
ar
X

iv
:1

80
1.

04
48

7v
5

 [
cs

.N
E

]
 2

3
A

ug
 2

01
8

Better Runtime Guarantees

Via Stochastic Domination
∗

Benjamin Doerr

École Polytechnique
CNRS

Laboratoire d’Informatique (LIX)
Palaiseau

France

May 2, 2019

Abstract

Apart from few exceptions, the mathematical runtime analysis of
evolutionary algorithms is mostly concerned with expected runtimes.
In this work, we argue that stochastic domination is a notion that
should be used more frequently in this area. Stochastic domination
allows to formulate much more informative performance guarantees,
it allows to decouple the algorithm analysis into the true algorith-
mic part of detecting a domination statement and the probability-
theoretical part of deriving the desired probabilistic guarantees from
this statement, and it helps finding simpler and more natural proofs.

As particular results, we prove a fitness level theorem which shows
that the runtime is dominated by a sum of independent geometric
random variables, we prove the first tail bounds for several classic
runtime problems, and we give a short and natural proof for Witt’s
result that the runtime of any (µ, p) mutation-based algorithm on
any function with unique optimum is subdominated by the runtime
of a variant of the (1 + 1) EA on the OneMax function. As side-
products, we determine the fastest unbiased (1+1) algorithm for the

∗Extended version of a paper that appeared at EvoCOP 2018 [Doe18a]. This version
contains as new material a section on known precise runtime distributions, a Chernoff
bound for sums of independent coupon collector runtimes, several new tail bounds for
classic runtime results, and a section on counter-examples.

1

http://arxiv.org/abs/1801.04487v5

LeadingOnes benchmark problem, both in the general case and when
restricted to static mutation operators, and we prove a Chernoff-type
tail bound for sums of independent coupon collector distributions.

Keywords: Evolutionary algorithms, runtime analysis.

1 Introduction

The analysis of evolutionary algorithms via mathematical means is an estab-
lished part of evolutionary computation research. The subarea of runtime
analysis aims at giving proven performance guarantees on the time an evo-
lutionary algorithm takes to find optimal or near-optimal solutions. Tradi-
tionally, this area produces estimates for the expected runtime, which are
occasionally augmented by tail bounds. A justification for the restriction to
expectations was that already for very simply evolutionary algorithms and
optimization problems, the stochastic processes arising from running this al-
gorithm on this problem are so complicated that any more detailed analysis
is infeasible. See the analysis how the (1 + 1) evolutionary algorithm opti-
mizes linear functions f : {0, 1}n → R; x 7→ a1x1 + · · ·+ anxn in [DJW02] for
an example.

In this work, we shall argue that the restriction to expectations is less
justified and propose stochastic domination as an alternative. It is clear that
the precise distribution of the runtime of an evolutionary algorithms often
is out of reach (see Section 2 for an overview on what runtime distributions
are known exactly). Finding the precise distribution is maybe not even an
interesting target because most likely already the result will be too compli-
cated to be useful. What would be very useful is a possibly not absolutely
tight upper bound-type statement that concerns the whole distribution of
the runtime.

One way to formalize such statement is via the notion of stochastic dom-
ination. A real-valued random variable Y stochastically dominates another
one X if and only if for each λ ∈ R, we have

Pr[X ≤ λ] ≥ Pr[Y ≤ λ].

If X and Y describe the runtimes of two algorithms A and B, then this
domination statement is a very strong way of saying that algorithm A is
at least as fast as B. See Section 3 for a more detailed discussion of the
implication of such a domination statement.

2

1.1 Our Results

In this work, we shall give three main arguments for a more frequent use
of domination arguments in runtime analysis and support these with several
new runtime results.

Stochastic domination is often easy to show. Surprisingly, despite
being a much stronger type of assertion, stochastic domination statements
are often easy to obtain. The reason is that many of the classic proofs
implicitly contain all necessary information, they only fail to formulate the
result as a domination statement.

As an example, we prove in Section 4 a natural domination version of the
classic fitness level method. In analogy to the classic result, which translates
pessimistic improvement probabilities p1, . . . , pm−1 into an expected runtime
estimate E[T] ≤

∑m−1
i=1

1
pi
, we show that under the same assumptions the

runtime is dominated by the sum of independent geometric random variables
with success probabilities p1, . . . , pm−1. This statement implies the classic
result, but also implies tail bound for the runtime via Chernoff bounds for
geometric random variables. We note that, while our extension of the fitness
level theorem is very natural, the proof is not totally obvious, which might
explain why previous works were restricted to the expectation version.

Stochastic domination allows to separate the core algorithm

analysis and the probability theoretic derivation of probabilistic

runtime statements. The reason why stochastic domination statements
are often easy to obtain is that they are close to the actions of the algorithms.
When we are waiting for the algorithm to succeed in performing a particular
action, then it is a geometric distribution that describes this waiting time.
To make such a statement precise for a given problem, we need to under-
stand how the algorithm achieves the particular goal. This requires a good
understanding of the algorithm and the problem as well as some elementary
probability theory and discrete mathematics, but usually no greater exper-
tise in probability theory. We give in Sections 4.3 and 5 several examples,
mostly using the fitness level method, but also concerning the single-source
shortest paths problem, where the fitness level method is not suitable to give
the best known results.

Once we have a domination statement formulated, e.g., that the runtime
is dominated by a sum of independent geometric distributions, then deeper
probability theoretic arguments like Chernoff-type tail bounds come into play.
This part of the analysis is independent of the algorithm and only relies
on the domination statement. Exemplarily, we derive tail bounds for the

3

runtime of the (1 + λ) EA on OneMax, the (µ+ 1) EA on LeadingOnes,
the (1 + 1) EA on jump functions, the (1 + 1) EA for sorting, the multi-
criteria (1 + 1) EA for the single-source shortest path problem, and some
more results.

That the two stages of the analysis are of a different nature is also vis-
ible in the history of runtime analysis. As discussed above, many classic
proofs essentially contains all ingredients to formulate a domination state-
ment. However, the mathematical tools to analyze sums of independent ge-
ometric random variables were developed much later (and this development
is still ongoing).

This historical note also shows that from the viewpoint of research or-
ganization, it would have been profitable if previous works would have been
formulated in terms of domination statements. This might have spurred a
faster development of suitable Chernoff bounds and, in any case, it would
have made it easier to apply the recently found Chernoff bounds (see Theo-
rems 14 to 16) to these algorithmic problems.

Stochastic domination often leads to more natural and shorter

proofs. To demonstrate this in an application substantially different from
the previous ones, we regard the classic lower-bound result which, in simple
words, states that solving OneMax via the (1 + 1) EA is the fastest op-
timization process among many mutation-based algorithms and problems
with unique optimum. This statement, of course, should be formulated
via stochastic domination and this has indeed been done in previous work.
However, as we shall argue in Section 6, we also have the statement that
when comparing the two processes the distance of the current-best solution
from the optimum for the general function dominates this distance for the
OneMax function. This natural statement immediately implies the domi-
nation relation between the runtimes. We make this precise for the current-
strongest OneMax-is-easiest result [Wit13]. This will shorten the previous,
two-and-a-half pages long complicated proof to an intuitive proof of less than
a page.

Side-results. We use our discussion of previous results on precisely known
distributions of runtimes of evolutionary algorithms to (i) give a formal proof
for the distribution result on the runtime of the (1 + 1) EA on the Leading-
Ones benchmark function stated without proof in [DJWZ13], (ii) to extend
this result to a wide class of (1+1) type algorithms and to time-to-target
runtimes, and (iii) to determine the best possible unbiased (1+1) algorithm

4

for this benchmark function, both in the general case and with the restriction
to static mutation operators (Section 2.3).

