
On Counting Perfect Matchings in General Graphs

Daniel Štefankovič∗ Eric Vigoda† John Wilmes†

December 21, 2017

Abstract

Counting perfect matchings has played a central role in the theory of counting problems. The per-
manent, corresponding to bipartite graphs, was shown to be #P-complete to compute exactly by Valiant
(1979), and a fully polynomial randomized approximation scheme (FPRAS) was presented by Jerrum,
Sinclair, and Vigoda (2004) using a Markov chain Monte Carlo (MCMC) approach. However, it has
remained an open question whether there exists an FPRAS for counting perfect matchings in general
graphs. In fact, it was unresolved whether the same Markov chain defined by JSV is rapidly mixing in
general. In this paper, we show that it is not. We prove torpid mixing for any weighting scheme on
hole patterns in the JSV chain. As a first step toward overcoming this obstacle, we introduce a new
algorithm for counting matchings based on the Gallai–Edmonds decomposition of a graph, and give an
FPRAS for counting matchings in graphs that are sufficiently close to bipartite. In particular, we obtain
a fixed-parameter tractable algorithm for counting matchings in general graphs, parameterized by the
greatest “order” of a factor-critical subgraph.

1 Introduction

Counting perfect matchings is a fundamental problem in the area of counting/sampling problems. For an
undirected graph G = (V,E), let P denote the set of perfect matchings of G. Can we compute (or estimate)
|P| in time polynomial in n = |V |? For which classes of graphs?

A polynomial-time algorithm for the corresponding decision and optimization problems of determining
if a given graph contains a perfect matching or finding a matching of maximum size was presented by
Edmonds [2]. For the counting problem, a classical algorithm of Kasteleyn [9] gives a polynomial-time
algorithm for exactly computing |P| for planar graphs.

For bipartite graphs, computing |P| is equivalent to computing the permanent of n × n (0, 1)-matrices.
Valiant [14] proved that the (0, 1)-Permanent is #P-complete. Subsequently attention turned to the Markov
Chain Monte Carlo (MCMC) approach. A Markov chain where the mixing time is polynomial in n is said
to be rapidly mixing, and one where the mixing time is exponential in Ω(n) is referred to as torpidly mixing.
A rapidly mixing chain yields an FPRAS (fully polynomial-time randomized approximation scheme) for the
corresponding counting problem of estimating |P| [8].

For dense graphs, defined as those with minimum degree > n/2, Jerrum and Sinclair [6] proved rapid
mixing of a Markov chain defined by Broder [1], which yielded an FPRAS for estimating |P|. The Broder
chain walks on the collection Ω = P∪N of perfect matchings P and near-perfect matchings N ; a near-perfect
matching is a matching with exactly 2 holes or unmatched vertices. Jerrum and Sinclair [6], more generally,
proved rapid mixing when the number of perfect matchings is within a poly(n) factor of the number of
near-perfect matchings, i.e., |P|/|N | ≥ 1/poly(n). A simple example, referred to as a “chain of boxes” which
is illustrated in Figure 1, shows that the Broder chain is torpidly mixing. This example was a useful testbed
for catalyzing new approaches to solving the general permanent problem.

Jerrum, Sinclair and Vigoda [7] presented a new Markov chain on Ω = P∪N with a non-trivial weighting
scheme on the matchings based on the holes (unmatched vertices). They proved rapid mixing for any bipartite
graph with the requisite weights used in the Markov chain, and they presented a polynomial-time algorithm

∗University of Rochester, USA. Email: stefanko@cs.rochester.edu
†Georgia Institute of Technology, USA. Email: {vigoda,wilmesj}@gatech.edu

1

ar
X

iv
:1

71
2.

07
50

4v
1

 [
cs

.D
S]

 2
0

D
ec

 2
01

7

to learn these weights. This yielded an FPRAS for estimating |P| for all bipartite graphs. That is the current
state of the art (at least for polynomial-time, or even sub-exponential-time algorithms).

Could the JSV-Markov chain be rapid mixing on non-bipartite graphs? Previously there was no example
for which torpid mixing was established, it was simply the case that the proof in [7] fails. We present a
relatively simple example where the JSV-Markov chain fails for the weighting scheme considered in [7]. More
generally, the JSV-chain is torpidly mixing on our class of examples for any weighting scheme based on the
hole patterns, see Theorem 2.2 in Section 2 for a formal statement following the precise definition of the
JSV-chain.

A natural approach for non-bipartite graphs is to consider Markov chains that exploit odd cycles or
blossoms in the manner of Edmonds’ algorithm. We observe that a Markov chain which considers all
blossoms for its transitions is intractable since sampling all blossoms is NP-hard, see Theorem 3.1. On the
other hand, a chain restricted to minimum blossoms is not powerful enough to overcome our torpid mixing
examples. See Section 3 for a discussion.

