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Abstract. We consider data structures for graphs where we maintain
a subset of the nodes called sites, and allow proximity queries, such as
asking for the closest site to a query node, and update operations that
enable or disable nodes as sites. We refer to a data structure that can
efficiently react to such updates as reactive. We present novel reactive
proximity data structures for graphs of polynomial expansion, i.e., the
class of graphs with small separators, such as planar graphs and road
networks. Our data structures can be used directly in several logisti-
cal problems and geographic information systems dealing with real-time
data, such as emergency dispatching. We experimentally compare our
data structure to Dijkstra’s algorithm in a system emulating random
queries in a real road network.

1 Introduction

Proximity data structures maintain a set of objects of interest, called sites, and
support queries concerned with minimizing some distance involving the sites,
such as nearest-neighbor or closest-pair queries. They are well known in compu-
tational geometry [10], where sites are points in space and distance is measured
by Euclidean distance or some other metric (e.g., see [1, 6, 7, 35, 38]). In this
chapter, we are interested in proximity data structures that deal with nodes in
a graph rather than points in space. We consider that there is an underlying,
fixed graph G, such as a road network for a geographic region, and sites are a
distinguished subset P of the vertices of G. Distance is measured by shortest-
path distance in G. We consider updates (additions and deletions) to and from
the set P of sites. Our goal is to design efficient data structures for the following
problems in graphs.

Definition 1 (Reactive nearest-neighbor data structure). Given a fixed,
undirected graph G = (V,E) with positively-weighted edges, maintain a subset of
nodes P ⊆ V , subject to insertions to P , deletions from P , and nearest-neighbor
queries: given a query node q ∈ V , return the node p ∈ P closest to q in shortest-
path distance.

Definition 2 (Reactive closest-pair data structure). Given a fixed, undi-
rected graph G = (V,E) with positively-weighted edges, maintain a subset of
nodes P ⊆ V , subject to insertions to P , deletions from P , and queries asking
for the closest pair in P .

ar
X

iv
:1

80
3.

04
55

5v
2 

 [
cs

.D
S]

  6
 J

an
 2

02
0



2 D. Eppstein, M.T. Goodrich, N. Mamano

Definition 3 (Reactive bichromatic closest-pair data structure). Given
a fixed, undirected graph G = (V,E) with positively-weighted edges, maintain two
subsets of nodes P,Q ⊆ V , subject to insertions to P or Q, deletions from P or
Q, and queries asking for the closest pair of nodes in different sets (one in P
and one in Q).

1.1 Background

The data structures that we study fall into the area of dynamic graph algorithms,
the subject of extensive study [22]. Traditionally, dynamic data structures in
graphs, e.g., for shortest-path computations, allow updates on the underlying
graph G itself, such as vertex or edge insertions and deletions [4,5,12,14,22,37,
43]. We call our data structures reactive to distinguish the kind of updates we
allow. For us, G is fixed, but we allow updates on P .

Previous work on dynamic graph algorithms has focused on the setting where
G can change. Exceptions are the work of Eppstein on maintaining a dynamic
subset of vertices in a sparse graph and keeping track of whether it is a domi-
nating set [20], and the work of Italiano and Frigioni on dynamic connectivity
for subsets of vertices in a planar graph [29]. Despite the applications that we
mention in Section 1.3, to our knowledge, no one has considered proximity data
structures for graphs subject to updates on the set of sites.

We design data structures that only work for graphs from certain hereditary
graph classes. A graph class is a (generally infinite) set of all graphs with some
defining property. A graph class is hereditary if it contains every induced sub-
graph of every graph in the class. An induced subgraph of a graph G is a graph
obtained by removing any number of vertices (and their incident edges) from
G. For instance, the class of planar graphs is hereditary because every induced
subgraph of a planar graph is planar.

Our data structures work for graphs from hereditary graph classes with sep-
arators of sublinear size. A separator of a graph G = (V,E) is a subset of V
whose removal from G splits G into two disjoint subgraphs, each with at most
2
3 |V | nodes, and with no edges between them. We say a graph class has O(nc)-
size separators if every n-node graph in the class has a separator of size O(nc).
A graph class has sublinear separators if it has O(nc)-size separators for some
c < 1. For instance, the planar separator theorem states that planar graphs have
O(n0.5)-size separators [40].