We also use our discussion of Chernoff bounds for sums of geometric
random variables to show a Chernoff bound for sums of coupon collector
random variables (Section 4.2).

Related work

The use of stochastic domination is not totally new in the theory of evolu-
tionary computation, however, the results so far appear rather sporadic than
systematic.

Possibly the first to use the notion of stochastic domination was Droste,
who in [Dro03,Dro04] employed it to make precise an argument often used
in an informal manner, namely that some artificial random process is not
faster than the process describing a run of the algorithm under investi-
gation. Using domination as tool in proofs has been done subsequently
in various applications, among others, binary particle swarm (PSO) algo-
rithms [SW08], ant-colony optimization [ST12], evolutionary multi-objective
optimization [BF13], optimization of monotonic functions [CDF14, Len18],
non-elitist algorithms [RS14], fixed budget analyses [LS15], the simple
GA [OW15], estimation-of-distribution algorithms [FKKS17,KW17], genetic
programming [DKLL17], island models [DFF+17], and dynamic and noisy
optimization [DNDD+18].

The first time that stochastic domination was used to formulate results
(though without explicitly calling it stochastic domination) was in [BE08],
where several result where shown of the type that when one mutation op-
erator is better than another one (in a suitable domination sense), then the
algorithm using the first one always has at least as good solutions as the
second (in the sense of stochastic domination). In [Wit13], the result is
shown that the runtime of an arbitrary (µ, p) mutation-based algorithm on
any objective function with unique optimum dominates the runtime of the
(1 + 1) EA with mutation rate p and best-of-µ initialization on theOneMax

function (see Section 6 for more details on this result).
What comes closest to this work is the paper [ZLLH12], which also tries to

establish runtime analysis beyond expectations in a formalized manner. The
notion proposed in [ZLLH12], called probable computational time L(δ), is the
smallest time T such that the algorithm under investigation within the first
T fitness evaluations finds an optimal solution with probability at least 1−δ.
In some sense, this notion can be seen as an inverse of the classic tail bound
language, which makes statements of the type that the probability that the
algorithm needs more than T iterations, is at most some function in T , which

5

is often has an exponential tail. To prove results on the probable computa-
tional time, the authors implicitly use (but do not prove) the result that the
fitness level method gives a stochastic domination by a sum of independent
geometric random variables (which we prove in Section 4). When using this
result to obtain bounds on the probable computational time, they suffer from
the fact that at that time, good tail bounds for sums of geometric random
variables with different success probabilities where not yet available (these
appeared only in [Wit14,DD15]). For this reason, they had to use a self-made
tail bound, which unfortunately gives a non-trivial tail probability only for
values higher than twice the expectation. With this limitation, tail bounds
for the runtimes of the algorithms RLS, (1 + 1) EA, (µ+ 1) EA, MMAS∗ and
binary PSO on the optimization problems OneMax and LeadingOnes are
proven.

In [DL17], the complexity theoretic notion of p-Monte Carlo black-box
complexity was introduced, which serves at providing more information than
what expected runtimes convey for lower bounds on runtimes.

2 Exact Distributions

We said above that stochastic domination can be used to formulate runtime
bounds in a distributional sense, which can give a very complete picture
but without having to determine the exact runtime distribution. Before
going into details, we shall summarize in this section the few situations in
which it has been possible to describe the runtime distribution precisely. Not
surprisingly, these all regard very simple randomized search heuristics.

This section contains a few new results, e.g., the determination of the
fastest unbiased (1+1) algorithm for the LeadingOnes function for static
and dynamic mutation operators.

2.1 Random Search

The random search heuristics repeatedly samples solutions chosen uniformly
at random until some termination criterion is met. Therefore, the time to
sample a certain solution (or one of a given subset) follows a geometric dis-
tribution. We say that a random variable X is geometrically distributed with
parameter 0 < p ≤ 1 and write X ∼ Geom(p) if

Pr[X = k] = (1− p)k−1p

for all k ∈ N. Note that this implies Pr[X ≥ k] = (1− p)k−1 and E[X] = 1
p
.

6

Lemma 1. Consider some search or optimization problem with finite search
space S. Let T be a non-empty subset of S. Let T be the random variable
describing the first time random search samples a solution from T . Then

T ∼ Geom

(

|T |

|S|

)

.

In particular, the time T to find a unique optimum in a problem with bit-
string representation of length n is T ∼ Geom(2−n).

2.2 Randomized Local Search

The randomized local search (RLS) heuristic starts with a random search
point and then repeats sampling a neighbor of the current solution and re-
placing the current solution with this offspring if it is at least as good. In
the case of the bit-string representation of length n, neighbors are bit-strings
which differ in exactly one bit. Hence this heuristic repeats flipping a single
random bit and continues with the new solution if it is not worse than the
parent. This is exactly Algorithm 1 with the 1-bit mutation operator.

Algorithm 1: The family of (1+1) search heuristics for maximizing a
given objective function f : {0, 1}n → R. When the mutation operator
returns a random Hamming neighbor of x, that is, flips a random bit
in x, then this algorithm is the RLS heuristic. When the mutation
operator flips each bit independently with probability p, then we obtain
the (1 + 1) EA with mutation rate p. The classic (1 + 1) EA uses a
mutation rate of p = 1

n
.

1 Choose x ∈ {0, 1}n uniformly at random;
2 for t = 1, 2, 3, . . . do
3 y ← mutate(x);
4 if f(y) ≥ f(x) then x← y;

When used to optimize the classic benchmark function
OneMax : {0, 1}n → R defined by

OneMax(x) =
n
∑

i=1

xi

or any other strictly monotonic function f : {0, 1}n → R (where flipping
a 0-bit into a 1 always increases the fitness), the resulting optimization

7

process is equivalent to a coupon collector process in which each type of
coupon is present initially with probability 1

2
, see [DD16]. The runtime of

the coupon collector process with n− k of the n coupons initially present is
∑k

i=1Geom(i
n
), where this sum is understood as sum of independent distri-

butions. Consequently, the runtime of RLS on strictly monotonic functions
can be described as follows, where we write X ∼ Bin(n, p) to indicate that
X follows a binomial distribution with parameters n and p ∈ [0, 1], that is,
we have Pr[X = i] =

(

n
i

)

pi(1− p)n−i for all i ∈ [0..n].

Lemma 2. Let f : {0, 1}n → R be any strictly monotonic function. Let T
be the number of iterations1 taken by RLS to sample the (unique) optimum
of f . Then

T ∼

n−1
∑

i=0

1X≤i ·Geom(n−i
n
),

where X ∼ Bin(n, 1
2
) and we assume that X and the arising geometric dis-

tributions are independent.

2.3 The LeadingOnes Benchmark Problem

For a surprisingly large class of algorithms the precise runtime on the
LeadingOnes benchmark problem can be determined. The function
LeadingOnes : {0, 1}n → R is defined by

LeadingOnes(x) = min{i ∈ [0..n] | ∀j ∈ [1..n] ∩ R≤i : xj = 1}

for all x ∈ {0, 1}n.
In parallel independent work, the precise expected runtime of the

(1 + 1) EA on the LeadingOnes benchmark function was determined
in [BDN10, Sud13] (note that [Sud13] is the journal version of a work that
appeared at the same conference as [BDN10]). In terms of results, the two
works are very similar. The work [Sud13] is also regards the (1 + 1) EA with
Best-of-µ initialization and shows that a lower-order runtime gain can be ob-
tained from taking as initial solution the best of, say, n random search points.
The work [BDN10] also shows that the often recommended mutation rate of
p = 1/n is not optimal. A runtime smaller by 16% can be obtained from tak-
ing p = 1.59/n and another 12% can be gained by using a fitness-dependent
mutation rate.