Finally we utilize the Gallai–Edmonds graph decomposition into factor-critical graphs [2, 3, 4, 12] to
present new algorithmic insights that may overcome the obstacles in our classes of counter-examples. In
Section 4, we describe how the Gallai–Edmonds decomposition can be used to efficiently estimate |P|, the
number of perfect matchings, in graphs whose factor-critical subgraphs have bounded order (Theorem 4.2),
as well as in the torpid mixing example graphs (Theorem 4.3).

Although all graphs are explicitly defined in the text below, figures depicting these graphs are deferred
to the appendix,

1.1 Markov Chains

Consider an ergodic Markov chain with transition matrix P on a finite state space Ω, and let π denote the
unique stationary distribution. We will usually assume the Markov chain is time reversible, i.e., that it
satisfies the detailed balance condition π(x)P (x, y) = π(y)P (x, y) for all states x, y ∈ Ω.

For a pair of distributions µ and ν on Ω we denote their total variation distance as dTV(µ, ν) =
1
2

∑
x∈Ω |µ(x) − ν(x)|. The standard notion of mixing time Tmix is the number of steps from the worst

starting state X0 = i to reach total variation distance ≤ 1/4 of the stationary distribution π, i.e., we write
Tmix = maxi∈Ω min{t : dTV(P t(i, ·), π) ≤ 1/4}.

We use conductance to obtain lower bounds on the mixing time. For a set S ⊂ Ω its conductance is
defined as:

Φ(S) =

∑
x∈S,y/∈S π(x)P (x, y)∑

x∈S π(x)
.

Let Φ∗ = minS⊂Ω:π(S)≤1/2 Φ(S). Then (see, e.g., [13, 10])

Tmix ≥
1

4Φ∗
. (1)

1.2 Factor-Critical Graphs

A graph G = (V,E) is factor-critical if for every vertex v ∈ V , the graph induced on V \ {v} has a perfect
matching. (In particular, |V | is odd.)

Factor-critical graphs are characterized by their “ear” structure. The quotient G/H of a graph G by
a (not necessarily induced) subgraph H is derived from G by deleting all edges in H and contracting all
vertices in H to a single vertex vH (possibly creating loops or multi-edges). An ear of G relative a subgraph
H of G is simply a cycle in G/H containing the vertex vH .

Theorem 1.1 (Lovász [11]). A graph G is factor-critical if and only if there is a decomposition G =
C0 ∪ · · · ∪ Cr such that C0 is a single vertex, and Ci is an odd-length ear in G relative to

⋃
j<i Cj, for all

0 < i ≤ r.
Furthermore, if G is factor critical, there exists such a decomposition for every choice of vertex C0, and

the order r of the decomposition is independent of all choices.

2

Since the number of ears in the ear decomposition of a factor-critical graph depends only on the graph,
and not on the choice made in the decomposition, we say the order of the factor-critical graph G is the
number r of ears in any ear decomposition of G.

Factor-critical graphs play a central role in the Gallai–Edmonds structure theorem for graphs. We state
an abridged version of the theorem below.

Given a graph G, let D(G) be the set of vertices that remain unmatched in at least one maximum
matching of G. Let A(G) be the set of vertices not in D(G) but adjacent to at least one vertex of D(G).
And let C(G) denote the remaining vertices of G.

Theorem 1.2 (Gallai–Edmonds Structure Theorem). The connected components of D(G) are factor-critical.
Furthermore, every maximum matching of G induces a perfect matching on C(G), a near-perfect matching
on each connected component of D(G), and matches all vertices in A(G) with vertices from distinct connected
components of D(G).

2 The Jerrum–Sinclair–Vigoda Chain

We recall the definition of the original Markov chain proposed by Broder [1]. The state space of the chain is
Ω = P ∪

⋃
u,vN (u, v) where P is the collection of perfect matchings and N (u, v) are near-perfect matchings

with holes at u and v (i.e., vertices u and v are the only unmatched vertices). The transition rule for a
matching M ∈ Ω is as follows:

1. If M ∈ P, randomly choose an edge e ∈M and transition to M \ {e}.

2. If M ∈ N (u, v), randomly choose a vertex x ∈ V . If x ∈ {u, v} and u is adjacent to v, transition
to M ∪ {(u, v)}. Otherwise, let y ∈ V be the vertex matched with x in M , and randomly choose
w ∈ {u, v}. If x is adjacent to w, transition to the matching M ∪ {(x,w)} \ {(x, y)}.

The chain XB is symmetric, so its stationary distribution is uniform. In particular, when |P|/|Ω| is at
least inverse-polynomial in n, we can efficiently generate uniform samples from P via rejection sampling,
given access to samples from the stationary distribution of XB.