A hereditary graph class has sublinear separators if and only if it has poly-
nomial expansion [16]. Thus, any graph from a class of polynomial expansion is
suitable for our data structures.

If G = (V,E) is a graph from a hereditary graph class with sublinear sepa-
rators, then G is sparse, which means that |E| = O(|V |). The converse is not
necessarily true. For instance, bounded-degree expander graphs are sparse but do
not have sublinear separators [34]. Nonetheless, many important sparse graph
families are hereditary and have sublinear separators. One of the first classes
that was shown to have sublinear separators is the class of planar graphs, which
have O(n0.5)-size separators [40]. Separators of the same asymptotic size have



Reactive Proximity Data Structures for Graphs 3

also been proven to exist for k-planar graphs [15], bounded-genus graphs [31],
minor-closed graph families [36], and the graphs of certain four-dimensional poly-
hedra [21]. In addition, trees have separators of size one. More generally, graphs
with bounded treewidth [42] have constant-size separators [8].

The importance of having sublinear separators in our data structures is that
it allows us to construct a separator hierarchy. A separator hierarchy is the re-
sult of recursively partitioning a graph into disjoint subgraphs using separators.
Separator hierarchies are useful to solve many graph problems [28, 32]. An im-
portant application is the single-source shortest path (SSSP) problem: finding
the distance from a node to every other node in the graph. This problem can
be solved in linear time given a type of separator hierarchy called a recursive
division [33]. For graphs for which we can construct this hierarchy in linear time,
such as planar graphs [33], the SSSP problem can be solved in linear time. This
improves upon the O(n log n) time required by Dijkstra’s algorithm in sparse
graphs [13].

In many applications (see Section 1.3), the underlying graph G represents a
real road network. A road network can be represented by a graph where each
node is an intersection, and each edge is a stretch of road connecting two inter-
sections. Edge weights represent road lengths. Road networks are often modeled
as planar graphs. However, they are not quite planar because of bridges and
underpasses [23]. Thus, we are particularly interested in a class of graphs which
has been shown to be a better model for road networks: the class of graphs with
sparse crossing graphs [26]. Given an embedding of a graph G in the plane, the
crossing graph of the embedding is a graph H where each node in H represents
an edge of G, and two nodes in H are connected if the corresponding edges in
G cross in the embedding. Clearly, a graph is planar if it has an embedding
such that the corresponding crossing graph has no edges. More generally, it is
k-planar if it has an embedding such that the crossing graph has maximum de-
gree k. Graphs with sparse crossing graphs further generalize k-planar graphs:
a graph has a sparse crossing graph if it has an embedding such that the cor-
responding crossing graph has bounded degeneracy, a notion of sparcity used in
graph theory [39]. Bounding the degeneracy of the crossing graph instead of the
maximum degree accounts for, e.g., long tunnels that go under many street-level
roads. Like planar graphs, the class of graphs with sparse crossing graphs is
also hereditary and has O(n0.5)-size separators [26]. This is fortunate, because
it means that we can use our data structures in applications dealing with road
networks.

1.2 Our contributions

We design a new reactive nearest-neighbor data structure (Definition 1) with the
aim to balance between query and update times. If we only cared about one of
these, the data structure would be trivial. For instance, if we only cared about
query time, there is a well known solution: the graph-based Voronoi diagram,
which maintains the closest site to each node in the graph. Erwig [27] shows that
Voronoi diagrams can be adapted to graphs and that they can be constructed
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using a modification of Dijkstra’s algorithm. With this information, queries can
be answered in constant time. However, the Voronoi diagram is not easy to
update, requiring O(n log n) time in sparse graphs with n nodes—the same time
as for creating the diagram from scratch.

If, instead, we optimize for update time only, we could avoid maintaining any
information and answer queries directly using a shortest-path algorithm from
the query node. Updates would take constant time; queries could be answered
using Dijkstra’s algorithm [9], which runs in O(n log n) time in sparse graphs.
As mentioned, this could be improved to O(n) time for graphs for which we can
construct a recursive subdivision during a preprocessing stage [33].