1In this work, we shall call the runtime of an iterative algorithm the number of iterations
taken until the optimum is generated for the first time. In comparison with the classic
definition, the number of fitness evaluations until the optimum is evaluated, we thus do
not count the initial search points and, in the case that per iteration λ > 1 individuals are
generated, we do not count the runtime of the iteration as λ, but as one.

8

In terms of methods, the two works are substantially different. An advan-
tage of the analysis in [BDN10] is that it can easily be reformulated to give
the precise distribution of this runtime. This was first observed in [DJWZ13],
but used several times subsequently. The arguments in [BDN10] are not spe-
cific to the (1 + 1) EA, but are valid for any other (1+1) algorithm as defined
in Algorithm 1. Since already the observation in [DJWZ13] was not formally
proven, we now quickly formulate the general result and prove it.

Theorem 3. Consider the run of a (1+1) algorithm optimizing the
LeadingOnes function. Let T be the first time the optimum is generated.
Then

T ∼
n−1
∑

i=0

Xi ·Geom(qi),

where X0, X1, . . . , Xn−1 are uniformly distributed binary random variables,
the Xi and Geom(qi) are mutually independent, and for all i ∈ [0..n − 1]
we denote by qi the probability that the mutation operator generates from a
search point of fitness exactly i a strictly better search point. Consequently,
E[T] = 1

2

∑n−1
i=0

1
qi
, where we read 1

pi
=∞ when pi = 0.

Proof. For all i ∈ [0..n], denote by T 0
i the runtime of the algorithm when

starting with a random search point of fitness exactly i. Note that if x is
such a random search point, then xj = 1 for j ∈ [1..i], xi+1 = 0, and for
j ∈ [i+ 2..n] the xj are independent random variables uniformly distributed
in {0, 1}. Let T rand

i denote the runtime of the algorithm when starting with
a random search point x of fitness at least i, that is, we have xj = 1 for
j ∈ [1..i] and for j ∈ [i + 1..n] the xj are independent random variables
uniformly distributed in {0, 1}.

Trivially, we have T 0
n = T rand

n = 0. The main technical insight is that due
to the random initialization in the algorithm, we have

T 0
i = Geom(qi) + T rand

i+1 (1)

for i < n. Here Geom(qi) describes the waiting time for an improvement
when having a search point of fitness exactly i. At the moment when this
improvement happens, the bits with index i+2 or higher are still independent
and uniformly distributed binary random variables, since their value cannot
have had any influence on the run of the algorithm. Formally speaking, we
have (xi+2, . . . , xn) = (x0

i+2, . . . , x
0
n) ⊕ (yi+2, . . . , yn), where x0 denotes the

random initial search point and y = (yi+2, . . . , yn) describes which bits have
changed compared to the initial bit-string. Note that y is independent of
(x0

i+2, . . . , x
0
n). Hence since (x0

i+2, . . . , x
0
n) is a random binary string, also

(xi+2, . . . , xn) = (x0
i+2, . . . , x

0
n)⊕ (yi+2, . . . , yn) is a random binary string.

9

With (1) we easily compute

T rand
i = XiT

0
i + (1−Xi)T

rand
i+1

= Xi(Geom(qi) + T rand
i+1) + (1−Xi)T

rand
i+1

= Xi Geom(qi) + T rand
i+1 ,

where Xi is a uniformly distributed binary random variable independent of
any randomness used in the other distributions. From the latter equation, a
simple induction proves the claim. Note that the runtime of the algorithm
is T rand

0 .

As observed in [DJWZ13] and exploited for a fixed-budget analysis, an
analogous result is valid for the time T→a to first reach a search point of
fitness at least a ∈ [0..n], namely T→a ∼

∑a−1
i=0 Xi · Geom(qi); note that in

Lemma 5 of [DJWZ13], the range of the sum starts at 1, but this clearly
is a typo. Since this extension to time-to-target runtimes can be important
(see [CD17]), we quickly make this point precise even if in the remainder of
this work we restrict ourselves to the traditional runtime analysis target of
determining the time to find the optimum.

Corollary 4. In the notation of Theorem 3, the time T→a the algorithm
takes to find a solution of fitness at least a is

T→a ∼
a−1
∑

i=0

Xi ·Geom(qi)

for all a ∈ [0..n].

Proof. Let a ∈ [0..n]. Denote by T 0
i , T

rand
i the analogues of the times defined

in the previous proof, but for the target of reaching a fitness of at least a.
Then T 0

a = T rand
a = 0 and for i < a the same relations hold as above. This

proves the claim.

Theorem 3 allows to determine precisely the expected runtimes of many
(1+1) algorithms. More importantly, it also allows to determine optimal
parameters for the mutation operator.

• For the classic RLS heuristic always flipping a single random bit, we
have qi =

1
n
for all i ∈ [0..n − 1]. Consequently, the expected runtime

is E[T] = 0.5n2. As we shall show below, this is also the best static
unbiased mutation operator for the LeadingOnes problem.

10

• Motivated by an analysis how evolutionary algorithms can solve prob-
lems with unknown solution length (that is, how many bits are ac-
tually relevant for the problem), in [DDK17, Lemma 3.4] an exten-
sion of the RLS heuristic was analyzed which, for a given sequence
p1, p2, . . . , pn ∈ [0, 1] with

∑n
i=1 pi ≤ 1, as 1-bit mutation flips the i-th

bit with probability exactly pi. For this mutation operator, an ex-
pected runtime of 1

2

∑n
i=1

1
pi

was shown for instances of fixed length
n. Hence for known solution length, there is no gain from flipping bits
with position-dependent probabilities. This result is now an immediate
consequence of Theorem 3.

• For the variant of RLS which randomly mixes the 1-bit and 2-bit flip
operator, that is, with probability P one random bit is flipped and
with probability 1−P two (different) random bits are flipped, we have
qi =

P
n
+2(1−P) n−i−1

n(n−1)
. From this, a slightly tedious calculation gives an

expected runtime of E[T] = 1
4(1−p)

ln(2−p
p
)n2 + o(n2), see [LOW17] and

note that the fact that the authors consider 2-bit flips with repetition
(that is, with probability 1/n the same bit is flipped twice resulting in a
copy of the parent) has no influence on the result apart from lower-order
terms.

• When flipping k random bits in a search point with fitness i, the prob-
ability q(n, k, i) of obtaining a strictly better solution is q(n, k, i) =
k(n−i−1)...(n−i−k+1)

n(n−1)...(n−k+1)
. Consequently, q(n, k, i) ≤ q(n, k + 1, i) if and only

if i ≤ n−k
k+1

. This gives that the best (that is, largest) value for qi is
obtained from flipping k(n, i) := ⌊ n

i+1
⌋ bits when the current fitness

is i.2 This fitness-dependent choice of the mutation operator gives a
runtime of approximately 0.39n2. Since any unary unbiased mutation
operator (see [LW12]) is the convex combination of k-bit flip opera-
tors (see [DDY16b] or [DKLW13]), this algorithm also is the fastest
unbiased (1+1) algorithm for LeadingOnes.