In order to sample perfect matchings even when |Ω|/|P| is exponentially large, Jerrum, Sinclair, and
Vigoda [7] introduce a new chain XJSV that changes the stationary distribution of XB by means of a Metropo-
lis filter. The new stationary distribution is uniform across hole patterns, and then uniform within each hole
pattern, i.e., for every M ∈ Ω, the stationary probability of M is proportional to 1/|N (u, v)| if M ∈ N (u, v),
and proportional to 1/|P| if M ∈ P.

We define XJSV in greater detail. For M ∈ Ω, define the weight function

w(M) =

{
1
|P| if M ∈ P
1

|N (u,v)| if M ∈ N (u, v)
(2)

Definition 2.1. The chain XJSV has the same state space as XB. The transition rule for a matching M ∈ Ω
is as follows:

1. First, choose a matching M ′ ∈ Ω to which M may transition, according to the transition rule for XB

2. With probability min{1, w(M ′)/w(M)}, transition to M ′. Otherwise, stay at M .

In their paper, Jerrum, Sinclair, and Vigoda [7] in fact analyze a more general version of the chain XJSV

that allows for arbitrary edge weights in the graph. They show that the chain is rapidly mixing for bipartite
graphs G. (They also study the separate problem of estimating the weight function w, and give a “simulating
annealing” algorithm that allows the weight function w to be estimated by gradually adjusting edge weights
to obtain an arbitrary bipartite graph G from the complete bipartite graph.) Their analysis of the mixing
time uses a canonical paths argument that crucially relies on the bipartite structure of the graph. However,
it remained an open question whether a different analysis of the same chain XJSV, perhaps using different
canonical paths, might generalize to non-bipartite graphs. We rule out this approach.

In fact, we rule out a more general family of Markov chains for sampling perfect matchings. We say
a Markov chain is “of XJSV type” if it has the same state space as XJSV, with transitions as defined in

3

Definition 2.1, for some weight function w(M) (not necessarily the same as in Eq. (2)) depending only the
hole pattern of the matching M .

Theorem 2.2. There exists a graph G on n vertices such that for any Markov chain X of XJSV type on G,
either the stationary probability of P is at most exp(−Ω(n)), or the mixing time of X is at least exp(Ω(n)).

The graph G of Theorem 2.2 is constructed from several copies of a smaller gadget H, which we now
define.

Definition 2.3. The chain of boxes gadget Bk of length k is the graph on 4k vertices depicted in Figure 1.
To construct Bk, we start with a path P2k−1 = v0, v1, . . . , v2k of length 2k − 1. Then, for every even edge
{v2i, v2i+1} on the path, we add two additional vertices ai, bi, along with edges to form a path v2i, ai, bi, v2i+1

of length 3.

v0

a0 b0

v1 v2

a1 b1

v3
. . .

v2k

ak bk

v2k+1

Figure 1: The “chain of boxes” gadget Bk, which has 2k perfect matchings, but only a single matching in
N (v0, v2k+1).

Observation 2.4. The chain of boxes gadget Bk has 2k perfect matchings, but only one matching in
N (v0, v2k+1).

Definition 2.5. The torpid mixing gadget Hk is the graph depicted in Figure 2. To construct H, first
take a C12 and label two antipodal vertices as a and b. Add an edge between a and b, and label the two
vertices farthest from a and b as u and v. Label the neighbor of u closest to a as w1, and the other neighbor
of u as w2. Label the neighbor of v closest to a as z1 and the other neighbor of v as z2. Finally, add four
chain-of-boxes gadgets Bk, identifying the vertices v0 and v2k of the gadgets with w1 and a, with a and z1,
with w2 and b, and with b and z2, respectively.

Note that in Figures 2 and 3, one “box” from each copy of Bk in the torpid mixing gadget is left undrawn,
for visual clarity.

Lemma 2.6. The torpid mixing gadget H = Hk has 16k + 4 vertices and exactly 2 perfect matchings.
Furthermore, |NH(u, v)| = 1 and NH(x1, v) ≥ 2k.

Proof. A matching M ∈ NH(u, v) is depicted in Figure 2. We argue that M is the only matching in N (u, v).
First note that x1 must be matched with either w1 or a. Either choice forces the matching on the “chain
of boxes” above x1 remain identical to M . But then if x1 is matched with a, there are no vertices to which
w1 can be matched. So x1 must be matched with w1, and the choice of edge for x2, y1, and y2 is forced
symmetrically, giving the matching M .

Similarly, there are exactly two perfect matchings of H. Vertex u is matched with either w1 or w2, and
either choice determines all other edges. In particular, if u is matched with w1, then x1 must be matched
with a, and y1 with z1, and so on along the entire 12-cycle containing u and v. The edges on the four “chains
of boxes” are then also completely determined. The other case, when u is matched with w2, is symmetric.