Our reactive nearest-neighbor data structure finds a “sweet spot” between
fast queries and fast updates. Table 1 summarizes its runtime as a function of
the size of the separators (the data structure is the same when c = 0, but an
extra logarithmic factor appears in the analysis). For planar graphs and, more
generally, graphs with sparse crossing graphs, c = 1/2. For graphs with bounded
treewidth, c = 0.

Sep. size Space Preprocessing Query Insertion Deletion

0 < c < 1 O(n1+c) O(n1+c) O(nc) O(nc) O(nc log k)
O(n1+c) O(n1+c logn) O(nc) O(nc log logn) O(nc log log n)

c = 0 O(n logn) O(n logn) O(logn) O(logn) O(logn log k)
O(n logn) O(n log2 n) O(logn) O(logn log log n) O(logn log logn)

Table 1: Runtimes of our reactive nearest-neighbor data structure when it main-
tains k sites on an n-node graph from a hereditary graph class with O(nc)-size
separators. The preprocessing time is under the assumption that a separator can
be found in O(n1+c) time. Possible trade-offs between preprocessing and update
times are shown.

To construct a reactive nearest-neighbor data structure for planar graphs
specifically, we could also consider using an exact-distance oracle. This is a static
data structure that admits queries asking for the distance between any two nodes.
If k is the number of sites, with an exact-distance oracle we can find the closest
site to a query node with k queries. The recent oracle from Gawrychowski et
al. [30] answers queries in O(log n) time when it uses O(n1.5) space like our
data structure. With this oracle, we could answer queries for our data structure
in O(k log n) time and do updates in constant time. This approach has better
runtimes when k is small, but the preprocessing time is O(n2).

We combine our reactive nearest-neighbor data structure with preexisting
data structures [18,19] to obtain other proximity data structures. Table 2 shows
our new family of proximity data structures. Each data structure has a similar
preprocessing–update time trade-off as shown in Table 1. For brevity, we only
show the versions of the data structures that optimize the preprocessing time.
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Data structure Query Insertion Deletion

Exact NN O(nc) O(nc) O(nc log k)

Closest pair O(1) O(nc log2 k)† O(nc log3 k)†

Bichromatic CP O(1) O(nc log2 k)† O(nc log3 k)†

Table 2: Runtimes of our reactive proximity data structures when they maintain
k sites on an n-node graph from a hereditary graph class with O(nc)-size sep-
arators, where 0 < c < 1 (we omit the case of c = 0 for brevity). All the data
structures require O(n1+c) space. The preprocessing time is O(n1+c) assuming
that a separator can be found in O(n1+c) time. The “†” superindex indicates
that the runtime is amortized.

1.3 Applications

Reactive proximity data structures in graphs can be useful in several logisti-
cal problems in geographic information systems dealing with real-time data.
Consider an application to connect drivers and clients in a private-driver ser-
vice, such as Uber or Lyft, or even a future self-driving car service. A reactive
nearest-neighbor data structure could maintain the set of cars waiting at various
locations in a city to be put into service. When a client requires a driver, she
queries the data structure to find the car nearest to her. This car is then removed
from P (i.e., it is no longer available) until it completes the trip for this client, at
which point the car is then added to P (i.e., it is available) at this new location.
Alternatively, we could consider a similar application in the context of police
or emergency dispatching, where the data structure maintains the locations of
a set of available first responder vehicles. In Section 4, we experiment with this
type of system emulating random queries in a real road network.

In a companion paper [24], we use it for political redistricting. Suppose we
are given a set of sites representing the locations of certain facilities, such as post
offices or voting locations. We wish to partition the vertices of the graph into
geographic regions, one for each facility, such that each region has a specified size
(in number of nodes) and the shapes of the regions satisfy certain compactness
criteria. As we show in the companion paper, a greedy matching algorithm can
exploit an efficient reactive data structure to quickly build such a partitioning
of the graph. In another paper [41], we use this data structure as part of an
algorithm for Steiner TSP in road networks.