• For the (1 + 1) EA, that is, when the mutation operator is standard-
bit mutation with mutation rate p, we have qi = qi(p) = (1 − p)ip
for all i ∈ [0..n − 1]. This yields an expected runtime of E[T] =
1

2p2
((1−p)1−n− (1−p)). For the standard choice p = 1

n
, this is E[T] =

2In an earlier version of this work, we said that ⌊n+1

i+1
⌋ would be the optimal number

of bits to flip in a search point with fitness i. Apart from the trivial case i = 0, where
the previous formulation gives n + 1 instead of the desired value of n, both versions are
correct. For all i > 0 such that two definitions differ, both numbers of bits to be flipped
give the same probability for a fitness improvement. Thanks to Carola Doerr and Markus
Wagner for pointing me to the new formula from their forthcoming work [DW18].

11

1
2
(e−1−o(1))n2 ≈ 0.86n2. A better (and the asymptotically best among

all static rates) expected runtime is obtained from using p ≈ 1.59/n,
giving E[T] ≈ 0.77n2. The best (fitness-dependent) mutation rate
is using pi = 1

i+1
when the current fitness is i, giving a runtime of

E[T] = e
4
n2 ± O(n) ≈ 0.77n2. All these results are from [BDN10].

Apparently unaware of this work, the expected runtime in the case
p = 1

n
was again determined in [DAS+17].

• Since the heavy-tailed mutation operator proposed in [DLMN17] ap-
plies standard-bit mutation with a randomly chosen mutation rate, the
qi are convex combinations of the qi(p) computed above. This again
determines the expected runtime of the (1 + 1) EA with this mutation
operator, however, a simple closed formula as for standard-bit mutation
with fixed rate is not known.

• When allowing position-dependent mutation rates for the (1 + 1) EA,
that is, the i-th bit is flipped with probability pi independently for all
i ∈ [1..n], then an expected runtime of E[T] = 1

2

∑n
i=1(pi

∏i−1
j=1(1 −

pj))
−1 was shown in [DDK17]. This is minimized by taking pi =

1
i
for

all i, which yields E[T] = 0.5n2.

We now prove the results promised above that the 1-bit mutation operator
as used by RLS is the (unique) best unbiased static mutation operator for
the (1+1) algorithm scheme. We say that a (1+1) algorithm uses a static
mutation operator if for all x ∈ {0, 1}n the distribution of the offspring
generated from x is the same throughout the run of the algorithm.

Theorem 5. For any (1+1) algorithm using static unbiased mutation, the
expected runtime on the LeadingOnes function is at least 0.5n2. Moreover,
RLS is the only such algorithm satisfying this bound.

Proof. Consider a static unbiased mutation operator. As above, there are
r0, r1, . . . , rn ∈ [0, 1] such that

∑n
k=0 rk = 1 and such that the mutation

operator (unchanged throughout the run of the algorithm) can be written as
“sample k ∈ [0..n] with probability rk and then flip exactly k random bits”.

Let again q(n, k, i) = k(n−i−1)...(n−i−k+1)
n(n−1)...(n−k+1)

be the probability of obtaining
a strictly better solution from a search point of fitness i by flipping k bits.
We apply Theorem 3 with qi =

∑n−1
k=0 rkq(n, k, i) and obtain an expected

optimization time of E[T] = 1
2

∑n−1
i=0

1
qi
. We show that this expression, viewed

as function of the rk, has a unique minimum for r1 = 1 (and hence rk = 0
for all k 6= 1).

12

It is clear that flipping zero bits can never lead to an improvement. Hence
moving any positive mass on r0 to r1 would strictly improve the algorithm.
Without loss of generality, we thus assume in the following that r0 = 0.

We first show that, regardless of the remaining rk, we have
∑n−1

i=0 qi = 1.
This is, naturally, equivalent to saying that

n−1
∑

i=0

q(n, k, i) = 1 (2)

for all k ∈ [1..n]. Since we have a precise expression for the q(n, k, i), equa-
tion (2) in principle could be shown via Faulhaber’s formula [Fau31]. For-
tunately, a much simple probabilistic argument can be applied. Let Ai be
the event that in an application of the k-bit mutation operator the i-th bit is
flipped and that no bit j with j < i is flipped. Then Pr[Ai] = q(n, k, i− 1).
Trivially, the Ai are disjoint events that cover the whole probability space.
Hence

1 = Pr[A1 ∪ · · · ∪ An] =

n
∑

i=1

Pr[Ai] =

n−1
∑

i=0

q(n, k, i)

for all k ∈ [0..n− 1] and thus
∑n−1

i=0 qi = 1.
Next, we recall that among all q0, . . . , qn−1 with

∑n−1
i=0 qi = 1, the sum

∑n−1
i=0

1
qi
of the reciprocals is minimal if and only if the qi are all equal. Since

i 7→ q(n, k, i) is non-increasing, so is i 7→ qi, and the only way to have the
qi all equal is that for all k ∈ [1..n] the function i 7→ rkq(n, k, i) is constant.
Since only for k = 1 the function i 7→ q(n, k, i) is constant, we have rk = 0
for all k 6= 1, and thus r1 = 1 as claimed.

2.4 Conclusion on Exact Runtime Distributions

The results on LeadingOnes, in particular, how the knowledge of the pre-
cise distribution easily yields optimal parameter values, show that under-
standing the precise runtime distribution would be highly desirable.

However, it has to be noticed that the results presented above are limited
to very restricted settings and it is highly unlikely that they can be extended
significantly. For example, that the exact runtime analysis of randomized lo-
cal search on OneMax can be extended to other algorithms appears hard to
believe given that for the runtime of the (1 + 1) EA onOneMax, despite sig-
nificant efforts [Rud97,DFW10,DFW11,Sud13,HPR+18], not even an exact
value for the expectation is known. Similarly, the results for LeadingOnes

depend crucially on the facts that only (1+1) algorithms are regarded and
that the initial individual is random. For a different initialization, none of the

13

results would hold and also analogous results determining the exact runtime
distribution are not in sight.

For this reason, the approach discussed in the following is promising: To
not try to find the exact distribution, but to ask for distributions which
are upper bounds in a very strong sense, namely in the sense of stochas-
tic domination. With this notion we will then, e.g., be able to say that
the runtime distribution of the (1 + 1) EA on OneMax is dominated by
∑n

i=1Geom(i
en
) or that the runtime distribution for an arbitrary (1+1) algo-

rithm on LeadingOnes is dominated by
∑n−1

i=0 Geom(qi) regardless of how
the initial solution is chosen.

We note without further detail that another way of weakening the aim
of an exact runtime distribution is to give a limiting distribution only. This
has been done for the runtime of RLS and (1 + 1) EA on OneMax and
the Needle function [GKS99] and on the LeadingOnes function [Lad05].
For example, it is shown in [Lad05] that the runtime Tn of the (1 + 1) EA
with mutation rate c/n on the n-dimensional LeadingOnes function has
the property that

Tn −
ec−1
2c2

n3/2

converges in distribution to a centered Gaussian random variable with vari-
ance

σ2 =
3(e2c − 1)

8c3
.

The results on the runtime of the (1 + 1) EA on OneMax and Leading-

Ones have been reproven with different methods and made significantly more
precise in [HPR+18].

3 Stochastic Domination

In this section, we recall the definition of stochastic domination and collect
a few known properties of this notion. For an extensive treatment of various
forms of stochastic orders, we refer to [MS02].

3.1 Definition of Stochastic Domination

Stochastic domination is usually defined as follows.

Definition 6 (Stochastic domination). Let X and Y be random variables
not necessarily defined on the same probability space. We say that Y
stochastically dominates X, written as X � Y , if for all λ ∈ R we have
Pr[X ≤ λ] ≥ Pr[Y ≤ λ].