We now argue that |NH(x1, v)| ≥ 2k. Starting from the matching M ′ ∈ NH(x1, v) depicted in Figure 3,
each of the k copies of C4 in the chain of boxes above x1 can be independently alternated, giving 2k distinct
matchings in NH(x1, v).

The torpid mixing gadget already suffices on its own to show that the Markov chain XXJSV defined in [7]
is torpidly mixing. In particular, the conductance out of the set NH(x1, v) ⊆ Ω(H) is 2−Ω(k). In order to
prove the stronger claim of Theorem 2.2, that every Markov chain of XJSV-type fails to efficiently sample
perfect matchings, we construct a slightly larger graph from copies of the torpid mixing gadgets.

4

u

w1 x1
a

x2w2

y1 z1

v

z2y2

. . .

. . .

. . .

. . .

Figure 2: The torpid mixing gadget Hk. The unique matching M ∈ N (u, v) is depicted with thick edges.

Definition 2.7. The counterexample graph Gk is the graph depicted in Figure 4. It is defined by
replacing every third edge of the twelve-cycle C12 with the gadget Hk defined in Figure 2. Specifically, let
{ui, vi} be the 3i-th edge of C12 for i ∈ {1, . . . , 4}. We delete each edge {ui, vi} and replace it with a copy
of H, identifying the vertices u and v of H with vertices ui and vi of C12. The resulting graph is Gk. Thus,
of the 12 original vertices in C12, 8 of the corresponding vertices in Gk participate in a copy of the gadget
H, and 4 do not. These 4 vertices of Gk which do not participate in any copy of the gadget H are labeled
t1, . . . , t4 in cyclic order, and the copies of the gadget H are labeled H1, . . . H4 in cyclic order, with H1

coming between t1 and t2, and so on. Thus, t1 is adjacent to u1 and v4, ti is adjacent to ui and vi−1 for
i ∈ {2, . . . , 4}, and Hi contains both ui and vi.

In particular, Gk has 4|V (H)|+ 4 = 64k + 8 vertices.
The perfect and near-perfect matchings of Gk are naturally divided into four intersecting families. For

i ∈ {1, . . . , 4} we define Si to be the collection of (perfect and near-perfect) matchings M ∈ Ω(Gk) such that
the restriction of M to Hi has two holes, at ui and vi, i.e., such that the vertices ui and vi either have holes
in M or are matched outside of Hi.

Lemma 2.8. The counterexample graph Gk has exactly 8 perfect matchings. Of these, 4 are in S1 ∩ S3 \
(S2 ∪ S4) and 4 are in S2 ∩ S4 \ (S1 ∪ S3).

Proof. The graph Gk has exactly 8 perfect matchings. To obtain a matching in S1 ∩ S3 \ (S2 ∪ S4), we
may without loss of generality start by matching the vertices in H1 and H3 according to a matching in
NH1

(u1, v1) or NH3
(u3, v3), respectively. We must then match t1 with u1, t2 with v1, t3 with u3, and t4

with v3. Finally, we must match the remaining vertices according to a perfect matching on each of H2 and
H4. By Lemma 2.6, there are two perfect matchings on each of H2 and H4, and a unique matching in each
of NH1(u1, v1) and NH3(u3, v3), so indeed there are four matchings in (S1 ∩ S3) \ (S2 ∪ S4). Similarly, there
are exactly four matchings in (S2 ∩ S4) \ (S1 ∪ S3).

To see that there are no other perfect matchings, let M be an arbitrary perfect matching of Gk. Then
t1 is matched either with u1 or v4. Suppose t1 is matched with u1. Then v4 is matched within H4. Since
H4 has an even number of vertices, u4 must also be matched within H4, and hence M induces a perfect
matching on H4. Continuing in a similar fashion, M must also induce a perfect matching on H2. Then the
restriction of M to H1 or H3 has holes at u1 and v1, and at u3 and v3, respectively, so M ∈ S1∩S3\(S2∪S4).
Symmetrically, if t1 is matched with v4 then M ∈ S2 ∩ S4 \ (S1 ∪ S3).

In the proof below, we use the notation N (M) denote the collection of matchings with the hole pattern
as M . That is, N (M) = P if M ∈ P, and N (M) = N (u, v) if M ∈ N (u, v).

5

x1

v

. . .

. . .

. . .

. . .

Figure 3: A matching M ′ ∈ N (x1, v). There are exponentially many matchings with the same hole pattern,
obtained by alternating the 4-cycles above x1.

t1
u1 v1 t2

u2

v2

t3u3v3t4

u3

v3

Hk

Hk

Hk

Hk

Figure 4: The “counterexample graph” Gk on which XJSV is torpidly mixing. The boxes labeled Hk represent
copies of the torpid mixing gadget of Definition 2.5.