Reactive proximity data structures can also be useful in other domains, such
as content distribution networks, like the one maintained by Akamai. For in-
stance, a reactive nearest-neighbor data structure could maintain the set of nodes
that contain a certain file of interest, like a movie. When another node in the
network needs this information, the data structure could be used to find the
closest node that can transfer it. Updates allow us to model how copies of such
a file migrate in the network, e.g., for load balancing, so that we add a node to
P when it gets a copy of the file and remove a node from P when it passes the
file to another server.
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2 Nearest-neighbor data structure

Initially, we are given an n-node graph G = (V,E) and a subset P ⊆ V of
sites. As mentioned, the runtime analysis depends on the size of the separators.
Henceforth, we consider that G is undirected, has positive edge weights, and
comes from a hereditary graph class with O(nc)-size separators for some constant
c with 0 < c < 1 (the analysis is slightly different when c = 0).

We begin by reviewing the concept of a separator hierarchy. Recall that a
separator in a given n-vertex graph is a subset S of nodes such that the removal
of S (and its incident edges) partitions the remaining graph into two disjoint
subgraphs (with no edges from one to the other), each of size at most 2n/3. It is
allowed for these subgraphs to be disconnected; that is, removing S can partition
the remaining graph into more than two connected components, as long as those
components can be grouped into two subgraphs that are each of size at most
2n/3. A separator hierarchy is the result of recursively subdividing a graph by
using separators. Since children have size at most 2/3 the size of the parent, the
separator hierarchy is a binary tree of O(log n) height.

2.1 Preprocessing

The creation of our data structure consists of two phases. The first phase does
not depend on P , while the second phase incorporates our knowledge of P . Note
that there are two kinds of nodes of interest: separator nodes and sites. The two
sets may intersect, but should not be confused.

Site-independent phase. First, we build a separator hierarchy of the graph. This
hierarchy can be constructed in O(n) time and space in planar graphs [32] and
graphs with sparse crossing graphs [26]. However, we do not need the construc-
tion to take linear time, as this is not the bottleneck of the preprocessing. It
suffices that the hierarchy can be computed in O(n1+c) time. In fact, it suffices
that a single separator can be found in O(n1+c) time in an n-node graph (as op-
posed to the entire hierarchy). This is because the hierarchy is built recursively
so, if a separator can be found in O(n1+c) time, the construction time of the
entire hierarchy is captured by the recurrence

T (n) ≤ T (x) + T (y) + O(n1+c), (1)

where x and y are the sizes of two subgraphs, chosen so that x + y ≤ n,
max(x, y) ≤ 2n/3, and, among all x and y obeying these constraints, T (x)+T (y)
is maximum. It is easy to prove that this recurrence is dominated by its top-level
O(n1+c) term, so T (n) = O(n1+c).

Second, we compute, for each graph in the hierarchy, the distance from each
separator node to every other node. Consider the work done for the graph at
the root of the hierarchy, G itself. We need to compute O(nc) SSSP problems,
one for each separator node. As mentioned, each such problem can be solved in
linear time given a recursive subdivision [33]. A recursive subdivision is a type
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of separator hierarchy that is also built by finding separators recursively. Thus,
if we can find a separator in O(n1+c) time, we can construct the entire recursive
subdivision, and compute all the distances for the separators in the top-level
graph, in O(n1+c) time. We do the same for all the remaining graphs in the
separator hierarchy. The total runtime follows Equation 1 again, so it is also
O(n1+c).

Site-dependent phase. For each graph H = (VH , EH) in the separator hierarchy,
for each separator node s in H, we initialize a priority queue Qs. The elements
stored in Qs are the sites in H, P ∩VH . Their priorities are their distances from s
in H.

We use an implementation of a priority queue that supports insertions and
find-minimum operations in constant worst-case time, and deletions in logarith-
mic worst-case time. For instance, we can use a strict Fibonacci heap [3] or a
Broadal queue [2]. Then, constructing each queue Qs takes time linear on the
number of sites in H. Thus, the time at the top level of the hierarchy is O(|P |)
per separator node, and |P | = O(n), so in total it is O(n1+c). The total time
analysis of this phase is O(n1+c) as before.