14

If Y dominates X , then the cumulative distribution function of Y is point-
wise not larger than the one of X . The definition of domination is equivalent
to “∀λ ∈ R : Pr[X ≥ λ] ≤ Pr[Y ≥ λ]”, which shows more clearly why we feel
that Y is at least as large as X .

Concerning nomenclature, we remark that some research communities
in addition require that the inequality is strict for at least one value of λ.
Hence, intuitively speaking, Y is strictly larger than X . From the mathe-
matical perspective, this appears not very practical, and from the computer
science perspective it is not clear what can be gained from this alternative
definition. Consequently, our definition above is more common in computer
science (though, e.g., [ZLLH12] also use the alternative definition).

One advantage of comparing two distributions via the notion of domina-
tion is that this makes a statement over the whole domain of the distributions,
including “rare events” on the tails. If the runtime TA of some algorithm A
is dominated by the runtime TB of algorithm B, then not only A is better
than B in average, but also exceptionally large runtimes occur less frequent
when using A.

A second advantage is that domination is invariant under monotonic re-
scaling. Imagine that running an algorithm for time t incurs some cost c(t).
We may clearly assume that c is monotonically increasing, that is, that t1 ≤ t2
implies c(t1) ≤ c(t2). Then TA � TB implies c(TA) � c(TB). Hence changing
the cost measure does not change our feeling that algorithm A is better
than B. Note that this is different for expectations. We may well have
E[TA] < E[TB], but E[c(TA)] > E[c(TB)].

3.2 Properties of Stochastic Domination

We collect a few useful properties of stochastic domination. We start with
three elementary observations.

Lemma 7. If X � Y , then E[X] ≤ E[Y].

Lemma 8. The following two conditions are equivalent.

(i) X � Y .

(ii) For all monotonically increasing functions f : R→ R, we have

E[f(X)] ≤ E[f(Y)].

Lemma 9. Let X and Y be random variables.

(i) If X and Y are defined on the same probability space and X ≤ Y , then
X � Y .

15

(ii) If X and Y are identically distributed, then X � Y .

The following non-trivial lemma will be needed in our proof of the ex-
tended fitness level theorem. It was first proven a in slightly weaker form
in [DHK12] and [Doe11]. The current version is from [Doe18b].

Lemma 10. Let X1, . . . , Xn be arbitrary discrete random variables. Let
X∗

1 , . . . , X
∗
n be discrete random variables that are mutually independent. As-

sume that for all i ∈ [1..n] and all x1, . . . , xi−1 with Pr[X1 = x1, . . . , Xi−1 =
xi−1] > 0, we have

Pr[Xi ≥ k | X1 = x1, . . . , Xi−1 = xi−1] ≤ Pr[X∗
i ≥ k]

for all k ∈ R, that is, X∗
i dominates (Xi | X1 = x1, . . . , Xi−1 = xi−1). Then

n
∑

i=1

Xi �

n
∑

i=1

X∗
i .

The following result is again elementary. For discrete random variables,
it is a special case of Lemma 10.

Lemma 11. Let X1, . . . , Xn be independent random variables defined over
some common probability space. Let Y1, . . . , Yn be independent random vari-
ables defined over a possibly different probability space. If Xi � Yi for all
i ∈ [1..n], then

n
∑

i=1

Xi �
n
∑

i=1

Yi.

3.3 Coupling

Stochastic domination is tightly connected to coupling. Coupling is an
analysis technique that consists of suitably defining two unrelated random
variables over the same probability space to ease comparing them. Let X and
Y be two random variables not necessarily defined over the same probability
space. We say that (X̃, Ỹ) is a coupling of (X, Y) if X̃ and Ỹ are defined
over a common probability space and if X and X ′ as well as Y and Y ′ are
identically distributed. This definition itself is very weak. (X, Y) have many
couplings and most of them are not interesting. So the art of coupling as
a proof and analysis technique is to find a coupling of (X, Y) that allows
to derive some useful information. This is often problem-specific, however,
also the following general result in known. It in particular allows to couple
dominating random variables. We shall use it for this purpose in Section 6.

16

Theorem 12. Let X and Y be random variables. Then the following two
statements are equivalent.

(i) X � Y .

(ii) There is a coupling (X̃, Ỹ) of (X, Y) such that X̃ ≤ Ỹ .

Without going into further detail, we note that coupling is not restricted
to real-values random variables. In the analysis of population-based evo-
lutionary algorithms, a powerful strategy to prove lower bounds is to cou-
ple the true population of the algorithm with the population of an arti-
ficial process without selection and by this overcome the difficult depen-
dencies introduced by the variation-selection cycle of the algorithm. This
was first done in [Wit06] and [Wit08] for the analysis of the (µ+ 1) EA
and an elitist steady-state GA. This technique then found applications
for memetic algorithms [Sud09], aging-mechanisms [JZ11], non-elitist algo-
rithms [LY12], multi-objective evolutionary algorithms [DKV13], and the
(µ+ λ) EA [ADFH18].

4 Domination-based Fitness Level Method

In this section, we prove a version of the fitness level theorem that gives
domination statements and we apply it to several classic problems.

The fitness level method, invented by Wegener [Weg01], is one of the most
successful early analysis methods in the theory of evolutionary computation.
It builds on the idea of partitioning the search space into levels Ai, i =
1, . . . , m, which contain search points of strictly increasing fitness (that is,
for all i ∈ [1..m− 1], x ∈ Ai, and y ∈ Ai+1, the fitness of y is better than the
one of x).

We then try to show a lower bound pi for the probability that, given that
the best-so-far search point is in Ai, we generate in one iteration a search
point in a higher level (due to this reference to the best-so-far search point,
the fitness level theorem is mostly used for elitist algorithms). From this
data, the fitness level theorem gives the estimate

E[T] ≤
m−1
∑

i=1

1

pi

for the time T (that is, the number of iterations taken) to find a search
point in the highest level. Traditionally it is assumed that this highest level
contains only optimal solutions, but this restriction can be omitted and the

17

theorem then gives bounds for the time needed to reach a solution having at
least a certain fitness.

We also note that, in principle, there is no need to restrict the fitness level
method to fitness levels. Any partition of the set of possible states of the
algorithm into a sequence of subsets such that the algorithm cannot leave the
current state to a state in a lower-order set would be sufficient. We analyze
an application of this type in Section 4.3.3, but stick to the usual fitness level
language in the remainder.

4.1 Domination-Version of the Fitness Level Theorem

We shall now show that under the same assumptions, a much stronger state-
ment is valid, namely that the runtime T is dominated by

∑m−1
i=1 Geom(pi),

that is, a sum independent random variables following geometric distribu-
tions with success probabilities pi (see Section 2.1 for a definition of the
geometric distribution). This result appears to be very natural and was used
without proof in [ZLLH12], yet its proof requires the non-trivial Lemma 10.

Theorem 13 (Domination version of the fitness level method). Consider
an elitist evolutionary algorithm A maximizing a function f : Ω → R. Let
A1, . . . , Am be a partition of Ω such that for all i, j ∈ [1..m] with i < j and
all x ∈ Ai, y ∈ Aj, we have f(x) < f(y). Set A≥i := Ai ∪ · · · ∪ Am. Let
p1, . . . , pm−1 be such that for all i ∈ [1..m− 1] we have that if the best search
point in the current parent population is contained in Ai, then independently
of the past with probability at least pi the next parent population contains a
search point in A≥i+1.

Denote by T the (random) number of iterations A takes to generate a
search point in Am. Then

T �
m−1
∑

i=1

Geom(pi),

where this sum is to be understood as a sum of independent geometric distri-
butions.