Proof of Theorem 2.2. Let Gk be the counterexample graph of Definition 2.7. We will show that the set
S1 ∪ S3 ⊆ Ω(Gk) has poor conductance, unless the stationary probability of PGk

is small. We will write
A = S1 ∪ S3 and A = Ω(Gk) \ (S1 ∪ S3).

Let M ∈ A and M ′ ∈ A be such that P (M,M ′) > 0. We claim that neither M nor M ′ are perfect
matchings. Assume without loss of generality that M ∈ S1. If M ∈ S1 is a perfect matching, then M ∈ P2

and so M ∈ S3. The only legal transitions from M to Ω\S1 are those that introduce additional holes within
H1, but none of these transitions to a matching outside of S3. Hence, M cannot be perfect. But if M ′ is
perfect, then M ′ ∈ P1, and so M ′ induces a perfect matching on S1. But then the transition from M to M ′

must simultaneously affect u1 and v1, and no such transition exists.
We denote by ∂A the set of matchings M ′ ∈ A such that there exists a matching M ∈ A with P (M,M ′) >

0. We claim that for every matching M ′ ∈ A, we have

|N (M ′) ∩ ∂A| ≤ 2k−1|N (M ′)| . (3)

Let M ′ ∈ ∂A, and let M ∈ A be such that P (M,M ′) > 0. Suppose first that M ∈ S1. Label the vertices
of H1 as in Figure 2, identifying u1 with u and v1 with v. Let N be the matching on H = H1 induced
by M , and let N ′ be the matching on H1 induced by M ′. We have N ∈ NH(u1, v1). But by Lemma 2.6,
we have |NH(u1, v1)| = 1, i.e., N is exactly the matching depicted in Figure 2. The only transitions that

6

remove the hole at u are the two that shift the hole to x1 or x2, and the only transitions that remove the
hole at v are the two that shift the hole to y1 or y2. So, without loss of generality, by the symmetry of
Gk, we have N ′ ∈ NH(x1, v1). By Lemma 2.6, |NH(x1, v1)| ≥ 2k, but only one matching in NH(x1, v1) has
a legal transition to N . Therefore, if we replace the restriction of M ′ to H1 with any other matching in
NH(x1, v1), we obtain another matching M ′′ ∈ N (M ′), but M ′′ has no legal transition to any matching in
N (M). Hence, only a 2−k-fraction of N (M ′) has a legal transition to S1, and similarly only a 2−k-fraction
of N (M ′) has a legal transition to S3. In particular, we have proved Eq. (3).

From Eq. (3), it immediately follows that the stationary probability of ∂A is

π(∂A) =
∑

M ′∈∂A

π(M ′) =
∑
M ′∈A

π(M ′)
|N (M ′) ∩ ∂A|
|N (M ′)|

= 2−k+1π(A) (4)

We now compute ∑
M∈A,M ′∈A
P (M,M ′)>0

π(M)P (M,M ′) =
∑

M∈A,M ′∈A
P (M,M ′)>0

π(M ′)P (M ′,M) ≤ π(∂(A))

< 2−k+1π(A),

where we first use the detailed balance condition and then Eq. (4).
Now by (1) and the definition of conductance, we have

1

4τX
< Φ(A) < 2−k

π(A)

π(A)
.

In particular, if τX < 2k/2−2, then π(A) > 2k/2+1π(A). Suppose this is the case. By Lemma 2.8, half
of the perfect matchings of Gk belong to A. In particular, π(PGk

) ≤ 2π(A) < 2−k/2+2. Hence, either
the stationary probability of P is at most 2−k/2+2 = exp(−Ω(n)), or the mixing time of X is at least
2k/2−2 = exp(Ω(n)).

We remark that the earlier Markov chain studied by Broder [1] and Jerrum and Sinclair [6] is also torpidly
mixing on the counterexample graph of Definition 2.7, since the ratio of near-perfect matchings to perfect
matchings is exponential [6].

3 Chains Based on Edmonds’ Algorithm

Given that Edmonds’ classical algorithm for finding a perfect matching in a bipartite graph requires the
careful consideration of odd cycles in the graph, it is reasonable to ask whether a Markov chain for counting
perfect matchings should also somehow track odd cycles. In this section, we briefly outline some of the
difficulties of such an approach.

A blossom of length k in a graph G equipped with a matching M is simply an odd cycle of length
2k + 1 in which k of the edges belong to M . Edmonds’ algorithm finds augmenting paths in a graph by
exploring the alternating tree rooted at an unmatched vertex, and contracting blossoms to a vertex as they
are encountered. Given a blossom B containing an unmatched vertex u, there is an alternating path of even
length to every vertex v ∈ B. Rotating B to v means shifting the hole at u to v by alternating the u-v path
in B.

