
the objects be arranged to fit into the container? Packing problems are important for a large spectrum
of practical applications, such as loading items into a storage space, or containers onto a ship. They are
also closely related to problems of scheduling and sequencing, in which the issues of limited space are
amplified by including temporal considerations.

Packing and scheduling are closely intertwined in loading and unloading problems, where the challenge
is not just to compute an acceptable final configuration, but also the process of dynamically building this
configuration, such that intermediate states are both achievable and stable. This is highly relavant in the
scenario of loading and unloading container ships, for which maintaining balance throughout the process
is crucial. Balancedness of packing also plays an important role for other forms of shipping: Mongeau
and Bes [13] showed that displacing the center of gravity by less than 75cm in a long-range aircraft may
cause, over a 10,000 km flight, an additional consumption of 4,000 kg of fuel.

In this paper, we consider algorithmic problems of balanced loading and unloading. For unloading,
this means planning an optimal sequence for removing a given set of objects, one at a time; for loading,
this requires planning both position and order of the objects.

The practical constraints of loading and unloading motivate a spectrum of relevant scenarios. As
ships are symmetric around their main axis, we focus on one-dimensional settings, in which the objects
correspond to intervals. Containers may be of uniform size, but stackable up to a certain limited height;

∗This is the full version of an extended abstract that will appear in the 13th Latin American Theoretical INformatics
Symposium (LATIN 2018), April 16–19, 2018.
†Work of this author is partially supported by the National Science Foundation (CCF-1526406).

1

ar
X

iv
:1

71
2.

06
49

8v
2

 [
cs

.C
G

]
 1

7
Ja

n
20

18

Figure 1: Loading and unloading container ships.

because sliding objects on a moving ship are major safety hazards, stability considerations may prohibit
gaps between containers. On the other hand, containers of extremely different size pose particularly prob-
lematic scenarios, which is why we also provide results for sets of containers whose sizes are exponentially
growing.

1.1 Our Contributions

Our results are as follows; throughout the paper, items are the objects that need to be loaded (also
sometimes called placed) or unloaded, while container refers to the space that accomodates them. Fur-
thermore, we assume all objects to have unit density, i.e., their weights correspond to their lengths. In
most cases, items correspond to geometric intervals.

• For unloading, we show that it is NP-complete to compute an optimal sequence. More formally,
given a set of placed intervals tI1, . . . , Inu, it is NP-complete to compute an order xIπp1q, . . . , Iπpnqy,
in which intervals are removed one at a time, such that the maximal deviation of the gravity’s
center is minimized.

• We provide a corresponding polynomial-time 2.7-approximation algorithm. In particular, we give
an algorithm that computes an order of the input intervals such that removing the intervals in
that order results in a maximal deviation which is no larger than 2.7 times the maximal deviation
induced by an optimal order.

• For loading, we give a polynomial-time algorithm for the setting in which gaps are not allowed. In
particular, given a set of lengths values `1, . . . , `n P Rą0, we require a sequence xIπp1q, . . . , Iπpnqy of
pairwise disjoint intervals with |Iπpiq| “ `πpiq for i “ 1, . . . , n such that the following holds: Placing
the interval Iπpiq in the i-th step results in an n-stepped loading process such that the union of
the loaded intervals is connected for all points in time during the loading process. Among these
connected placements, we compute one for which the maximal deviation of the center of gravity is
minimized.

• We give a polynomial-time algorithm for the case of stackable unit intervals. More formally, given
an input integer µ ě 1, in the context of the previous variant, we relax the requirement that the
union of the placed intervals has to be connected and additionally allow that the placed intervals
may be stacked up to a height of µ in a stable manner, defined as follows. We say that layer 0 is
completely covered. An interval I can be placed, i.e., covered, in layer k ě 1 if the interval I is
covered in all layers 0, . . . , k ´ 1 and if I does not overlap with another interval already placed in
layer k.

• We give a polynomial-time algorithm for the case of exponentially growing lengths. More formally,
in the context of the previous variant, we require that all intervals are placed in layer 1 and assume
that the lengths of the input intervals’ lengths are exponentially increasing, i.e., there is an x ě 2
such that x ¨ `i “ `i`1 holds for all i P t1, . . . , n´ 1u.

2

1.2 Related Work

Previous work on cargo loading covers a wide range of specific aspects, constraints and objectives. The
general Cargo Loading Problem (CLP) asks for an optimal packing of (possibly heterogeneous)
rectangular boxes into a given bin, equivalent to the Cutting Stock Problem [9]. Most of the
proposed methods are heuristics based on (mixed) integer programming and have been studied both for
heterogeneous and homogeneous items. Bischoff and Marriott [2] show that the performances of some
heuristics may depend on the kind of cargo.

Amiouny et al. [1] consider the problem of packing a set of one-dimensional boxes of different weights
and different lengths into a flat bin (so they are not allowed to stack these boxes), in such a way that
after placing the last box, the center of gravity is as close as possible to a fixed target point. They
prove strong NP-completeness by a reduction from 3-Partition and give a heuristic with a guaranteed
accuracy within `max{2 of a given target point, where `max is the largest box length. A similar heuristic
is given by Mathur [12].

Gehring et al. [8] consider the general CLP, in which (rectangular) items may be stacked and placed
in any possible position. They construct non-intersecting walls, i.e. packings made from similar items
for slices of the original container, to generate the overall packing. They also show that this achieves
a good final balancing of the loaded items. Mongeau and Bes [13] consider a similar variant in which
the objective is to maximize the loaded weight. In addition, there may be other paramaters, e.g., each
item may have a different priority [21]. A mixed integer programming approach on this variant is given
by Vancroonenburg et al. [22]. Limbourg et al. [10] consider the CLP based on the moment of inertia.
Gehring and Bortfeldt [7] give a genetic algorithm for stable packings. Fasano [6] considers packing
problems of three-dimensional tetris-like items in combination with balancing constraints. His work is
done within the context of the Automated Transfer Vehicle, which was the European Space Agency’s
transportation system supporting the International Space Station (ISS).

Another variant is to consider multiple drops, for which loaded items have to be available at each
drop-off point in such a way that a rearrangement of the other items is not required; see e.g. [3], [4], and
[11]. Davies and Bischoff [5] propose an approach that produces a high space utilization for even weight
distribution. These scenarios often occur in container loading for trucks, for which the objective is to
achieve an even weight distribution between the axles. For a state-of-the-art survey of vehicle routing
with different loading constraints and a spectrum of scenarios, see Pollaris et al. [18].

In the context of distributing cargo by sea, two different kind of ships are distinguished: Ro-Ro and
Lo-Lo ships. Ro-Ro (for roll on–roll off) ships carry wheeled cargo, such as cars and trucks, which are
driven on and off the ship. Some approaches and problem variants such as multiple drops, additional
loading, and optional cargo as well as routing and scheduling considering Ro-Ro ships are considered
by Øvstebø et al. [14, 15]. On the other hand, Lo-Lo (load on–load off) ships are cargo ships that are
loaded and unloaded by cranes, so any feasible position can be directly reached from above.

While all of this work is related to our problem, it differs in not requiring the center of gravity to
be under control for each step of the loading or unloading process. A problem in which a constraint is
imposed at each step of a process is Compact Vector Summation (CVS), which asks for a permutation
of a set of k-dimensional vectors in order to control their sum, keeping each partial sum within a bounded
k-dimensional ball. See Sevastianov [19, 20] for a summary of results in CVS and its application in job
scheduling.

A different, but related stacking problem is considered by Paterson and Zwick [17] and Paterson
et al. [16], who consider maximizing the reach beyond the edge of a table by stacking n identical,
homogeneous, frictionless bricks of length 1 without toppling over, corresponding to keeping the center
of gravity of subarrangements supported.

2 Preliminaries

An item is a unit interval I :“ rm ´ 1
2 ,m ` 1

2 s with midpoint m. A set tI1, . . . , Inu of n items with
midpoints m1, . . . ,mn is valid if mi “ mj or |mi ´mj | ě 1 holds for all i, j “ 1, . . . , n. The center of
gravity C pI1, . . . , Inq of a valid set tI1, . . . , Inu of items is defined as 1

n

řn
i“1mi.

Given a valid set tI1, . . . , Inu of items, we seek orderings in which each item Ij is removed or placed
such that the maximal deviation for all points in time j “ 1, . . . , n is minimized. More formally, for j “

3

1, . . . , n and a permutation π : j ÞÑ πj , let Cj :“ C
`

Iπj
, . . . , Iπn

˘

. The Unloading Problem (Unload)
seeks to minimize the maximal deviation during an unloading process of I1, . . . , In. In particular, given
an input set tI1, . . . , Inu of items, we seek a permutation π such that maxi,j“1,...,n |Ci´Cj | is minimized.
(Equivalently, the Unload can be posed as a loading problem in which the positions of the items is
given, and we seek an order of loading them.)

In the Loading Problem (Load) we relax the constraint that the positions of the considered items
are part of the input. In particular, we seek an ordering and a set of midpoints for the containers such
that the containers are disjoint and the maximal deviation for all points in time of the loading process
is minimized; see Section 4 for a formal definition.

3 Unloading

We show that the problem Unload is NP-complete and give a polynomial-time 2.7-approximation algo-
rithm for Unload. We first show that there is a polynomial- time reduction from the discrete version
of Unload, the Discrete Unloading Problem (dUnload), to Unload; this leads to a proof that
Unload is NP-complete, followed by a 2.7-approximation algorithm for Unload.