Proof. Consider a run of the algorithm A. For all i ∈ [1..m], let Ti be the
first time (iteration) when A has generated a search point in A≥i. Then
T = Tm =

∑m−1
i=1 (Ti+1 − Ti). By assumption, Ti+1 − Ti is dominated by

a geometric random variable with parameter pi regardless what happened
before time Ti. Consequently, Lemma 10 gives the claim.

18

4.2 Chernoff Bounds for Sums of Independent Geo-

metric Random Variables

By Lemma 7, the expected runtime in Theorem 13 satisfies E[T] ≤
∑m−1

i=1
1
pi
,

which is the common version of the fitness level theorem [Weg01]. However,
by using tail bounds for sums of independent geometric random variables,
we also obtain runtime bounds that hold with high probability. This was
first proposed in [ZLLH12], but did not give very convincing results due to
the lack of good tail bounds at that time. We briefly present the tail bounds
known by now and then give a few examples how to use them together with
the new fitness level theorem.

Theorem 14. Let X1, . . . , Xn be independent geometric random variables
with success probabilities p1, . . . , pn. Let pmin := min{pi | i ∈ [1..n]}. Let
X :=

∑n
i=1Xi and µ = E[X] =

∑n
i=1

1
pi
.

(i) For all δ ≥ 0,

Pr[X ≥ (1 + δ)µ] ≤
1

1 + δ
(1− pmin)

µ(δ−ln(1+δ)) (3)

≤ exp(−pminµ(δ − ln(1 + δ))) (4)

≤

(

1 +
δµpmin

n

)n

exp(−δµpmin) (5)

≤ exp

(

−
(δµpmin)

2

2n(1 + δµpmin

n
)

)

. (6)

(ii) For all 0 ≤ δ ≤ 1,

Pr[X ≤ (1− δ)µ] ≤ (1− δ)pminµ exp(−δpminµ) (7)

≤ exp

(

−
δ2µpmin

2− 4
3
δ

)

(8)

≤ exp(−1
2
δ2µpmin). (9)

Estimates (3) and (4) are from [Jan17], bound (5) is from [Sch00], and (6)
follows from the previous by standard estimates. The lower tail bound (7) is
from [Jan17]. It implies (8) via standard estimates. Inequality (9) appeared
in [Sch00].

It is surprising that none of these useful bounds appeared in a reviewed
journal. For the case that all geometric random variables have the same
success probability p, the bound

Pr[X ≥ (1 + δ)µ] ≤ exp

(

−
δ2

2

n− 1

1 + δ

)

(10)

19

appeared in [DHK11].
The bounds of Theorem 14 allow the geometric random variables to have

different success probabilities, however, the tail probability depends only on
the smallest of them. This is partially justified by the fact that the cor-
responding geometric random variable has the largest variance, and thus
might be most detrimental to the desired strong concentration. If the suc-
cess probabilities vary significantly, however, then this approach gives overly
pessimistic tail bounds. Witt [Wit14] proves the following result, which can
lead to stronger estimates.

Theorem 15. Let X1, . . . , Xn be independent geometric random variables
with success probabilities p1, . . . , pn. Let X =

∑n
i=1Xi, s =

∑n
i=1(

1
pi
)2, and

pmin := min{pi | i ∈ [1..n]}. Then for all λ ≥ 0,

Pr[X ≥ E[X] + λ] ≤ exp

(

−
1

4
min

{

λ2

s
, λpmin

})

, (11)

Pr[X ≤ E[X]− λ] ≤ exp

(

−
λ2

2s

)

. (12)

As we shall see, we often encounter sums of independent geometrically
distributed random variables X1, . . . , Xn with success probabilities pi pro-
portional to i. For this case, the following result from [DD15] gives stronger
tail bounds than the previous result. Recall that the harmonic number Hn

is defined by Hn =
∑n

i=1
1
i
.

Theorem 16. Let X1, . . . , Xn be independent geometric random variables
with success probabilities p1, . . . , pn. Assume that there is a number C ≤ 1
such that pi ≥ C i

n
for all i ∈ [1..n]. Let X =

∑n
i=1Xi. Then

E[X] ≤ 1
C
nHn ≤

1
C
n(1 + lnn), (13)

Pr[X ≥ (1 + δ) 1
C
n lnn] ≤ n−δ for all δ ≥ 0. (14)

A brief look at the last lines of the proof of this result in [DD15] shows
that also the following, minimally stronger tail bound holds for all λ ∈ N.

Pr[X ≥ 1
C
n lnn + λ] ≤ n

(

1−
C

n

)
1

C
n lnn+λ−1

<

(

1−
C

n

)λ−1

This immediately gives the domination result

X � 1
C
n lnn+Geom(C

n
). (15)

This domination result allows to show tail bounds for sums of independent
random variables having a distribution as in Theorem 16. While we shall not
need this in this work, the regular occurrence of such distributions in runtime
analysis justifies showing the following result.

20

Theorem 17. Let Y1, . . . , Ym be independent, not necessarily identically dis-
tributed, and let each one satisfy the assumptions made on X in Theorem 16.
Let Y =

∑m
i=1 Yi. Then E[Y] ≤ 1

C
nmHn ≤

1
C
(ln(n) + 1)nm and

Pr[Y ≥ 1
C
(ln(n) + 1)nm+ λ] ≤ exp

(

−
λ2C2

2n2m(1 + λC
nm

)

)

.

Proof. Let p = C
n
and let Z be the sum of m independent Geom(p) random

variables. Since Yi �
1
C
n lnn + Geom(p) by (15), Lemma 11 shows Y �

1
C
mn lnn + Z. Hence for all λ ≥ 0 we compute

Pr[Y ≥ 1
C
(ln(n) + 1)nm+ λ] ≤ Pr[Z ≥ E[Z] + λ]

≤ exp

(

−
λ2p2

2m(1 + λp
m
)

)

,

where the last estimate follows from (6).

We formulate explicitly the following corollary for sums of independent
identical coupon collector distributions. In the basic coupon collector process,
there are n types of coupons. In each round, we obtain a coupon of a random
type. The question is how many rounds are needed to have at least one
coupon of each type. As a minimal extension of the very basic version, let us
assume that we start this process having already coupons of n− k different
types, that is, we are missing only k types. Let then Dk

n be the distribution
describing the number of rounds taken until we have a coupon of each type.
Clearly, Dk

n =
∑k

i=1Geom(i
n
). By the above theorem (taking k as n and C

as k
n
), we obtain the following result.

Corollary 18. Let m,n ∈ N, k ∈ [1..n], and Y be the sum of m independent
Dk

n coupon collector distributions. Then

E[Y] = mnHk ≤ mn(ln(k) + 1),

Pr[Y ≥ mn(ln(k) + 1) + δn] ≤ exp

(

−
δ2

2m(1 + δ
m
)

)

.

4.3 Applications of the Fitness Level Theorem

We now present several examples where our fitness level theorem gives an
upper bound in the domination sense and where this, often together with
the just presented tail bounds, leads to new tail bounds for the runtime of
different evolutionary algorithms.

21

4.3.1 General Upper Bound for Mutation-based Algorithms

Consider the optimization of an arbitrary f : {0, 1}n → R via any evolution-
ary algorithm A which creates its offspring as random search points and via
standard-bit mutation with mutation rate p ≤ 1

2
from previous search points.

Then for any such offspring the probability that it is an optimal solution is at
least pn, regardless of the history of the optimization process. Consequently,
the runtime T of A on f satisfies

T � Geom(pn),

which implies

E[T] ≤ p−n,

Pr[T ≥ γp−n + 1] ≤ (1− pn)γp
−n

≤ e−γ for all γ ≥ 0.