Adding rotation moves to a Markov chain in the style of XJSV is an attractive possible solution to the
obstacles presented in the previous section. Indeed, if it were possible to rotate the 7-cycle containing u and
a in the graph in Figure 2, it might be possible to completely avoid problematic holes at x1 or x2.

The difficulty in introducing such an additional move the Markov chain XJSV is in defining the set of
feasible blossoms that may be rotated, along with a probability distribution over such blossoms. In order to
be useful, we must be able to efficiently sample from the feasible blossoms at a given near-perfect matching
M . Furthermore, the feasible blossoms must respect time reversibility: if B is feasible when the hole is at
u ∈ B, then it must also be feasible after rotating the hole to v ∈ B; reversibility of the Markov chain is

7

u

v

Figure 5: After rotating the blossom so that the hole is moved from u to v, the blossom is no longer
“minimal”.

needed so that we understand its stationary distribution. Finally, the feasible blossoms must be rich enough
to avoid the obstacles outlined in the previous section.

The set of “minimum length” blossoms at a given hole vertex u satisfies the first criterion of having an
efficient sampling algorithm. But it is easy to see that if only minimum length blossoms are feasible, then
the obstacles outlined in the previous section will still apply (simply by adding a 3-cycle at every vertex).
Moreover, families blossoms characterized by minimality may struggle to satisfy the second criterion of time-
reversibility. In Figure 5, there is a unique blossom containing u, but after rotating the hole to v, it is no
longer minimal.

On the other hand, the necessity of having an efficient sampling algorithm for the feasible blossoms
already rules out the simplest possibility, namely, the uniform distribution over all blossoms containing a
given hole vertex u. Indeed, if we could efficiently sample from the uniform distribution over all blossoms
containing a given vertex u, then by an entropy argument we could find arbitrarily large odd cycles in the
graph, which is NP-hard.

Theorem 3.1. Let Sampling Blossoms problem be defined as follows. The input is an undirected graph G
and a near-perfect matching M with holes at w, r ∈ V (G). The output is a uniform sample from the uniform
distribution of blossoms containing w. Unless NP=RP there is no randomized polynomial-time sampler for
Sampling Blossoms.

Proof. We reduce from the problem of finding the longest s-t-path in a directed graph H (ND29 in [5]). We
construct an instance of Sampling Blossoms, that is, G and M as follows. For every v ∈ V (H) we add two
vertices v0, v1 into V (G) and also add {v0, v1} into M . For every edge (u, v) ∈ E(H) we add edge {u1, v0}
into E(G). Finally we add w, r into V (H) and {w, s0}, {t1, w} into E(H).

Note that there is one-to-one correspondence between blossoms that contain w in G and s-t-paths in H.
We now modify G to “encourage longer paths”. We replace each {v0, v1} edge in G by a chain of boxes (with
` boxes) and replace {v0, v1} in M by the unique perfect matching of the chain of boxes. In the modified
graph G for every s-t-path p in H there are now 2k` blossoms that contain w in G, where k is the number
of vertices in p.

Taking ` = n2 a uniformly random blossom that contains w in G will with probability 1−o(1) correspond
to a longest s-t-path in H (the number of s-t-paths is bounded by (n+1)n = 2O(n logn) and hence the fraction

of blossoms corresponding to non-longest s-t-paths is 2O(n logn)2−n
2

= o(1)).

4 A Recursive Algorithm

We now explore a new recursive algorithm for counting matchings, based on the Gallai–Edmonds decompo-
sition. In the worst case, this algorithm may still require exponential time. However, for graphs that have
additional structural properties, for example, those that are “sufficiently close to bipartite” in a sense that
will be made precise, our recursive algorithm runs in polynomial time. In particular, it will run efficiently
on examples similar to those used to prove torpid mixing of Markov chains in the previous section.

We now state the algorithm. It requires as a subroutine an algorithm for computing the permanent
of the bipartite adjacency matrix of a bipartite graph G up to accuracy ε. We denote this subroutine by
Permanent(G, ε). The Permanent subroutine requires time polynomial in |V (G)| and 1/ε using the
algorithm of Jerrum, Sinclair, and Vigoda [7], but we use it as a black-box.

We first argue the correctness of the algorithm.