In the Discrete Unloading Problem (dUnload), we do not consider a set of items, i.e., unit
intervals, but a discrete set X :“ tx1, . . . , xnu of points. The center of gravity C pXq of X is defined as
1
n

řn
i“1 xi. For j “ 1, . . . , n and a permutation π : j ÞÑ πj , let Cj “ C

`

xπj
, . . . , xπn

˘

. Again, we seek a
permutation such that maxi,j“1,...,n |Ci ´ Cj | is minimized.

Lemma 1. There is a polynomial-time reduction from Unload to dUnload.

Proof. Consider the items I1, . . . , In with their midpoints m1, . . . ,mn. We choose xi “ mi to get a
discrete set of points. It is easy to see that the center of gravity does not change, i.e., after removing k
intervals, and for any permutation π, we have 1

k`1

řn
i“n´k xπi

“ 1
k`1

řn
i“n´kmπi

. Because this holds for
any k and π we conclude that an optimal solution to dUnload is an optimal solution to Unload.

Lemma 2. There is a polynomial-time reduction from dUnload to Unload.

Proof. Consider a set X of points and the smallest distance d among all pairs of points. We construct
unit intervals I1, . . . , In with midpoints mi “

xi

d . After removing k intervals, and for any permutation
π, the center of gravity is at position 1

k`1

řn
i“n´kmπi

“ 1
dpk`1q

řn
i“n´k xπi

, i.e., the center of gravity

is scaled by a factor of d. Because this holds for any k and π we conclude that an optimal solution to
Unload is an optimal solution to dUnload.

The combination of Lemma 1 and Lemma 2 implies Corollary 3.

Corollary 3. Unload and dUnload are polynomial-time equivalent.

3.1 NP-Completeness of the Discrete Case

We can establish NP-completeness of the discrete problem dUnload.

Theorem 4. dUnload is NP-complete.

Proof. Our reduction is from 3-Partition. An instance of 3-Partition takes as input a multiset
Y “ ty1, y2, . . . , y3mu of 3m positive integers and asks if it is possible to partition Y into m triples,

Y1, Y2, . . . , Ym, such that the sum of the integers in each triple Yi is exactly B “ p
ř3m
j“1 yjq{m. The

problem 3-Partition is known to be NP-complete, and it remains NP-complete when one assumes that
B{4 ă yj ă B{2, for all j “ 1, 2, . . . , 3m. Given such an instance, Y “ ty1, y2, . . . , y3mu, we construct
an instance of dUnload such that the set Y has the desired partition into m triplets if and only if the
instance of dUnload has a feasible ordering, for which the center of gravity is always within the interval
r0, B{M s.

Our instance consists of the following set X “ tx1, x2, . . .u of points:

(i) M points at the origin, 0, for a large integer M ą m to be specified below (we see that M ą 4mB
suffices).

4

(ii) 3m points at the 3m integers yi P Y .

(iii) m points at ´B.

In the following basic description, this instance X of dUnload is a multiset, i.e., it has repeated points:
multiple points at 0, at ´B, and potentially at points of Y , so it forms a multiset. These points can be
perturbed to be distinct, and then the instance can be rescaled so that the minimum distance between
consecutive points is at least 1.

We let σk “ xπ1
` ¨ ¨ ¨xπk

denote the partial sum of the first k points in the ordered sequence. Our
goal is to decide if there exists an ordering π of the n “ 3m `m `M “ |X| points of X so that the
centers of gravity, Ck “ Cpxπ1 , . . . , xπk

q, remain within the interval r0, B{M s, for all k “ 1, 2, . . . , n.
(For simplicity our description here is in terms of adding the points one by one; for the unloading order,
time is reversed.)

The center of gravity of all n “ 4m`M of the points of X is Cn “
M ¨0`Bm`m¨p´Bq

4m`M “ 0.
We claim that the centers of gravity Ck will lie within the interval r0, B{M s, for all k “ 1, . . . , n, if

and only if the points X are ordered as follows. First, all M of the points of type (i) at the origin, then
three points (in any order) of type (ii) that sum to exactly B, then one point at ´B of type (iii), then
three points of type (ii) that sum to exactly B, then one point of type (iii), etc. This means that the
centers of gravity Ck will lie within the interval r0, B{M s, for all k “ 1, . . . , n, if and only if there is a
partition of Y into triples, each summing to exactly B.

The “if” direction of the claim is straightforward: If Y has a partition into triples, each summing to
exactly B, then the specified ordering of the points X (M points at 0, followed by a triple that sums to
exactly B, followed by a point at ´B, followed by another triple that sums to exactly B, etc) achieves
the desired containment of the center of gravity, Ck, in the interval r0, B{M s, for each k.

For the “only if” claim, first note that if the sequence does not begin with M elements all at the
origin, having instead a non-zero element at position k ă M , then the center of gravity Ck is either
´B{k ă 0 or is at least 1{k ą 1{M , because each of the type (ii) points is a positive integer from the set
Y . Thus, a feasible sequence π (that maintains the center of gravity within r0, B{M s) must begin with
M elements of type (i), namely points at the origin. If the next point is of type (iii), at ´B, then the
center of gravity becomes negative, and falls outside of r0, B{M s; thus, the pM ` 1qst element must be
a positive integer. The partial sum σk “ xπ1

` ¨ ¨ ¨xπk
of the first k points in the sequence must never

become negative (or else the center of gravity, σk{k, will fall below the target interval r0, B{M s) and must
never become greater than B, or else the center of gravity will fall above the target interval r0, B{M s,
as we now argue. If σk ą B, then σk ě B` 1, making the center of gravity at least B`1

k . Now if we pick

M to be large enough (it suffices to pick M ą 4mB), then B`1
k ą B

M , for all k “ 1, 2, . . . ,M ` 4m “ n,
as claimed. Thus, in order for the center of gravity Ck to remain in r0, B{M s for all k, the partial sum
must never get above B and must never become negative. The only way this can be accomplished is
to sequence the points of types (ii) and (iii) as claimed, into triples of points of Y that sum to exactly
B, followed by a point ´B, followed by another triple of points of Y that sum to exactly B, etc. We
conclude that if the instance X has a solution, keeping the center of gravity within the target interval
r0, B{M s, then the input instance of 3-Partition, Y , has a solution.

Because of the polynomial-time equivalance of dUnload and Unload, we conclude the following.

Corollary 5. Unload is NP-complete.

3.2 Lower Bounds and an Approximation Algorithm

When unloading a set of items, their positions are fixed, so (after reversing time) unloading is equivalent
to a loading problem with predetermined positions. For easier and uniform notation throughout the
paper, we use this latter description.

In order to develop and prove an approximation algorithm for dUnload, we begin by examining
lower bounds on the span, R ´ L, of a minimal interval, rL,Rs, containing the centers of gravity at all
stages in an optimal solution.

Without loss of generality, we assume that the input points xi sum to 0 (i.e.,
ř

i xi “ 0), so that the
center of gravity, Cn, of all n input points is at the origin. We let R “ maxi Ci and L “ mini Ci. Our
first simple lemma leads to a first (fairly weak) bound on the span.

5

Lemma 6. Let px1, x2, x3, . . .q be any sequence of real numbers, with
ř

i xi “ 0. Let Cj “ p
řj
i“1 xiq{j be

the center of gravity of the first j numbers, and let R “ maxi Ci and L “ mini Ci. Then, |R´L| ě |xi|

i ,
for all i “ 1, 2,

Proof. We see that

Ci “
xi `

ři´1
j“1 xj

i
“
i´ 1

i
Ci´1 `

xi
i

;

thus,

Ci ´ Ci´1 “
xi ´ Ci´1

i
.

We now distinguish two cases. If xi and Ci´1 have opposite signs, then we get

|Ci ´ Ci´1| “
|xi ´ Ci´1|

i
“
|xi| ` |Ci´1|

i
ě |

xi
i
|,

implying that

|R´ L| ě |Ci ´ Ci´1| ě
|xi|

i
,

because the interval rL,Rs must be large enough to contain any amount of change, |Ci ´ Ci´1|, to
the center of gravity, at any step i. On the other hand, if xi and Ci´1 have the same signs (i.e.,
signpCi´1xiq “ 1), then xi, Ci, and Ci´1 all have the same signs, and we get

|Ci| “
i´ 1

i
|Ci´1| `

|xi|

i
ě
|xi|

i
,

implying that

|R´ L| ě |Ci| ě
|xi|

i
,

because the interval rL,Rs must be large enough to contain both Ci and the overall center of gravity, 0,

for any i. Thus, in all cases, |R´ L| ě |xi|

i .

Corollary 7. For any valid solution to dUnload, the minimal interval rL,Rs containing the center of

gravity at every stage must have length |R ´ L| ě |ui|

i where ui is the input point with the i-th smallest
magnitude.

We note that the naive lower bound given by Corollary 7 can be far from tight: Consider the
sequence 1, 2, 3, 4, 5, 6, 7,´7,´7,´7,´7. In the optimal order, the first ´7 is placed fourth, after 2, 1, 3.
The optimal third and fourth centers, t2,´ 1

4u are the largest magnitude positive and negative centers
seen, and show a span 2.25 times greater than the naive bound of 1. By placing the first ´7 in the third
position, R ě 3

2 , and L ď ´ 4
3 . By placing it fifth, R ě 5

2 . Our observation was that failing to place our
first ´7 if the cumulative sum is ą 7 would needlessly increase the span.