Note that here the tail bound follows immediately from the definition of the
geometric distribution. The result on the expectation was shown for the
(1 + 1) EA with mutation rate p = 1

n
already in the seminal paper [DJW02]

with essentially the same argument.

4.3.2 Performance of the (1 + 1) EA and (1 + λ) EA on OneMax

How the (1 + 1) EA optimizes the OneMax test function (see Section 2.2
for its definition) is one of the first results in runtime analysis. Using the
fitness level method with the levels Ai := {x ∈ {0, 1}

n | OneMax(x) = i},
i = 0, 1, . . . , n, one easily obtains that the expectation of the runtime T is at
most

E[T] ≤ enHn ≤ en(ln(n) + 1). (16)

For this, it suffices to compute that the probability to leave the i-th fitness
level satisfies pi ≥

n−i
n
(1 − 1

n
)n−1 ≥ n−i

en
, see [DJW02] for the details. By

Theorems 13 and 16, we also obtain

T �
n
∑

i=1

Geom

(

i

en

)

,

Pr[T ≥ (1 + δ)en lnn] ≤ n−δ for all δ ≥ 0.

The domination result, while not very deep, appears to be new, whereas the
tail bound was proven before via multiplicative drift analysis [DG13].

Things become more interesting (and truly new) when regarding the
(1 + λ) EA instead of the (1 + 1) EA. We denote by d(x) = n−OneMax(x)

22

the distance of x to the optimum. Let t = ⌊ ln(λ)−1
2 ln lnλ

⌋. We partition the lowest
L = ⌊n− n

lnλ
⌋ fitness levels (that is, the search points with OneMax(x) < L)

into ⌈L
t
⌉ sets each spanning at most t consecutive fitness levels. In [DK15], it

was shown that the probability to leave such a set in one iteration is at least
p0 ≥ (1− 1

e
). The remaining search points are partitioned into sets of points

having equal fitness, that is, Ai = {x | OneMax(x) = i}, i = L, . . . , n. For
these levels, the probability to leave a set in one iteration is at least

pi ≥ 1−

(

1−

(

1−
1

n

)n−1
n− i

n

)λ

≥ 1−

(

1−
n− i

en

)λ

.

For i ≤ n − en
λ
, this is at least pi ≥ 1 − 1

e
by the well-known estimate

1 + r ≤ er valid for all r ∈ R. For i > n − en
λ
, we use a new version

of the Weierstrass product inequality (Lemma 4.8 in [Doe18b], stating that
∏n

i=1(1 − xi) ≤ 1 − S + 1
2
S2 for all x1, . . . , xn ∈ [0, 1] and S =

∑n
i=1 xi) to

estimate pi ≥ 1 − (1 − λ
en
(n − i) + 1

2
(λ
en
(n − i))2) ≥ 1

2
λ
en
(n − i). Using the

abbreviation T0 := ⌈
L
t
⌉+ ⌈ n

lnλ
⌉−⌈en

λ
⌉+1, our fitness level theorem gives the

following domination bound for the number T of iterations until the optimum
is found.

T �

T0
∑

i=1

Geom(1− 1
e
) +

⌈ en

λ
−1⌉
∑

i=1

Geom(1
2
λi
en
). (17)

To avoid uninteresting case distinctions, let us assume that λ = ω(1) and
λ = nO(1). In this case, the above domination statement immediately gives

E[T] ≤
e

e− 1
T0 + 2e

n ln(⌈en
λ
⌉)

λ
= (1 + o(1))

(

2e

e− 1

n ln lnλ

lnλ
+ 2e

n ln(n)

λ

)

,

which is the result of [DK15] with explicit constants. With Theorems 14
and 16, equation (17) also implies tail bounds, however, for general λ these
become quite technical. For this reason, we omit any further details.

4.3.3 Performance of the (µ+ 1) EA on LeadingOnes

The runtime of the (µ+ 1) EA on various problems was analyzed in [Wit06].
Among them, we exemplarily regard the LeadingOnes problem (see Sec-
tion 2.3 for its definition). We shall not need the assumption of a random
initialization in this section.

Following the general proof idea of [Wit06], we let

M := min{⌈n/ ln(en)⌉, µ}.

23

For all a ∈ [0..n] and b ∈ [1..M], we say that the (µ+ 1) EA optimizing
LeadingOnes is in state (a, b) if the maximal fitness of an individual in the
population is a and if there are exactly b individuals having this maximal
fitness. We say that the algorithm is in state (a,M) also when the maximal
fitness in the population is a and there are more thanM individuals with this
fitness. We sort these states in lexicographic order, that is, we say that (a′, b′)
is better than (a, b) if a′ > a or if a′ = a and b′ ≥ b. From the definition of
the (µ+ 1) EA, it is clear that the algorithm cannot go from a better state
to a worse one. Consequently, by viewing the states as fitness levels, we can
apply the fitness level theorem (Theorem 13). We observe that for all a < n
and b < M , the probability of leaving the state (a, b) to a better state is at
least

pab :=
b

µ

(

1−
1

n

)a

≥
b

eµ
,

since to leave the state it suffices to select one of the b best individuals and
to not flip any of the a bits contributing to the fitness (this creates a new
best individual which replaces one of the inferior individuals which are still
in the population). The probability to leave the state (a,M) with a < n is
at least

paM :=
M

µ

1

n

(

1−
1

n

)a

≥
M

enµ
.

Consequently, the runtime T of the (µ+ 1) EA on the LeadingOnes func-
tion satisfies

T �

n−1
∑

a=0

M
∑

b=1

Geom(pab),

E[T] ≤

n−1
∑

a=0

M
∑

b=1

1

pab
= enµ(ln(M − 1) + 1 + n

M
)

≤ enµ(ln(en) + max{n
µ
, ln(en)}) ≤ en(2µ ln(en) + n),

Pr[T ≥ E[T] + λ] ≤ exp

(

−
1

4
min

{

λ2

e2n3µ2/M2 + π2

6
e2nµ2

,
λM

enµ

})

= exp

(

−
1

4
min

{

(1− o(1))λ2M2

e2n3µ2
,
λM

enµ

})

.

The tail bound follows from using Theorem 15 with

s = n

(

(enµ

M

)2

+
M−1
∑

b=1

(eµ

b

)2
)

≤
e2n3µ2

M2
+

π2

6
e2nµ2 = (1 + o(1))

e2n3µ2

M2

24

and pmin = min{ M
enµ

, 1
eµ
} = M

enµ
, noting that M = o(n) and M ≤ n.

Apart from a small improvement in the constants, stemming from slightly
more careful estimates, the result on the expected runtime is the same as
the one in [Wit06], which is E[T] ≤ 3enmax{µ ln(en), n}, see Theorem 1
of [Wit06] and recall that we count the number of iterations, that is, we
ignore the µ fitness evaluations of the initial individuals. The tail bound, as
discussed earlier, is stronger than the one in [ZLLH12] due to the stronger
Chernoff bounds for sums of geometric random variables which are available
now.

4.3.4 Performance of the (1 + 1) EA on Jump Functions

For k ∈ [1..n], the n-dimensional jump function jumpk : {0, 1}
n → R was

defined in [DJW02] by

jumpk(x) =

{

OneMax(x) + k if OneMax(x) ∈ [0..n− k] ∪ {n},

n−OneMax(x) otherwise.