8

Algorithm 1 Recursive algorithm for approximately counting the number of perfect matchings in a graph

1: procedure Recursive-Count(G, ε)
2: If V (G) = ∅, return 1.
3: Choose u ∈ V (G).
4: Compute the Gallai–Edmonds decomposition of G− u.
5: for all v ∈ D(G− u) do
6: Hv ← the connected component of G− u containing v
7: mv ← Recursive-Count(Hv − v, ε/(2n))
8: end for
9: mC ← Recursive-Count(C(G− u), ε/3)

10: Let X = A(G− u) ∪ {u}, and let Y be the set of connected components in D(G− u). Let G′ be the
bipartite graph on (X,Y) defined as follows: for every x ∈ X and H ∈ Y , if x has any neighbors in H
in G′, add an edge {x,H} in G′ with weight

w(x,H) =
∑

v∈N(x)∩H

mv .

11: return mC ∗Permanent(G′, ε/3)
12: end procedure

Theorem 4.1. Algorithm 1 computes the number of perfect matchings in G to within accuracy ε.

Proof. We show that the algorithm is correct for graphs on n vertices, assuming it is correct for all graphs
on at most n− 1 vertices.

We claim that permanent of the incidence matrix of G′ defined on line 10 equals the number of perfect
matchings in G. Indeed, every perfect matching M of G induces a maximum matching Mu on G − u. By
the Gallai–Edmonds theorem, Mu matches each element of A(G′) with a vertex from a distinct component
of D(G′), leaving one component of D(G′) unmatched. Vertex u must therefore be matched in M with a
vertex from the remaining component of D(G′). Therefore, M induces a perfect matching M ′ on G′. Now
let Hx ∈ Y be the vertex of G′ matched to x for each x ∈ X. Then the number of distinct matchings of G
inducing the same matching M ′′ on G′′ is exactly∏

x∈X

∑
v∈N(x)∩Hx

mv =
∏
x∈X

w(x,Hx)

which is the contribution of M ′ to the permanent of G′. Similarly, from an arbitrary matching M ′ of G′,
with Hx defined as above, we obtain

∏
x∈X w(x,Hx) matchings of G, proving the claim.

Hence, it suffices to to compute the permanent of the incidence matrix of G′ up to accuracy ε. We know
the entries of the incidence matrix up to accuracy ε/(2n), and (1 + ε/(2n))n/2 < 1 + ε/3 for ε sufficiently
small. Therefore, it suffices to compute the permanent of our approximation of the incidence matrix up to
accuracy ε/3 to get overall accuracy better than ε.

The running time of Algorithm 1 is sensitive to the choice of vertex u on line 3. If u can be chosen so
that each component of D(G − u) is small, then the algorithm is an efficient divide-and-conquer strategy.
More generally, if u can be chosen so that each component of D(G−u) is in some sense “tractable”, then an
efficient divide-and conquer strategy results. In particular, since it is possible to exactly count the number
of perfect matchings in a factor-critical graph of bounded order in polynomial time, we obtain an efficient
algorithm for approximately counting matchings in graphs whose factor-critical subgraphs have bounded
order. This is the sense in which Algorithm 1 is efficient for graphs “sufficiently close” to bipartite.

Theorem 4.2. Suppose every factor-critical subgraph of G has order at most k. Then the number of perfect
matchings in G can be counted to within accuracy ε in time 2O(k)poly(n, 1/ε).

The essential idea of the proof is to first observe that a factor-critical graph can be shrunk to a graph
with O(k) edges having the same number of perfect matchings after deleting any vertex. The number of

9

perfect matchings can then be counted by brute force in time 2O(k)poly(n). This procedure replaces the
recursive calls on line 6 of the algorithm.

Proof. We first observe that if H is a factor-critical graph of order k with n vertices, then the number of
perfect matchings in H − v can be counted exactly in time 2O(k)poly(n) for every vertex v. Writing du for
the degree of a vertex u, we have ∑

u∈V (H)

(du − 2) = 2(k − 1), (5)

since adding one ear to a graph adds some number of vertices of degree 2, and increases the degree of two
existing vertices by one each, or one vertex by two. Fix v ∈ H, and suppose there is a vertex u of degree 2
in H − v, with neighbors w1 and w2. Let H ′ denote the multigraph obtained from H − v by contracting the
edges from u to w1 and w2, so H ′ has two fewer vertices than H, and has a vertex w with the same multiset
of neighbors as w1 and w2 (excluding v). Then there is a bijection between the perfect matchings of H ′ and
of H − v; each perfect matching of H ′ lifts to a matching of H − v with a hole at u and exactly one of w1

or w2, and each perfect matching of H − v projects to a perfect matching of H ′ by ignoring the matched
edge at u. Hence, we may contract away all degree-2 vertices of H − v, and obtain a graph with the same
number of perfect matchings in which every vertex (save at most two of degree 1, the former neighbors of
v) has degree at least 3. Then since the contraction does not change the sum in Eq. (5), we have