This generalizes to the sequence px1 “ 1, x2 “ 2, . . . , xk´1 “ k´1, xk “ ´k, xk`1 “ ´pk`1q, . . . , xN q,
with an appropriate xN to make

ř

xi “ 0. If we place positive weights in increasing order until cl ě
k
l ,

placing ´k instead of a positive at position l would decrease the center of gravity well below k
l . The first

negative should be placed when minl
l2´l
2 ě k, which is when l «

?
2k. In this example, our optimal

center of gravity span is at least k
l «

b

k
2 , not the 1 from the naive bound of Corollary 7.

We now describe our heuristic, H, which leads to a provable approximation algorithm. It is convenient
to relabel and reindex the input points as follows. Let pP1, P2, . . .q denote the positive input points,
ordered (and indexed) by increasing value. Similarly, let pN1, N2, . . .q denote the negative input points,
orders (and indexed) by increasing magnitude |Ni| (i.e., ordered by decreasing value).

The heuristic H orders the input points as follows. The first point is simply the one closest to the
origin (i.e., of smallest absolute value). Then, at each step of the algorithm, we select the next point in
the order by examining three numbers: the partial sum, S, of all points placed in the sequence so far,
the smallest magnitude point, α, not yet placed that has the same sign as S, and the smallest magnitude
point, β, not yet placed that has the opposite sign of S. If S ` α ` β is of the same sign as S, then we
place β next in the sequence; otherwise, if S ` α ` β has the opposite sign as S, then we place α next

6

in the sequence. The intuition is that we seek to avoid the partial sum from drifting in one direction;
we switch to the opposite sign sequence of input points in order to control the drift, when it becomes
expedient to do so, measured by comparing the sign of S with the sign of S ` α` β, where α and β are
the smallest magnitude points available in each of the two directions. We call the resulting ordering the
H-permutation. The H-permutation puts the j-th largest positive point, Pj , in position π`j in the order,

and puts the j-th largest in magnitude negative point, Nj , in position π´j in the order, where

π`j “ j `max
k
tk :

k
ÿ

i“1

|Ni| ď
j
ÿ

l“1

Plu and π´j “ j `max
k
tk :

k
ÿ

i“1

Pi ă
j
ÿ

l“1

|Nl|u.

We obtain an improved lower bound based on our heuristic,H, which orders the input points according
to the H-permutation.

Lemma 8. A lower bound on the optimal span of dUnload is given by |R´L| ě Pi

π`i
and |R´L| ě |Ni|

π´i
.

To prove the lemma, we begin with a claim.

Claim 9. For any input set to the discrete unloading problem, where si are all terms with the same sign

sorted by magnitude, a permutation π that minimizes the maximum value of the ratio |si|
πi

must satisfy
πk ă πi, for all k ă i.

Proof. By contradiction, assume that the minimizing permutation π has the maximum value of the ratio
|si|
πi

occur at an i for which there exists a k ă i for which πi ď πk, which means that πi ă πk (because
πi cannot equal πk for a permutation π, and k ‰ i).

Because the terms si are indexed in order sorted by magnitude, |sk| ď |si|. Exchanging the order

of si and sk in the permutation would lead to two new ratios in our sequence: |si|
πk

and |sk|
πi

. Because

πk ą πi, we get |si|
πk
ă
|si|
πi

. Because |sk| ď |si|, we get |sk|
πi
ď
|si|
πi

. Because these new ratios are smaller

than |si|
πi

, we get a contradiction to the fact that π minimizes the maximum ratio.

The following claim is an immediate consequence of Lemma 6.

Claim 10. For the i maximizing Pi

π`i
, any ordering placing this element earlier than π`i in the sequence

has a span |R´L| ą Pi

π`i
. Similarly, for the i maximizing |Ni|

π`i
, any ordering placing this element earlier

than π´i in the sequence has a span |R´ L| ą |Ni|

π´i
.

On the other hand, the following holds.

Claim 11. For the i maximizing Pi

π`i
, any ordering placing this element later than π`i in the sequence

has a span |R´ L| ą Pi

π`i
. A similar statement holds for |Ni|

π´i
.

Proof. The proof is by contradiction. The index into the H permutation maximizing the ratio |xk|

k is i.
We assume (wlog) xi “ PJ ą 0, and we let K “ i´ J .

If PJ is not placed in position i, we suppose another element, x, can be placed in its stead and results
in a span that is less than PJ

i .
When placing any positive x ą PJ in the initial i position, the lowest possible observed span from

Lemma 6 is at least x
i ą

PJ

i , which would contradict our assumption. Similarly, all positive points placed
before or at position i must be less than or equal to PJ .

All permutations of these J ´ 1 positive elements and the first K ` 1 negative elements have a large
negative center of gravity at position i. From K “ maxktk :

řk
i“1 |Ni| ď

řJ
l“1 Plu, we get

řK`1
i“1 |Ni| ě

řJ
l“1 Pl, and hence

řK`1
i“1 Ni `

řJ
l“1 Pl ď 0, implying

řK`1
i“1 Ni `

řJ´1
l“1 Pl ď ´PJ . Therefore, the

maximizing value satisfies

|c˚| “
|
řK`1
i“1 Ni `

řJ´1
l“1 Pl|

i
ě
PJ
i

Because the center of gravity is at a location greater than the H-bound, and R ě 0 ě L, this span is
also greater than the H-bound and we can neither place an element greater than PJ nor one less than
PJ in place of PJ while lowering the span beneath the H-bound.

7

Theorem 12. The H-permutation minimizes the maximum (over i) value of the ratio |xi|

πi
, and thus

yields a lower bound on |R´ L|.

For the worst-case ratio, we get the following.

Theorem 13. The H heuristic yields an ordering having span R´ L at most 2.7 times larger than the
H-lower bound.

Proof. Before separating the input points into the sorted P and N lists, we normalize their values so

that the maximum value of the ratio |xi|

i is 1. This implies that |xi| ď i, for all i.
When using the H-permutation, whenever we place an element of opposite sign from the current

center of gravity, Ci, we know that the partial sum Si and center of gravity Ci obey |Si| ď |xi`1|. Using
normalization, we have |xi`1| ď i` 1, hence |Ci| “ |

Si

i | ď
i`1
i .

When the center of gravity reaches its leftmost extent, we cannot place another negative element,
because the next largest negative element would push the center of gravity further to the left. A similar
statement holds for the rightmost extent and positive elements. This means that if the center of gravity

first reaches L at step a and first reachesR at step b, then L ě ´pa`1q
a andR ď b`1

b (*), soR´L ď 2` 1
a`

1
b

(**).
The final step is to argue that the right-hand side is bounded by 2.7.
Let us assume a ă b and consider the ratio αpa, bq of the span we obtain from H to the H-bound.

We consider small values of a and b and can provide the following bounds.
αp1,bq ď 2.5. This holds as follows. We have L “ N1

1 ě ´1
1 by normalization of masses. As b ě 2,

it follows from Equation (*) that R ď 3
2 . Thus, R´ L ď 2 1

2 .

αp2,3q ď 1.5. This follows from considering the first terms: We observe that L “ N1`N2

2 and

R “ N1`N2`P1

3 . Moreover, P1 ď 3 by normalization of masses and |N1 `N2| ď P1 from the H-ordering

on P1. Therefore, R´ L “ 2P1´N1´N2

6 ď 3P1

6 ď 3
2 .

αp2,4q ď 2.5. Again observe that L “ N1`N2

2 , as well asR “ N1`N2`P1`P2

4 , soR´L “ P1`P2´N1´N2

4 .

By H-ordering, we get |N1 `N2| ď P1, so R´ L ď 2P1`P2

4 . Again by normalization of masses, we have
P1 ď 3 and P2 ď 4, implying R´ L ď 10

4 “ 2.5
Therefore, we only have to consider αp2, b ě 5q ď 2.7, which follows from Equation (**).

Corollary 14. There is a polynomial-time 2.7-approximation algorithm for Unload.

4 Loading

We now consider loading problems, for which we require some additional definitions: The positions of
the objects are part of the optimization, and, for some loading variants, the items may have different
lengths. Consider the following more general definitions.

An item is given by a real number `. By assigning a position m P R to an item, we obtain an
interval I with length ` and midpoint m. For n ě 1, we consider a set t`1, . . . , `nu of n items and assume
`1 ě ¨ ¨ ¨ ě `n. Furthermore, t`1, . . . , `nu is uniform if ` :“ `1 “ ... “ `n.

A state is a set tpI1, h1q, . . . , pIn, hnqu of pairs, each one consisting of an interval Ij and an integer
hj ě 1, the layer in which Ij lies. A state satisfies the following: (1) Two different intervals that lie in
the same layer do not overlap and (2) for j “ 2, . . . , n, an interval in layer j is a subset of the union of
the intervals in layer j ´ 1.

A state tpI1, h1q, . . . , pIn, hnqu is plane if all intervals lie in the first layer.
To simplify the following notations, we letmj denote the midpoint of the interval Ij , for j “ t1, . . . , nu.

The center of gravity C psq of a state s “ tpI1, h1q, . . . , pIn, hnqu is defined as 1
M

řn
j“1 `jmj , where M is

defined as
řn
j“1 `j .

A placement p of an n-system S is a sequence xI1, . . . , Iny such that tpI1, h1q, . . . , pIj , hjqu is a state,
the j-th state sj , for each j “ 1, . . . , n. The 0-th state s0 is defined as H and its center of gravity C ps0q
is defined as 0.

Definition 15. The loading problem (Load) is defined as follows: Given a set of n items, determine
a placement p such that the n` 1 centers of gravity of the n` 1 states of p lie close to 0. In particular,

8

the deviation ∆ppq of a placement p is defined as maxj“0,...,n |C psjq |. We seek a placement of S with
minimal deviation among all possible placements for S.