Adding the space and time for the two phases together gives O(n1+c) space
and preprocessing time for graphs for which we can find a separator in O(n1+c)
time.

2.2 Queries

Given a query node q, we find two sites: (a) the closest site to q with paths
restricted to the same side of the top-level partition as q, and (b) the closest site
to q with paths containing at least one separator node. The paths considered
between both cases cover all possible paths, so one of the two found sites is the
overall closest site to q.

– To find the site satisfying Condition (a), we can relay the query to the
subgraph of the separator hierarchy containing q. This case does not arise if
q is a separator node.

– To find the site satisfying Condition (b), we need to find the shortest path
from q to any site, but only among paths containing separator nodes. Note
that if the shortest path goes through a separator s, it should end at the
site closest to s. Therefore, the length of the shortest path starting at q,
going through s, and ending at any site, is d(q, s) + d(s,min(Qs)), where
min(Qs) denotes the element with the smallest key in Qs. We can find the site
satisfying Condition (b) by considering all the separator nodes and retaining
the one minimizing this sum.

The time to find the site satisfying Condition (b) is O(nc), since there are
O(nc) separator nodes to check and we do a find-minimum operation on a pri-
ority queue for each. We do not need to do any distance computation, as we
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precomputed all the needed distances. Therefore, the time to find the two paths
satisfying Conditions (a) and (b) can be analyzed by the recurrence

T (n) ≤ T (2n/3) + O(nc),

where the T (2n/3) term dominates the actual time for recursing in a single
subgraph of the separator hierarchy. The solution to this recurrence is O(nc), so
queries take O(nc) time.

We can implement a heuristic optimization for queries so that we do not need
to check every separator node when searching for the site satisfying Condition
(b). During the preprocessing stage, we can sort, for each node u in each graph
H of the separator hierarchy, all the separators in H by distance from u. This
increases the space used by the data structure by a constant factor. Then, during
a query, after obtaining the site satisfying Condition (a), to find the site satisfying
Condition (b), we consider the separator nodes in order by distance from the
query node q. Suppose that p is the closest site found so far. As soon as we reach
a separator node s such that d(q, s) ≥ d(q, p), we can stop and ignore the rest
of separator nodes, since any site reached through them would be further from
q than p. In our experiments (Section 4), this optimization reduces the average
query runtime by a factor between 1.5 and 9.5, depending on the number of
sites. It is more effective when there are many sites, as then the closest site is
likely to be closer than many separators at the upper levels of the hierarchy.

2.3 Updates

Suppose that we wish to insert or delete a node p to or from the set of sites
P . Note that, when we perform such an update, the structures computed dur-
ing the site-independent preprocessing phase (the separator hierarchy and the
computation of distances) do not change. However, we need to add or remove
p (according to the type of update) to or from the priority queue Qs for every
separator node s in the top-level separator. Moreover, if p is not a separator
node, we also need to update the priority queues for the subgraph containing p,
recursively.

The time for an insertion is the same as for a query, since our priority queues
support constant time insertions. For deletions, the time to remove p in all
top-level priority queues is O(log k) time per priority queue, where k is the
number of sites, for a total time of O(nc log k). Again, if we formulate and solve
a recurrence for the running time at all levels of the separator hierarchy, these
times are dominated by the top-level term.

Next, we discuss how to improve the update time to O(nc log log n) with
additional preprocessing. For each separator node s, instead of using the distance
from s to p as the key for a site p in the priority queue Qs, we can use the
index of p in the list of nodes sorted by distance from s. That is, if the set
of distances in sorted order from s to the other nodes are d1, d2, d3, . . . , with
d1 < d2 < d3 < · · ·, we could replace these numbers by the numbers 1, 2, 3, . . .,
without changing the comparison between any two distances. This replacement
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would allow us to use a faster integer priority queue in place of the priority
queue. For instance, a van Emde Boas tree [17] maintains the minimum in a
set of integer numbers between 1 and n in O(log log n) time per insertion and
deletion. In order to use this optimization, we need to add the time to sort the
distances in the preprocessing time, which increases to O(n1+c log n) (assuming
an O(n log n) time sorting algorithm is used).