3(|V (H ′)| − 2) ≤
∑

u∈V (H′)

du ≤ 2(k − 1) + 2|V (H ′)|

and hence H ′ has O(k) edges, and the perfect matchings of H ′ can be enumerated in time 2O(k).
Now we modify Algorithm 1 to run in time 2O(k)poly(n, 1/ε). First, we delete all edges not appearing in

any perfect matching, call Recursive-Count(Gi, ε/(2n)) on each connected component Gi, and multiply
the results of all of these calls to estimate the number of perfect matchings in G. We have C(Gi − u) = ∅
for each such component Gi and every vertex u ∈ V (Gi), since edges leaving C(Gi − u) cannot appear
in any matching of Gi − u. Therefore, the recursive call on line 8 of the algorithm can be eliminated.
On line 6, instead of computing mv by a recursive call, we instead use the procedure described above to
compute it in time 2O(k). Hence, Algorithm 1 requires O(n) calls to a procedure that takes time 2O(k). The
other lines of Algorithm 1 require only polynomial time in n and 1/ε, so in all Algorithm 1 requires time
2O(k)poly(n, 1/ε).

We note that Theorem 4.2 is proved by eliminating recursive calls in the algorithm. Although the
recursive calls of Algorithm 1 can be difficult to analyze, they can also be useful, as we now demonstrate by
showing that Algorithm 1 runs as-is in polynomial time on the counterexample graph of Definition 2.7, for
appropriate choice of the vertex u on the line 3 of the algorithm.

Theorem 4.3. Algorithm 1 runs in polynomial time on the counterexample graph of Definition 2.7, for
appropriate choice of the vertex u on the line 3 of the algorithm

Proof. After deleting the vertices u and v from the torpid mixing gadget H in Figure 2, no odd cycles remain
the graph H. Let U denote the set of all four copies of the vertices u and v appearing in the counterexample
graph G, so |U | = 8. With every recursive call Recursive-Count(G′, ε′), if U ∩ V (G′) 6= ∅, we choose
u ∈ U∩V (G′). Hence, after 8 recursive calls, there are no odd cycles remaining in G′, and each factor-critical
subgraph is a single vertex. When U ∩ V (G′) = ∅, we choose u so that A(G′ − u) = Ω(n)—for example
taking u at one end of a chain of boxes—so that the overall recursive depth is O(1).

Acknowledgements

This research was supported in part by NSF grants CCF-1617306, CCF-1563838, CCF-1318374, and CCF-
1717349. The authors are grateful to Santosh Vempala for many illuminating conversations about Markov
chains and the structure of factor-critical graphs.

10

References

[1] A. Z. Broder. How hard is it to marry at random? (On the approximation of the permanent), Proceed-
ings of the 18th Annual ACM Symposium on Theory of Computing (STOC), 50–58, 1986. Erratum in
Proceedings of the 20th Annual ACM Symposium on Theory of Computing, p. 551, 1988.

[2] J. Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17:449–467, 1965.

[3] T. Gallai. Kritische Graphen II. Magyar Tud. Akad. Mat. Kutató Int. Kőzl., 8:273–395, 1963.

[4] T. Gallai. Maximale systeme unabhängiger kanten. Magyar Tud. Akad. Mat. Kutató Int. Kőzl., 9:401–
413, 1964.

[5] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman & Co., New York, NY, 1979.

[6] M. Jerrum and A. Sinclair. Approximating the permanent. SIAM Journal on Computing, 18(6):1149–
1178, 1989.

[7] M. Jerrum, A. Sinclair, and E. Vigoda. A polynomial-time approximation algorithm for the permanent
of a matrix with non-negative entries. Journal of the ACM, 51(4):671–697, 2004.

[8] M. R. Jerrum, L. G. Valiant, and V. V. Vazirani. Random generation of combinatorial structures from
a uniform distribution. Theoret. Comput. Sci., 43(2-3):169–188, 1986.

[9] P. W. Kasteleyn. Graph theory and crystal physics. In Graph Theory and Theoretical Physics, pages
43–110. Academic Press, London, 1967.

[10] D. A. Levin, Y. Peres, and E. L. Wilmer. Markov Chains and Mixing Times. American Mathematical
Society, Providence, RI, 2009.

[11] L. Lovász. A note on factor-critical graphs. Studia Sci. Math. Hungar, 7(11):279–280, 1972.

[12] A. Schrijver. Theory of Linear and Integer Programming. Wiley, 1998.

[13] A. J. Sinclair. Algorithms for Random Generation and Counting: A Markov Chain Approach,
Birkhäuser, 1988.

[14] L. G. Valiant. The complexity of computing the permanent. Theoretical Computer Science, 8(2):189–201,
1979.

11

	1 Introduction
	1.1 Markov Chains
	1.2 Factor-Critical Graphs

	2 The Jerrum–Sinclair–Vigoda Chain
	3 Chains Based on Edmonds' Algorithm
	4 A Recursive Algorithm