We say that stacking is not allowed if we require that all intervals are placed in layer 1. Otherwise,
we say that stacking is allowed. For a given integer µ ě 1 we say that µ is the maximum stackable
height if we require that all used layers are no larger than µ.

Note that in the loading case, minimizing the deviation is equivalent to minimizing the diameter, i.e.,
minimizing the maximal distance between the smallest and largest extent of the centers.

4.1 Optimally Loading Unit Items With Stacking

Now we consider the case of unit items for which stacking is allowed. We give an algorithm that optimally
loads a set of unit items with stacking.

Theorem 16. There is a polynomial-time algorithm for loading a set of unit items so that the deviation
of the center of gravity is in r0, 1

1`µ s, where µ is the maximum stackable height.

Proof. Let mi be the midpoint of item `i. Because we are allowed to stack items up to height µ, the
strategy is the following: set m1 “ m2 “ ¨ ¨ ¨ “ mµ “

1
1`µ , i.e., the first µ items are placed at the very

same position. Call these first µ items the starting stack S0. Subsequently, we place the following items
on alternating sides of S0, i.e., the item `µ`1 is placed as close as possible on the left side of S0, `µ`2 is
placed as close as possible on the right side, `µ`3 is placed on top of `µ`1 (if we did not already reach
the maximum stackable height of µ), or next to `µ`1 (if `µ`1 is on the µ-th layer), etc.

After each placement of `i, 1 ď i ď µ, we have C p`iq “
1

1`µ . After two more placed items, the

center of gravity is again at 1
1`µ , because these items neutralize each other. Thus, the critical part is

a placement on the left side of S0. We proceed to show that after placing an item on the left side, the
center of gravity is at position at least 0.

The midpoint mµ`1 of the item `µ`1 is ´µ
1`µ , thus C p`µ`1q “

µ
1`µ ´

µ
1`µ “ 0. Now assume that we

have already placed c “ p2k ` 1q ¨ µ ` ζ items, where ζ ă 2µ and odd, i.e., we have already placed the
starting stack S0 and k additional stacks of height µ on each side of S0. Let z :“ p2k ` 1q ¨ µ. Then the
center of gravity is at position C pcq, where

C pcq “

z ¨ 1
1`µ `

z`ζ
ř

i“z`1

mi

z ` ζ
“
pz ` ζ ´ 1q ¨ 1

1`µ `
´kµ´k´µ

1`µ

z ` ζ
“

kµ` ζ ´ 1´ k

p1` µq ¨ pz ` ζq

“
kpµ´ 1q ` ζ ´ 1

p1` µq ¨ pz ` ζq
ě

ζ ´ 1

p1` µq ¨ pz ` ζq
ě

0

p1` µq ¨ pz ` ζq
ě 0.

In the following we show that there is no strategy that can guarantee a smaller deviation of the center
of gravity than the strategy described in the last theorem.

Theorem 17. The strategy given in Theorem 16 is optimal for n ą µ, i.e., there is no strategy such
that the center of gravity deviates in r0, 1

1`µ q.

Proof. Because n ą µ, we must use at least two stacks. Now assume that we first place k items on one
stack S0, before we start another one. Without loss of generality, we place this first k items at position
1

1`µ ´ ε. We proceed to show that for any ε ą 0, we need k to be at least µ` 1, to get the new center
of gravity to position ą ´ε and therefore a smaller deviation as the strategy in Theorem 16.

If we place the item `k`1 on the right side of S0, the new center of gravity gets to a position larger
than 1

1`µ ´ ε, a contradiction. Thus, it must be placed on the left of S0. The position of this item has

to be ´ µ
1`µ ´ ε. This yields the new center of gravity of pk ¨ p 1

1`µ ´ εq ´
µ

1`µ ´ εq{k ` 1. This center of
gravity must be located to the right of ´ε. Thus, we have

k ¨ p
1

1` µ
´ εq ´

µ

1` µ
´ ε` pk ` 1q ¨ ε ą 0 ô k ´ µ ą 0 ô k ą µ

Because we cannot stack µ` 1 items, we cannot have any strategy achieving a deviation of r0, 1
1`µ ´ εs.

We conclude that our strategy given in Theorem 16 must be optimal.

9

Corollary 18. With the given strategy for a uniform system where each item has length `, the center of
gravity deviates in r0, `

1`µ s, which is optimal.

4.2 Optimally Loading Without Stacking but With Minimal Space

Assume that the height of the ship to be loaded does not allow stacking items. This makes it necessary to
ensure that the space consumption of the packing is minimal. We restrict ourselves to plane placements
such that each state is connected. For simplicity, we assume w.l.o.g. that `1 ě ¨ ¨ ¨ ě `n holds. First we
argue that ∆ppq ě `2

4 holds for an arbitrary connected plane placement p of S. Subsequently we give an
algorithm that realizes this lower bound.

A fundamental key for this subcase is that the center of gravity of a connected plane state is the
midpoint of the induced overall interval.

Observation 19. Let s be a plane state such that the union of the corresponding intervals is an interval
ra, bs Ă R. Then C psq “ a`b

2 .

Lemma 20. For each plane placement p of S, we have ∆ppq ě `2
4 .

Proof. Let p be an arbitrary plane placement of S “ xpI1, 1q, . . . , pIn, 1qy, let xs0, s1, . . . , sny be the
sequence of states that are induced by p, and let i, j P t1, . . . , nu be such that Ii “ |`1| and Ij “ |`1| hold.
Observation 19 implies that |C psi´1q ´ C psiq | “

`1
4 ě

`2
4 and |C psj´1q ´ C psjq | “

`2
4 . Let mi and mj

be the midpoints of Ii and Ij . As the intervals Ii and Ij do not overlap, we conclude that |mi| ě
`2
2 or

|mj | ě
`2
2 holds. W.l.o.g. assume that |mi| ě

`2
2 holds. This implies that |C psi´1q | ě

`2
4 or |C psiq | ě

`2
4

holds. In both cases, we obtain ∆ppq ě `2
4 , concluding the proof.

Lemma 21. We can compute a placement p of S such that ∆ppq ď `2
4 .

Proof. The main idea is as follows. We remember `1 ě ¨ ¨ ¨ ě `n and place the items in that order.
In particular, we choose the positions of the items such that C ps1q :“ ´ `2

4 and C ps2q :“ `2
4 . The

remaining intervals are placed alternating, adjacent to the left and to the right side of the previously
placed intervals.

In order to show that C psiq P r´
`2
4 ,

`2
4 s holds for all i P t0, . . . , nu, we prove by induction that

C psiq P rC psi´2q , C psi´1qs holds for all odd i ě 3 and C psiq P rC psi´1q , C psi´2qs for all even i ě 4.
As Observation 19 implies C ps1q “ ´

`2
4 and C ps2q “

`2
4 , this concludes the proof.

Let i ě 3 be odd. We have |C psi´2q´C psi´1q | “
`i´1

2 . This is lower bounded by `i
2 because `i ď `i´1.

Furthermore, we know that |C psi´1q ´ C psiq | “
`i
2 . This implies C psiq P rC psi´2q , C psi´1qs. The

argument for the case of even i ě 4 is analogous.

The combination of Lemma 20 and Lemma 21 implies that our approach for connected placements
is optimal.

Corollary 22. Given an arbitrary system, there is a polynomial-time algorithm for optimally loading
a general set of items without stacking and under the constraint of minimal space consumption for all
intermediate stages.

4.3 Optimally Loading Exponentially Growing Items

Similar to the previous section, we consider plane placements. Now we consider the case in which
the items have exponentially rising lengths. This case highlights the challenges of uneven lengths, in
particular when the sizes are growing very rapidly; without special care, this can easily lead to strong
deviation during the loading process. We show how the deviation can be minimized.

Theorem 23. There is a polynomial-time algorithm for optimally loading a set of items with lengths
growing exponentially by a factor x ě 2 in increasing order w.r.t. to their lengths.

In the following, we describe a proof of Theorem 23. In particular, we consider a system S “

t`1, . . . , `nu for n ě 4, i.e., there is an x ě 2 such that `i`1 “ x`i for all i P t1, . . . , n´ 1u.
First we describe the general approach of the proof and then give the details of the single steps

(Lemma 25, Lemma 26, and Lemma 27) of the general approach in Sections 4.4, 4.5, and 4.6

10

We establish a lower bound τ for the deviation of any placement of S. The high-level idea of our
approach is to place the largest interval first and slightly shifted beside 0, such that the deviation that is
caused by the second largest interval is balanced; see Figure 2(a)+(b) for an illustration. Before placing
the second largest interval, we place all remaining intervals in increasing order, alternating to the right
side and the left side of the largest interval, such that the centers of the states alternate between ´τ
and τ .

In order to make the largest and second largest interval balance each other, we guarantee C ps1q “ ´τ
and C psnq “ τ by considering C ps1q “ ´τ and C psnq for even n, and placing the second and the third
interval on the same side such that ´τ “ C ps1q ă C ps2q ă C ps3q “ τ holds for odd n.

Definition 24. τ :“ τpSq :“ `1``2

4
řn

j“1 `j
`2.

Further proof steps are according to the following sequence of lemmas.

Lemma 25. We have ∆ppq ě τ for each placement p “ xpI1, h1q, . . . , pIn, hnqy of S.

The following lemma guarantees that the deviation of p is equal to τ .

Lemma 26. We have ∆ppq “ τ for the placement p computed by the above algorithm.

Finally, we prove by Lemma 27 that the intervals in p do not overlap.