We have completed the description and analysis of the data structure. The-
orem 1 captures its runtime.

Theorem 1. Let c be a constant with 0 < c < 1, let G be a hereditary graph
class with O(nc)-size separators, and let T (n) be the time needed to find a
separator in an n-node graph from G. Then, for any n-node graph from G,
there is a reactive nearest-neighbor data structure that uses O(n1+c) space, with
max

(
O(n1+c), T (n)

)
preprocessing time, O(nc) query and insertion time, and

O(nc log k) deletion time, where k is the number of sites. Alternatively, the data
structure could have max (O(n1+c log n), T (n)) preprocessing time, O(nc log log n)
insertion and deletion time, and the same space and query time.

3 Extensions and related data structures

If we reformulate and solve the recurrence equations for the case where there is
constant number of separator nodes (c = 0), we obtain the space and runtimes
shown in Table 1.

The conga-line data structure [19] is a closest-pair data structure with O(1)
query time, O(T (k) log k) amortized insertion time, and O(T (k) log2 k) amor-
tized deletion time, where T (k) is the time per operation (maximum between
query and update) of a nearest-neighbor data structure maintaining k sites. An-
other data structure [18] achieves the same runtimes, but for the bichromatic
closest-pair problem. Combined with our reactive nearest-neighbor data struc-
ture, we get the following result.

Lemma 1. Let c be a constant with 0 < c < 1, and let G be a hereditary graph
class with O(nc)-size separators. For any n-node graph from G, there is a reactive
closest-pair data structure and a reactive bichromatic closest-pair data structure
with the space and runtimes shown in Table 2.

Finally, our reactive nearest neighbor data structure can be extended to
directed graphs with the same asymptotic runtimes. The only required change
is to compute distances from and to every separator node. To obtain the latter,
we can compute the distances in the reverse graph, i.e., the graph obtained by
reversing the directions of all the edges.

4 Experiments

In this section, we evaluate our data structure empirically on a real road network,
the Delaware road network from the DIMACS data set [11]. We consider the
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biggest connected component of the network, which has 48812 nodes and 60027
edges. This data set has been planarized: overpasses and underpasses have been
replaced by artificial intersection nodes. Each trial in our experiment begins
with a number of uniformly distributed random sites, and then performs 1000
operations. We consider the cases of only queries, only updates, and a mixture
of both (see Figure 1). The updates alternate between insertions and deletions,
and the operations in the mixed case alternate between queries and updates. We
compare the performance of our data structure against a basic data structure
that simply uses Dijkstra’s algorithm for the queries.

4.1 Implementation details

We implemented the algorithms in Java 8.1 We then executed them and timed
them as run on an Intel(R) Core(TM) CPU i7-3537U 2.00GHz with 4GB of
RAM, on Windows 10.

We implemented the optimization for queries described in Section 2.2, and
compared it with the unoptimized version in order to evaluate if its worth the
extra space. For updates, we used a normal binary heap, as these tend to perform
better in practice than more sophisticated data structures.

A factor that affects the efficiency of the data structure is the size and balance
of the separators. Our hierarchy for the Delaware road network had a total of
504639 nodes across 8960 graphs up to 13 levels deep. Among these graphs, the
biggest separator had 81 nodes. Rather than implementing a full planar separa-
tor algorithm to find the separators (recall that the data had been planarized),
we choose the smallest of two simply-determined separators: the vertical and
horizontal lines partitioning the nodes into two equal subsets. While these are
not guaranteed to have size O(

√
n), past experiments on the transversal com-

plexity in road networks [25] indicate that straight-line traversals of road net-
works should provide separators with low complexity, making it unnecessary to
incorporate a full planar graph separator algorithm.

When a separator partitions a graph in more than two connected components,
we made one child per component. Thus, our hierarchy is not necessarily a binary
tree, and may be shallower. We set the base case size to 20. At the base case,
we perform Dijkstra’s algorithm. Experiments with different base-case sizes did
not affect the performance significantly.

4.2 Results

Figure 1 depicts the results. Table 3 shows the corresponding data for the case
of mixed operations, which is the case of interest in a reactive model.

– The runtime of Dijkstra’s algorithm is roughly inversely proportional to the
number of sites, because with more sites it requires less exploration to find

1The source code with the implementation is available at https://github.com/

nmamano/NearestNeighborInGraphs.

https://github.com/nmamano/NearestNeighborInGraphs
https://github.com/nmamano/NearestNeighborInGraphs
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Fig. 1: Time needed by the data structures to complete 1000 operations in the
Delaware road network [11] for a range of number of sites (in a logarithmic
scale), excluding preprocessing time. Each data point is the average of 5 runs
with different sets of random sites (the same sets for all the algorithms).

the closest one. Moreover, initialization and updates require virtually no
time. Thus, this choice is superior for large numbers of sites, while being
orders of magnitude slower when the number of sites is low (see Table 3).

– Our data structure based on a separator hierarchy is not affected as much by
the number of sites. The update runtime only increases slightly with more
sites because of the operations on larger heaps, as expected from its asymp-
totic runtime. The optimization, which reduces the number of separators
needed to be checked, can be seen to have a significant effect on queries,
especially as the number of sites increases: it is up to 9.5 times faster on
average with 2048 sites. However, since it has no effect on updates, in the
mixed model with the same number of updates and queries the improvement
is less significant.

– The data structure requires a significant amount of time to construct the
hierarchy. Our code constructed the hierarchy for the Delaware road net-
work in around 15 seconds. Fortunately, this hierarchy only needs to be
built once per road network. The limiting factor is the space requirement
of approximately O(n1+5), which caused us to run out of memory for other
road networks from the DIMACS data set with over 105 nodes.

5 Conclusions

We have studied reactive proximity problems in graphs, giving a family of data
structures for such problems. Tables 1 and 2 summarize our theoretical results.
While we have focused on applications in geographic systems dealing with real-
time data, the problems are primitive enough that they may arise in other do-
mains of graph theory, such as network protocols.
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# sites Dijkstra Separator Separator (with opt.)

2 3797 (3672 – 3906) 63 (47 – 94) 53 (31 – 94)
4 2303 (2203 – 2359) 66 (63 – 78) 53 (47 – 63)
8 1272 (1250 – 1297) 66 (47 – 78) 50 (47 – 63)
16 694 (641 – 781) 56 (47 – 63) 44 (31 – 47)
32 384 (359 – 406) 75 (63 – 94) 50 (47 – 63)
64 200 (172 – 219) 81 (63 – 94) 56 (47 – 63)
128 94 (94 – 94) 97 (94 – 109) 50 (47 – 63)
256 47 (47 – 47) 88 (78 – 94) 84 (78 – 109)
512 16 (16 – 16) 94 (94 – 94) 75 (63 – 78)
1024 13 (0 – 16) 94 (94 – 94) 75 (63 – 78)
2048 3 (0 – 16) 113 (94 – 125) 88 (78 – 94)
4096 3 (0 – 16) 125 (109 – 156) 88 (78 – 94)
8192 3 (0 – 16) 163 (125 – 188) 125 (94 – 156)
16384 0 (0 – 0) 116 (109 – 125) 113 (94 – 156)

Table 3: Time in milliseconds needed by the data structures to complete 1000
operations (mixed queries and updates) in the Delaware road network for a
range of number of sites (in a logarithmic scale). Each data point is the average,
minimum, and maximum, of 5 runs with different sets of random sites (the same
sets for all the algorithms).

We would like to explore other applications in the future. New applications
may require designing reactive proximity data structures for more general graph
classes, i.e., classes without sublinear separators. If finding exact nearest neigh-
bors turns out to be too complex without sublinear separators, it would be
interesting to design a reactive data structure supporting approximate nearest-
neighbor queries.

As discussed in Section 4.1, an important factor in the runtime of any data
structure based on separator hierarchies is the choice of separators. It may be
of interest to compare the benefits of a simpler but lower-quality separator con-
struction algorithm versus a slower but higher-quality separator construction
algorithm in future experiments.
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