Lemma 27. The intervals as computed by the algorithm from above are pairwise disjoint.

Proof of Theorem 23. The combination of the Lemmas 25, 26, and 27 guarantees that the above algo-
rithm computes a placement with optimal deviation.

The runtime is dominated by the time needed to compute the order of `1, . . . , `n, which takes time
Opn log nq.

4.4 Proof of Lemma 25

Lemma 25. We have ∆ppq ě τ for a placement p “ xpI1, h1q, . . . , pIn, hnqy of S.

In Figure 2(a) we illustrate an optimal placement p1 for a 4-system S1 and in Figure 2(b) an placement
p2 of a 2-system S2 with S1 “ t`1, `2u Ă S2 “ t`1, `2, `3, `4u.

x
´8 ´6 ´4 ´2 0 2 4 6 8 10

r´4.8, 3.2s

r9.5, 10.5s

r´7.2,´5.2s

r3.2, 7.2s

´0.8

0.4

´0.8

0.8

x
´6 ´4 ´2 0 2 4 6

r´5, 3s

r3, 7s

´1.0

1.0

(a) An optimal placement of (b) An optimal placement of

a 4-system S1
“ t1, 2, 4, 8u. a 2-system S2

“ t4, 8u.

Figure 2: Additional intervals may improve the variation of a small placement by involving gaps between
the placed intervals.

Let mi, m
1
i, and m2i be the midpoints of the placement illustrated in Figure 2. It is important to

observe that although S2 Ą S1, we have m1 ‰ m11 and m2 ‰ m12. In particular, the usage of the
additional (smaller) intervals allow a different placement p2 that has a smaller deviation than p1. The
high-level reason for this improvement is that the intervals corresponding to `3 and `4 are placed before

11

`2 and thus reduce the influence of `2 to the deviation of the placement illustrated in Figure 2(b). In
particular, the deviation of the placements illustrated in Figure 2 determined by sum of the lengths of the
two largest intervals. Furthermore, the deviation is decreased by the sum of the lengths of all intervals
that are considered. Thus we chose τ as follows. Let `1 and `2 be the largest and second largest lengths
of a heterogenous system S “ t`1, . . . , `nu. Furthermore, let ` “ mint`1, . . . , `nu. By applying that the
lengths of `1, . . . , `n increase constantly by a factor of x ě 2, we make the following observation.

Observation 28. τ “ `x2n´4
px2
´1q

4
řn

i“1 `i
.

W.l.o.g., we assume m1 ď 0. The argument for the case m1 ě 0 is symmetric. Furthermore, w.l.o.g.,
we assume `1 “ |I1|, . . . , `n “ |In| such that x`1, . . . , `ny.

In the following we show that ∆ppq ě τ holds if x ě 2. To this end, we first prove that the largest
interval has to be placed first in an optimal placement, see Lemma 29. Based on that, we establish that
τ is a lower bound for the deviation of heterogenous systems, see Lemma 25.

As S is heterogenous, there is a unique largest length `i P t`1, . . . , `nu such that `i “ `xn´1.
The following lemma verifies that an optimal placement p places the largest interval `i first, if τ is a

tight lower bound.

Lemma 29. If the longest block `i is not placed first, we have ∆ppq ą τ .

Proof. Note that `1, . . . , `n is the order that corresponds to the placement p. Suppose `i is not placed
first, i.e., that `i ‰ `1 holds. Based on that, we show that the center C psiq of the state si is larger than

τ if x ą 1`
?
5

2 holds. As we are considering a heterogenous system, we have x ě 2 ą 1`
?
5

2 , concluding
the proof.

By applying Lemma 31 we can reformulate the statement to be shown, i.e. |C psiq | ą τ , as follows.

ˇ

ˇ

ˇ

ˇ

ˇ

C psi´1q
ři´1
j“1 `j `mi`i

ři
j“1 `j

ˇ

ˇ

ˇ

ˇ

ˇ

ą τ. (1)

In order to show that Inequality 1 holds, we distinguish between two cases: (1) mi ă m1 and (2)
mi ą m1. In both cases, an application of Lemma 29 concludes the proof as follows.

• mi ă m1: Lemma 30 implies mi ě ´τ `
`1``i

2 ą ´τ ` `i
2 . By definition of τ we obtain τ ă `i

2 .

Thus, we have mi ą ´τ `
`i
2 ą 0, which implies that the summand mi`i in Equation 1 is positive.

W.l.o.g., we assume mpiq “ ´τ ` `i
2 , i “ n, and C psi´1q “ ´τ , because this does not increase the

left side of Inequality 1. Hence, we obtain the following.

´τ
řn´1
j“1 `j

`

´τ ` `n
2

˘

řn
j“1 `j

ą τ

ô´ τ
n
ÿ

j“1

`j `
`2n
2

ą τ
n
ÿ

j“1

`j

ô
`2n
2

ą 2τ
n
ÿ

j“1

`j

By applying Observation 28 and `n “ `xn´1, we reformulate this as follows:

ô

`

`xn´1
˘2

2
ą
`xn´2

`

`xn´1 ` `xn´2
˘

2

ôx2n´4
`

x2 ´ x´ 1
˘

ą 0

ôx ą
1`

?
5

2
.

• mi ą m1: This case is analogous to the previous case.

12

In the proof of Lemma 29, we apply the following auxiliary lemmas: Lemma 30, Lemma 31, and
Lemma 32.

Lemma 30. If mi ą m1, we have mi ě ´∆ppq ` `1``i
2 . Otherwise, we have mi ď ´

`1``i
2 .

Proof. Suppose mi ą m1. As the intervals are pairwise disjoint, we have mi ´ m1 ě
`1``i

2 , which is

equivalent to mi ě m1 `
`1``i

2 . By assumption we know m1 ď 0. Thus, we have ´∆ppq ď m1 ď 0. This

implies mi ě ´∆ppq ` `1``i
2 .

Now assume mi ă m1. As the intervals are pairwise disjoint, we have m1 ´ mi ě
`1``i

2 , which is

equivalent to mi ´m1 ď ´
`1``i

2 . This implies mi ď ´
`1``i

2 , because ´m1 ě 0.

τ´ τ

m1 ě ´τ

m3 ě ´τ `
l1
2
`

l3
2

Figure 3: Estimation of the position of an interval I3 that is not placed first and to the right of the
longest interval.

For the two following lemmas, we consider an arbitrarily chosen but fixed k P t2, . . . , nu and abbreviate
r :“ sk´1 and s :“ sk.

The following lemma describes how C psq can be formulated in terms of C prq.

Lemma 31. C psq “
Cprqp

řk´1
i“1 `iq`mk`k
řk

i“1 `i
.

Proof. By applying the definition of the center of gravity, we obtain the following.

C psq “

řk
i“1mi`i
řk´1
i“1 `i

“

řk´1
i“1 mi`i `mk`k

řk
i“1 `i

“

´
řk´1

i“1 `i
řk´1

i“1 `i

¯

řk´1
i“1 mi`i `mk`k

řk´1
i“1 `i

“

C prq
´

řk´1
i“1 `i

¯

`mk`k
řk´1
i“1 `i

The following lemma describes how the centers C prq and C psq uniquely determine the midpoint mk

of the k-th interval.

Lemma 32. mk “
Cpsq

řk
i“1 `i´Cprq

řk´1
i“1 `i

`k
.

13

Proof. By combining the definition of C psq and Lemma 31, we obtain the following.

C psq “

řk
i“1mi`i
řk
i“1 `i

“
C prq

řk´1
i“1 `i `mk`k
řk
i“1 `i

ôC psq
k
ÿ

i“1

`i “ C prq
k´1
ÿ

i“1

`i `mk`k

ômk “
C psq

řk
i“1 `i ´ C prq

řk´1
i“1 `i

`k

Lemma 33. If `1 “ `xn´1, `k “ `xn´2, m1 ă mk, and ∆ppq ď `k
4 . Then we have mk ě C psk´1q`

`1``k
2 .

Proof. Suppose mk ă C psk´1q `
`1``k

2 . Observation 19 implies |m1| “ |C ps1q | ď ∆ppq ď `k
4 . This

implies ´ `k
4 ď m1 ď 0 because m1 ď 0. As mk ą m1, we have mk ě m1 `

`1``k
2 . This implies

mk ě ´
`k
4 `

`1``k
2 ě ´

`k
4 `

3`k
2 ą

3`k
4 because `1 ě 2`k. Furthermore, Lemma 31 implies

nC pskq “
C psk´1q

řk´1
j“1 `j `mk`k

řk
j“1 `j

.

By combining the above, the lemma follows by contradiction to `
4 ě ∆ppq ě |C pskq |.

C pskq
Lemma 31
“

C psk´1q
řk´1
j“1 `j `mk`k

ři
j“1 `j

Observation 19
ą

´
`k
4

řk´1
j“1 `j `mk`k
řk
j“1 `k

“
´
`k
4

řk
j“1 `j

řk
j“1 `j

`

`k
4 `k

řk
j“1 `j

`
mk`k
řk
j“1 `j

řk
j“1 `kď2`k

ě ´
`k
4
`

`k
4 `k

`k
`
mk

2

mkě
3`k
4

ě
`k
4
.

Based on Lemma 29, we prove that τ is a lower bound for the deviation of any placement p.
Now we are ready to prove Lemma 25.

Proof. W.l.o.g., we assume that the largest block is placed first, i.e. `i “ `xn´1. Otherwise, Lemma 29
implies ∆ppq ě τ .

Let k P t1, . . . , nu be the index such that `k “ `xn´2 is the second largest interval. Recall that
mp1q ď 0 and distinguish two cases: mk ą mi and mk ă mi.

14

• mk ą m1: The definition of C psk´1q implies
řk´1
j“1 mpjq`j “ C psk´1q

řk´1
j“1 `j p‹q. By combining

p‹q, the definition of the center of gravity, and Lemma 33 we can show the lemma as follows:

C pmkq “

řk
j“1mj`j
řk
j“1 `j

ô

k´1
ÿ

j“1

mj`j `mk`k “ C pskq
k
ÿ

j“1

`j

p‹q
ñ C pmk´1q

k´1
ÿ

j“1

`j `mk`k “ C pskq
k
ÿ

j“1

`j

By applying Lemma 33 we get the following.

C psk´1q

k´1
ÿ

j“1

`k

`

ˆ

C psk´1q `
`1 ` `k

˙

`k ď C pskq
k
ÿ

j“1

`j

ô C psk´1q

k
ÿ

j“1

`j `
`1 ` `k

2
`k ď C pskq

k
ÿ

j“1

`k

ñ
`1 ` `k

2
`k ď 2 maxtC psk´1q , C pskqu

k
ÿ

j“1

`j

ô
`1 ` `k

4
řk
j“1 `j

`k ď maxtC psk´1q , C pskqu

`1 “ `1,
`2 “ `k
ñ

`1 ` `2

4
řk
j“1 `j

`k ď ∆ppq.

• mk ă m1: Combining m1 ď 0, mk, and |m1mk| ě
`1
`k

leads to mk ă ´
`1``k

2 ă ´
`k
4 . This implies

∆ppq ą `k
4 “

`1``k
4p`1``kq

`k ě
`1``k
řk

j“1 `j
`k “ τ as claimed.

4.5 Proof of Lemma 26

Lemma 26. We have ∆ppq “ τ for the placement p computed by the algorithm described in Section 4.3.

Proof. We have C ps0q “ 0. Furthermore, by Observation 19, we obtain C ps1q “ ´τ . In the following
we distinguish between two cases: (1) n is even and (2) n is odd.

• (1) n is even: Lemma 32 implies m2 “
Cps2qp`1``2q´Cps1q`1

`2
. Combining this with C ps1q “ ´τ

implies C ps2q “ τ as follows:

m2 “
C ps2q p`1 ` `2q ´ C ps1q `1

`2

ñ p´1q
2

ˆ

2τ`1
`2

` τ

˙

“
C ps2q p`1 ` `2q ´ C ps1q `1

`2
Cps1q“τ
ô

τ`1 ` τp`1 ` `2q

`2
“
C ps2q p`1 ` `2q ` τ`1

`2

ô τ “ C ps2q .

15

Let i P t3, . . . , nu. In the following we show C psiq “ τ if i is even and C psiq “ ´τ if i is odd.
Suppose C psiq “ τ holds for all even j P t4, . . . , i ´ 1u p:q and C psiq “ ´τ holds for all odd
j P t3, . . . , i´ 1u p;q.

We first consider the case that i is even. Lemma 32 implies that mi is equal to

C psiq
ři
j“1 `i ´ C psi´1q

ři´1
j“1 `j

`i

The algorithm guarantees mi “
2τ

ři´1
k“1 `k
`i

`τ . Furthermore, p;q implies C psi´1q “ ´τ . Combining
the above three equations yields C psiq “ τ as follows:

2τ
ři´1
k“1 `k
`i

` τ “
C psiq

ři
j“1 `i ` τ

ři´1
j“1 `j

`i

ô
τ
ři´1
k“1 `k ` τ

ři
k“1 `k

`i
“
C psiq

ři
j“1 `i ` τ

ři´1
j“1 `j

`i
ô τ “ C psiq .

By applying a similar approach for odd i, we also obtain C psiq “ ´τ .

By induction it follows |C psiq | “ τ for all i P t3, . . . , nu if n is even and thus we have ∆ppq “ τ if
n is even.

• (2) n is odd: By the definition of the algorithm we have C ps1q ă C ps2q and C ps2q ă C ps3q.
In the following we show C ps3q “ τ . This implies |C ps2q | ď τ because ´τ “ C ps1q ă C ps2q.
Furthermore, a similar approach as in the first case implies C psiq “ τ if i is odd and C psiq “ ´τ
if i is even. Thus we obtain ∆ppq ď τ if n is odd.

Finally, we show C ps3q “ τ . By the definition of the algorithm we know that the intervals that
correspond to `2 and `3 are placed adjacently on the right side of the interval that corresponds
to `1. Thus, for estimating C ps3q we are allowed to consider the two intervals `2 and `3 as one
interval. Let q be the midpoint of this interval. Hence, Lemma 32 implies

q “
C ps1q `1 ` C ps3q p`1 ` `2 ` `3q

`2 ` `3
.

Furthermore, the algorithm guarantees

q “
2τp`1 ` `2 ` `3q

`3
` τ.

Combining the two last equations with C ps1q “ ´τ leads to C pqq “ τ as follows.

C ps3q p`1 ` `2 ` `3q ´ C ps1q `1
`2 ` `3

“
2τ`1
`2 ` `3

` τ

ô
C ps3q p`1 ` `2 ` `3q ` τ`1

`2 ` `3
“
τ`1 ` τp`1 ` `2 ` `3q

`2 ` `3
ô C ps3q “ τ.

As C pqq “ C ps3q, we obtain C ps3q “ τ . This concludes the proof.

16

4.6 Proof of Lemma 27

Lemma 27. The intervals as computed by the algorithm from above are pairwise disjoint.

In the following, we give a proof for Lemma 27. In particular, let I1, . . . , In Ă R be the intervals
of lengths `1, . . . , `n that are computed by the algorithm. For two intervals, Ii and Ij , we abbreviate

Ii ď Ij if mi ă mj and |mi ´mj | ě
`i``j

2 . In the following, we show that two intervals do not overlap,
i.e., that Ii ď Ij or Ij ď Ii holds for all i ‰ j P t1, . . . , nu. We prove this separately for odd n ě 7 and
even n ě 6 and explicitly for n “ 4 and n “ 5.

Lemma 34. Let S “ x`1, . . . , `ny be a heterogeneous system for an even n ě 6 and p “ xI1, . . . , Iny the
placement that is computed by the our algorithm. Then the intervals from p are pairwise disjoint if

• (S1.1): xn`7 ` xn`3 ` x5 ` x4 ` x2 ` 1 ě 2xn`5 ` xn`2 ` xn ` x7 ` x6,

• (S1.2): xn`5 ` xn`2 ` xn`1 ` x4 ` x2 ě 2xn`4 ` xn ` x5 ` x1, and

• (S1.3): xn`5 ` xn`1 ` x3 ` 2x2 ` 1 ě 2xn`3 ` xn`2 ` xn ` x5 ` x4.

Proof. In the following we show that I3 ă I5 ă ¨ ¨ ¨ ă In´1 ă I1 ă In ă In´2 ă In´4 ă ¨ ¨ ¨ ă I2 holds.
In order to do this we prove three implications.

• (S1.1) implies I3 ď I5 ď ¨ ¨ ¨ ď In´1,

• (S1.2) implies In´1 ď I1, and

• (S1.3) implies In ď In´2 ď In´4 ď ¨ ¨ ¨ ď I2.

Furthermore, the inequality I1 ď In is correct by the definition of τ . This concludes the proof.

• (S1.1) implies I3 ď I5 ď ¨ ¨ ¨ ď In´1: Let i P t3, 5, . . . , n´3u be chosen arbitrarily. We have Ii ď Ii`2

if mi `
`i
2 ď mi`2 ´

`i`2

2 holds. Furthermore, above we already showed C psi´1q “ C psi`1q “ τ
and C psiq “ C psi`2q “ ´τ . The algorithm guarantees

mi “ p´1qi

˜

2τ
ři´1
j“1 `j

`i
` τ

¸

and

mi`2 “ p´1qi`2

˜

2τ
ři`1
j“1 `j

`i`2
` τ

¸

.

17

Thus, we formulate (S1.1) as a sufficient condition for mi`
`i
2 ď mi`2´

`i`2

2 as follows by applying
`i`2 “ x2`i p‹q and the geometric sum p:q.

mi `
`i
2

ď mi`2 ´
`i`2

2

ô
´2τ

ři´1
j“1 `j

`i
´ τ `

`i
2

ď
´2τ

ři`1
j“1 `j

`i`2
´ τ ´

`i`2

2

ô 2τ

˜

ři`1
j“1 `j

`i`2
´

ři´1
j“1 `j

`i

¸

ď ´
1

2
p`i`2 ` `iq

p‹q
ô 2τ

˜

1

x2

i`1
ÿ

j“1

`j ´
i´1
ÿ

j“1

`j

¸

ď ´
1

2

`

x2`i ` `i
˘

`i

ô 2τ

˜

1

x2
`1 ´ `1 `

1

x2

i`1
ÿ

j“2

`j ´
i´1
ÿ

j“2

`j

¸

ď ´
x2 ` 1

2
`2i

p:q
ô 2τ

¨

˚

˝

`
x2x

n´1 ´ `xn´1

` `
x2

´

1´xi

1´x

¯

´ `
´

1´xi´2

1´x

¯

˛

‹

‚

ď ´
x2 ` 1

2
`2i

ô 2`τ

¨

˝

xn´3 ´ xn´1

`x´2xi´2

1´x ´ 1´xi´2

1´x

˛

‚ ď ´
x2 ` 1

2
`2i

ô 2`τ

ˆ

xn´3 ´ xn´1 `
x´2 ´ 1

1´ x

˙

ď ´
x2 ` 1

2
`2i .

As `i is minimized for i “ n ´ 3, we substitute `i by ln´3 “ `xn´5. Furthermore, we substitute

τ “ `x2n´4
px2
´1q

4pxn´1q . Hence

2`τ

ˆ

xn´3 ´ xn´1 `
x´2 ´ 1

1´ x

˙

ď ´
x2 ` 1

2
`2i .

ô 2`

ˆ

`x2n´4px2 ´ 1q

4pxn ´ 1q

˙ˆ

xn´3 ´ xn´1 `
x´2 ´ 1

1´ x

˙

ď ´
`

x2 ` 1
˘

x2n´10

ô x6
`

x2 ´ 1
˘

ˆ

xn´3 ´ xn´1 `
x´2 ´ 1

1´ x

˙

ď ´ px2 ` 1qpxn ´ 1q

ô x6px2 ´ 1qpxn´3 ´ xn´1q ` x6px2 ´ 1q

ˆ

x´1 ´ 1

1´ x

˙

ď ´ px2 ` 1qpxn ´ 1q

ô x6px2 ´ 1qpxn´3 ´ xn´1q ´ x6px` 1q
`

x´2´
˘

ď ´ px2 ` 1qpxn ´ 1q

ô xn`7 ` xn`3 ` x5 ` x4 ` x2 ` 1 ě 2xn`5 ` xn`2

` xn ` x7 ` x6.

• (S1.2) implies In´1 ď I1: (S1.2) can formulated as a sufficient condition for In´1 ď I1 as follows:

In´1 ď I1 is equivalent to mn´1`
`n´1

2 ď m1´
`2
2 which can be reformulated as follows by applying

18

τ “ `x2n´4
px2
´1q

4pxn´1q p‹q and the geometric sum p:q.

mn´1 `
`n´1

2
ď m1 ´

`2
2

ô
´2τ

řn´2
j“1 `j

`n´1
´ τ `

`n´1

2
ď ´ τ ´

`1
2

p:q
ô ´ 2τ

ˆ

`
1´ xn´3

1´ x
` `xn´1

˙

ď ´
`n´1

2
p`1 ` `n´1q

ô ´ 2τ

ˆ

1´ xn´3

1´ x
` xn´1

˙

ď ´
`xn´3

2

`

`xn´1 ` `xn´3
˘

p‹q
ô ´ 2`

ˆ

`x2n´4px2 ´ 1q

4pxn ´ 1q

˙ˆ

1´ xn´3

1´ x
` xn´1

˙

ď
´`2x2n´4 ´ `2x2n´6

2

ô ´

ˆ

x2n´4px2 ´ 1q

xn ´ 1

˙ˆ

1´ xn´3

1´ x
` xn´1

˙

ď ´ x2n´4 ´ x2n´6

ô
`

´x2n´2 ` x2n´4
˘

ˆ

1´ xn´3

1´ x
` xn´1

˙

ď

ˆ

´x2n´4

´x2n´6

˙

pxn ´ 1q

ô x2n´7p´x5 ` x3q

ˆ

1´ xn´3

1´ x
` xn´1

˙

ď x2n´7
`

´x3 ´ x
˘

pxn ´ 1q

ô
`

´x5 ` x3
˘ `

1´ xn´3 ` xn´1 ´ xn
˘

ě

ˆ

´xn`3 ` x3

´xn`1 ` x

˙

p1´ xq

ô xn`5 ` xn`2 ` xn`1 ` x4 ` x2 ě 2xn`4 ` xn ` x5 ` x.

• (S1.3) implies In ď In´2 ď In´4 ď ¨ ¨ ¨ ď I2: The proof for this statement is similar to the proof of
the first statement. Let i P t2, 4, . . . , n´ 2u be chosen arbitrarily. In ď In´2 ď In´4 ď ¨ ¨ ¨ ď I2 is

equivalent to mi ´
`i
2 ě mi`2 `

`i`2

2 . We formulate (S1.3) as a sufficient condition for mi ´
`i
2 ě

mi`2 `
`i`2

2 as follows: We have C psi´1q “ C psi`1q “ ´τ and C psiq “ C psi`2q “ τ . Thus

mi ´
`i
2

ě mi`2 `
`i ` 2

2

ô
2τ

ři´1
j“1 `j

`i
` τ ´

`i
2

ě
2τ

ři`1
j“1 `j

`i`1
` τ `

`i`2

2

ô 2τ

˜

ři´1
j“1 `j

`i
´

ři`1
j“1 `j

`i`2

¸

ě
1

2
p`i`2 ` `iq

ô 2τ

˜

ři´1
j“1 `j

`i
´

ři`1
j“1 `j

x2`i

¸

ě
1

2
px2`i ` `iq

ô 2τ

˜

`1 ´
1

x2
`1 `

i´1
ÿ

j“1

`j ´
1

x2

i`1
ÿ

j“2

`j

¸

ě
x2 ` 1

2
`2i

ô 2τ

˜

`1 ´
1

x2
`1 `

i´1
ÿ

j“2

`j ´
1

x2

i`1
ÿ

j“2

`j

¸

ě
x2 ` 1

2
`2i

ô 2τ

˜

`xn´1 ´ `
x2x

n´1`

`
´

1´xi´2

1´x

¯

´ `
x2

´

1´xi

1´x

¯

¸

ě
x2 ` 1

2
`2i

ô 2`τ

ˆ

xn´1 ´ xn´3 `
1´ xi´2

1´ x
´
x´2 ´ xi´2

1´ x

˙

ě
x2 ` 1

2
`2i

ô 2`τ

ˆ

xn´1 ´ xn´3 `
1´ x´2

1´ x

˙

ě
x2 ` 1

2
`2i .

19

As `i is minimized for i “ n ´ 2, we substitute `i by `n´2“`xn´4 . Furthermore, we substitute

τ “ `x2n´4
px2
´1q

4pxn´1q . Hence

2`

ˆ

`x2n´4px2 ´ 1q

4pxn ´ 1q

˙ˆ

xn´1 ´ xn´3 `
1´ x´2

1´ x

˙

ě
x2 ` 1

2

`

`xn´4
˘2

ô
x2n´4px2 ´ 1q

x´ 1

ˆ

xn´1 ´ xn´3 `
1´ x´2

1´ x

˙

ě px2 ` 1qpx2n´8q

ô x4px2 ´ 1q

ˆ

xn´1 ´ xn´3 `
1´ x´2

1´ x

˙

ě px2 ` 1qpxn ´ 1q

ô x4px2 ´ 1qpxn´1 ´ xn´3q ` x4px2 ´ 1q

ˆ

1´ x´2

1´ x

˙

ě px2 ` 1qpxn ´ 1q

ô px6 ´ x4qpxn´1 ´ xn´3q ´ x4px` 1qp1´ x´2q ě px2 ` 1qpxn ´ 1q

ô xn`5 ` xn`1 ` x3 ` 2x2 ` 1 ě 2xn`3 ` xn`2

` xn ` x5 ` x4.

Lemma 35. Let S “ x`1, . . . , `ny be a heterogeneous system for n “ 4 and p “ xI1, . . . , Iny the placement
that is computed by the algorithm. Then the intervals from p are pairwise disjoint if

• (S1.2): xn`5 ` xn`2 ` xn`1 ` x4 ` x2 ě 2xn`4 ` xn ` x5 ` x1, and

• (S1.3): xn`5 ` xn`1 ` x3 ` 2x2 ` 1 ě 2xn`3 ` xn`2 ` xn ` x5 ` x4.

Proof. Similar to the proof of Lemma 34, we guarantee I3 ď I5 ď ¨ ¨ ¨ ď In´1 ď I1 ď In ď In´2 ď ¨ ¨ ¨ ď

I2. As n “ 4, we do not have to take care about I3 ď ¨ ¨ ¨ ď In´3 ď In´1. The proof for (S1.2) and (S1.3)
is the same as in the proof of Lemma 34.

Lemma 36. Let S “ x`1, . . . , `ny be a heterogeneous system for an odd n ě 7 and p “ xI1, . . . , Iny the
placement that is computed by the algorithm. Then the intervals from p are pairwise disjoint if

• (S1.1): xn`7 ` xn`3 ` x5 ` x4 ` x2 ` 1 ě 2xn`5 ` xn`2 ` xn ` x7 ` x6,

• (S1.2): xn`5 ` xn`2 ` xn`1 ` x4 ` x2 ě 2xn`4 ` xn ` x5 ` x1,

• (S1.3): xn`5 ` xn`1 ` x3 ` 2x2 ` 1 ě 2xn`3 ` xn`2 ` xn ` x5 ` x4, and

• (S1.4): x2npx´2 ´ x´4qpxn`2 ´ xn ´ xn´1 ´ x3 ´ 2x2 ´ 2x´ 1q ě px3 ` x` 1qpxn ´ 1qpx3 ` x4q.

Proof. (S1.1), (S1.2), and (S1.3) are the same conditions as in Lemma 34. By considering the second
and third interval as one interval, we are allowed to apply an approach that is similar to the argument
from the proof of Lemma 34. In particluar, except for the first three intervals we still have the property
that lengths of the intervals increase by a factor of x ě 2.

We show that I3 ď I5 ď ¨ ¨ ¨ ď In´4 ď In´2 ď I1 ď In´1 ď In´3 ď In´5 ď ¨ ¨ ¨ ď I4 ď I2 holds if
(S1.1), (S1.2), (S1.3), and (S1.4) are fulfilled. By the above argument, the lengths of the intervals are
`xn´2, `` `x, `x2, `x3, . . . , `xn´2, which means that we are now considering n´ 1 intervals.

In order to show I3 ď I5 ď ¨ ¨ ¨ ď In´4 ď In´2 ď I1 ď In´1 ď In´3 ď In´5 ď ¨ ¨ ¨ ď I4 ď I2, we prove
four implications:

• (S1.1) implies I3 ď I5 ď ¨ ¨ ¨ ď In´4 ď In´2,

• (S1.2) implies In´2 ď I1,

• (S1.3) implies In´1 ď In´3 ď ¨ ¨ ¨ ď I4 ď I2, and

• (S1.4) implies I4 ď I2.

The inequality I1 ď In is correct by the definition of τ . This concludes the proof.

20

• (S1.1) implies I3 ď I5 ď ¨ ¨ ¨ ď In´4 ď In´2: The argument is the same as in the proof of Lemma 34,
where we lower bound `i by `n´2 “ `xn´5.

• (S1.2) implies In´2 ď I1: The argument is the same as in the proof of Lemma 34, where we
substitute n´ 1 by n´ 2.

• (S1.3) implies In´1 ď In´3 ď ¨ ¨ ¨ ď I4 ď I2: Similar to the approach for (S1.1), the argument is
the same as in the proof of Lemma 34, where we lower bound `i by `n´2 “ `xn´5.

• (S1.4) implies I4 ď I2: I4 ď I2 is equivalent to m2 ´
`2
2 ě m4 `

`4
2 . We have C ps1q “ C ps3q “ ´τ

and C ps2q “ C ps4q “ τ . Thus:

m2 ´
`2
2

ě m4 `
`4
2

ô
2τ`1
`2

` τ ´
`2
2

ě
2τp`1 ` `2 ` `3q

`4
` τ `

`4
2

ô 2τ

ˆ

`1
`2
´
`1 ` `2 ` `3

`4

˙

ě
1

2
p`2 ` `2q

ô 2τ

˜

`xn´1

`` `x
´

2
`

xn´1 ` 1` x` x2
˘

`x3

¸

ě
1

2
px3 ` 1` xq

ô 2
`x2n´4px2 ´ 1q

4pxn ´ 1q

ˆ

xn´1

1` x
´
xn´1 ` 1` x` x2

x3

˙

ě
1

2

`

x3 ` 1` x
˘

ô
`

x2n´2 ´ x2n´4
˘

ˆ

xn´1

1` x
´
xn´1 ` 1` x` x2

x3

˙

ě
`

x3 ` 1` x
˘

pxn ´ 1q

ô
`

x2n´2 ´ x2n´4
˘

ˆ

xn`2 ´ xn´1 ´ 1´ 2x2 ´ xxn ´ 2x´ x3

x3 ` x4

˙

ě px3 ` 1` xqpxn ´ 1q

ô x2npx´2 ´ x´4qpxn`2 ´ xn ´ xn´1 ´ x3 ´ 2x2 ´ 2x´ 1q

ě px3 ` x` 1qpxn ´ 1qpx3 ` x4q.

Lemma 37. Let S “ x`1, . . . , `ny be a heterogeneous system for n “ 5 and p “ xI1, . . . , Iny the placement
that is computed by the algorithm. Then the intervals from p are pairwise disjoint if

• (S1.2): xn`5 ` xn`2 ` xn`1 ` x4 ` x2 ě 2xn`4 ` xn ` x5 ` x1,

• (S1.3): xn`5 ` xn`1 ` x3 ` 2x2 ` 1 ě 2xn`3 ` xn`2 ` xn ` x5 ` x4, and

• (S1.4): x2npx´2 ´ x´4qpxn`2 ´ xn ´ xn´1 ´ x3 ´ 2x2 ´ 2x´ 1q ě px3 ` x` 1qpxn ´ 1qpx3 ` x4q.

Proof. Similar to the proof of Lemma 36, we guarantee I3 ď I5 ď ¨ ¨ ¨ ď In´2 ď I1 ď In´1 ď In´3 ď

¨ ¨ ¨ ď I4 ď I2. As n “ 5, we do not have to deal with I3 ď ¨ ¨ ¨ ď In´2. The proof for (S1.2), (S1.3), and
(S1.4) is the same as in the proof of Lemma 36.

21

Now we are ready to give the proof of Lemma 27:

Proof of Lemma 27. By combining Lemma 34, 35, 36, and 37 we obtain that the intervals of p are
pairwise disjoint because the Inequations (S1.1), (S1.2), (S1.3), and (S1.4) are fulfilled for x ě 2.

5 Conclusion

We have introduced a new family of problems that seek to balance objects, controlling the variation
of their center of gravity during the loading and unloading of the objects. We have provided hardness
results and optimal or constant-factor approximation algorithms.

There are various related challenges. These include sequencing problems with multiple loading and
unloading stops (which arise in vehicle routing or tour planning for container ships); variants in which
items can be shifted in a continuous fashion; batch scenarios in which multiple items are loaded or
unloaded at once (making it possible to maintain better balance, but also increasing the space of possible
choices); and higher-dimensional variants, possibly with inhomogeneous space constraints. All these are
left for future work.

Acknowledgements.

We would like to thank anonymous reviewers of the conference abstract for providing helpful comments
and suggestions improving the presentation of this paper.

References

[1] S. V. Amiouny, J. J. Bartholdi, J. H. V. Vate, and J. Zhang. Balanced loading. Operations Research,
40(2):238–246, 1992.

[2] E. E. Bischoff and M. D. Marriott. A comparative evaluation of heuristics for container loading. Eur. J.
Oper. Res., 44(2):267–276, 1990.

[3] E. E. Bischoff and M. Ratcliff. Issues in the development of approaches to container loading. Omega,
23(4):377–390, 1995.

[4] S. G. Christensen and D. M. Rousøe. Container loading with multi-drop constraints. International Trans-
actions in Operational Research, 16(6):727–743, 2009.

[5] A. P. Davies and E. E. Bischoff. Weight distribution considerations in container loading. Eur. J. Oper. Res.,
114(3):509–527, 1999.

[6] G. Fasano. A MIP approach for some practical packing problems: Balancing constraints and tetris-like
items. 4OR, 2(2):161–174, 2004.

[7] H. Gehring and A. Bortfeldt. A genetic algorithm for solving the container loading problem. Intern.
Transactions in Operational Research, 4(5-6):401–418, 1997.

[8] H. Gehring, K. Menschner, and M. Meyer. A computer-based heuristic for packing pooled shipment con-
tainers. Eur. J. Oper. Res., 44(2):277–288, 1990.

[9] P. Gilmore and R. E. Gomory. Multistage cutting stock problems of two and more dimensions. Operations
research, 13(1):94–120, 1965.

[10] S. Limbourg, M. Schyns, and G. Laporte. Automatic aircraft cargo load planning. JORS, 63(9):1271–1283,
2012.

[11] V. Lurkin and M. Schyns. The airline container loading problem with pickup and delivery. Eur. J. Oper.
Res., 244(3):955–965, 2015.

[12] K. Mathur. An integer-programming-based heuristic for the balanced loading problem. Oper. Res. Lett.,
22(1):19–25, 1998.

[13] M. Mongeau and C. Bes. Optimization of aircraft container loading. IEEE Transactions on Aerospace and
Electronic Systems, 39(1):140–150, 2003.

[14] B. O. Øvstebø, L. M. Hvattum, and K. Fagerholt. Optimization of stowage plans for roro ships. Computers
& Operations Research, 38(10):1425–1434, 2011.

[15] B. O. Øvstebø, L. M. Hvattum, and K. Fagerholt. Routing and scheduling of roro ships with stowage
constraints. Transportation Research Part C: Emerging Technologies, 19(6):1225–1242, 2011.

22

[16] M. Paterson, Y. Peres, M. Thorup, P. Winkler, and U. Zwick. Maximum overhang. The American Mathe-
matical Monthly, 116(9):763–787, 2009.

[17] M. Paterson and U. Zwick. Overhang. The American Mathematical Monthly, 116(1):19–44, 2009.

[18] H. Pollaris, K. Braekers, A. Caris, G. K. Janssens, and S. Limbourg. Vehicle routing problems with loading
constraints: state-of-the-art and future directions. OR Spectrum, 37(2):297–330, 2015.

[19] S. Sevastianov. On some geometric methods in scheduling theory: a survey. Discrete Applied Mathematics,
55(1):59–82, 1994.

[20] S. Sevastianov. Nonstrict vector summationin multi-operation scheduling. Annals of Operations Research,
83:179–212, 1998.

[21] W. Souffriau, P. Demeester, G. V. Berghe, and P. De Causmaecker. The aircraft weight and balance problem.
Proceedings of ORBEL, 22:44–45, 1992.

[22] W. Vancroonenburg, J. Verstichel, K. Tavernier, and G. V. Berghe. Automatic air cargo selection and weight
balancing: a mixed integer programming approach. Transp. Research Part E: Logistics and Transportation
Review, 65:70–83, 2014.

23

	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Preliminaries
	3 Unloading
	3.1 NP-Completeness of the Discrete Case
	3.2 Lower Bounds and an Approximation Algorithm

	4 Loading
	4.1 Optimally Loading Unit Items With Stacking
	4.2 Optimally Loading Without Stacking but With Minimal Space
	4.3 Optimally Loading Exponentially Growing Items
	4.4 Proof of Lemma ??
	4.5 Proof of Lemma ??
	4.6 Proof of Lemma ??

	5 Conclusion