Exemplarily for the runtime Tk of the (1 + 1) EA on jumpk, the fitness level
theorem with Pk = n−k(1− 1

n
)n−k immediately yields

T �
k−1
∑

i=1

Geom(n−i
en

) +
n−k−1
∑

i=0

Geom(n−i
en

) + Geom(Pk),

where for k ≥ 2 the last term is by far the most important one (so we do not
care about the minor improvements of this bound, which are easy to obtain).
Interestingly, we have a nearly matching lower bound in the domination
sense. To avoid unnecessary technicalities, we restrict ourselves to the case
k ∈ [2..n

4
], but similar results could be shown for larger values of k as well.

Lemma 19. Let n ∈ N and k ∈ [2..n
4
]. Let Tk be the runtime of the

(1 + 1) EA on the function jumpk. Then with Pk = n−k(1− 1
n
)n−k we have

X ·Geom(Pk) � Tk,

where X is a binary random variable with Pr[X = 1] = 1− exp(−n
8
).

Proof. A simple application of the additive Chernoff bound (e.g., Theo-
rem 10.7 in [Doe18b]) shows that with probability at least 1 − exp(−n

8
),

the random initial search point has a OneMax value of at most 3
4
n ≤ n−k.

In this situation, the current search point of the (1 + 1) EA will have a
OneMax value of at most n − k as long as the optimum is not found. For

25

any search point with OneMax value v ≤ n − k, the probability to reach
the optimum in one step is n−(n−v)(1− 1

n
)v ≤ Pk. Consequently, conditional

on the initial search point having a OneMax value of at most n − k, the
runtime satisfies Geom(Pk) � T , giving the claim.

We note without proof that the results of this subsection can easily be
extended to other elitist mutation-based algorithms, since the main argument
that with high probability once the optimum has to be generated from a
search point in Hamming distance at least k remains valid.

4.3.5 Performance of the (1 + 1) EA on the Sorting Problem

One of the first combinatorial problems regarded in the theory of evolutionary
computation is how a combinatorial (1 + 1) EA sorts an array of length n.
One of several setups regarded in [STW04] is modelling the sorting problem as
the minimization of the number of inversions in the array. We assume that the
(1 + 1) EA mutates an array by first determining a number k according to a
Poisson distribution with parameter λ = 1 and then performing k+1 random
exchanges (to ease the presentation, we do not use the jump operations also
employed in [STW04], but it is easy to see that this does not significantly
change things). It is easy to see that exchanging two elements that are in
inverse order reduces the number of inversions by at least one. Hence if there

are i inversions, then with probability 1
e
i
(

n
2

)−1
, the (1 + 1) EA inverts exactly

one of the inversions and thus improves the fitness (note that Pr[k = 0] = 1
e
).

By our fitness level theorem, the runtime T is dominated by the independent

sum
∑(n

2
)

i=1Geom(i

e(n
2
)
). Hence

E[T] ≤ e

(

n

2

)

H(n
2
) ≤

e

2
n2(1 + 2 lnn),

Pr[T ≥ (1 + δ)en2 lnn] ≤

(

n

2

)−δ

,

where again the statement on the expectation has appeared before
in [STW04] (with slightly different constants stemming from the use of a
slightly different algorithm) and the tail bound (stemming from Theorem 14)
is new.

We note without proof that a similar analysis would also prove a tail
bound for the slighly faster O(n2) time evolutionary sorting algorithm
of [DH08].

26

4.3.6 Further Results

In this section, we state a few more results to demonstrate the range of appli-
cability of domination arguments. Since for each of them a detailed discussion
with precise proofs would require a longer explanation of the problem and the
precise evolutionary algorithm used, we just state the result and point the
reader interested in the details to the literature. In all cases, the domination
result follows directly from the proof of the original result on the expected
runtime.

Eulerian cycles. The Eulerian cycle problem asks for a cycle in an
undirected graph that traverses each edge exactly once. Ending a se-
ries [Neu08,DHN07,DKS07] of works discussing suitable representations for
the Eulerian cycle problem, matchings in the adjacency lists were found to
give very good results [DJ07]. Among several algorithms proposed in [DJ07],
we regard the (1 + 1) EA that uses perfect matchings in the adjacency lists
as genotype and an edge-based mutation operator. Using a fitness level argu-
ment that regards the number of disjoint cycles in the individual, one observes
that the runtime T of this algorithm is dominated by the independent sum

T �

m/3
∑

i=1

Geom(i
2em

).

By Theorem 16, this implies

E[T] ≤ 2emHm/3,

Pr[T ≥ 2(1 + δ)em ln m
3
] ≤ (m

3
)−δ for all δ ≥ 0.

Vertex covers. In an undirected graph, a vertex cover is a set of vertices
such that each edge contains at least one of them. In [OHY09], it was shown
that the classic (1 + 1) EA using a binary representation can efficiently find
minimal vertex covers on paths. Since this was shown via a fitness level
argument, we easily obtain that the runtime T on a path of length n is
dominated by

T �
n−1
∑

i=1

Geom(Ω((i
n
)4)) =: T ,

which gives an expectation of

E[T] ≤ E[T] = O(n4)

and, via Theorem 15, a tail estimate of

Pr[T ≥ E[T] + λ] ≤ exp
(

−Ω
(

λ
n4

))

.

27

The (1 + (λ, λ)) genetic algorithm. The (1 + (λ, λ)) GA was proposed
in [DDE15] as an algorithm that, despite elitism, also profits from generating
search points which are inferior to the current-best solution. All analyses of
this algorithm suggest to use it with a mutation rate of p = λ

n
and a crossover

bias c = 1
λ
, where λ denotes the size of the two offspring populations used

by the algorithm. We shall assume these parameters as well.
Assume that λ = ω(1) as this is the situation in which the (1 + (λ, λ))

GA can outperform the (1 + 1) EA. Let L = ⌈n ln ln(λ)/ ln(λ)⌉. Let C1, C2

be sufficiently large constants. Imitating the proof of the asymptotically
tight runtime analysis in [DD18], we see that the runtime of the (1 + (λ, λ))
GA on the OneMax function, measured via the number of iterations, is
dominated by

∑C1L
i=1 Geom(pi) with pi = C2(1− (1− i

n
)λ

2/2) for i ∈ [1..L] and
pi = 1− 1/e− o(1) for i ∈ [L+ 1..C2L].

5 Beyond the Fitness Level Theorem

Above we showed that in all situations where the classic fitness level method
can be applied we immediately obtain that the runtime is dominated by a
suitable sum of independent geometric distributions. We now show that the
domination-by-distribution argument is not restricted to such situations. As
an example, we use another combinatorial problem from [STW04], the single-
source shortest path problem, and obtain a simplified and more natural proof
of the currently strongest runtime bound for this problem from [DHK11].
We note without proof that similar arguments could be used in the analysis
of other problems where the evolutionary algorithm builds up the optimal
solution incrementally from structurally smaller solutions, such as other path
problems [The09,DJ10,DHK12] or dynamic programming [DEN+11].

In [STW04], the single-source shortest path problem in a connected undi-
rected graph G = (V,E) with edge weights w : E → N and source vertex
s ∈ V was solved via a (1 + 1) EA as follows. Individuals are arrays of
pointers such that each vertex different from the source has a pointer to an-
other vertex. If, for a vertex v, following the pointers gives a path from v to
s, then the length (=sum of weights of its edges) of this path is the fitness of
this vertex; otherwise the fitness of this vertex is infinite. The fitness of an
individual is the vector of the fitnesses of all vertices different from the source.
In the selection step, an offspring is accepted if and only if all vertices have
an at least as good fitness as in the parent. This is called a multi-objective
formulation of the single-source shortest path problem in [STW04]. Mutating
an individual means choosing a number k from a Poisson distribution with
parameter λ = 1 and then changing k + 1 pointers to random new targets.

28

The main analysis argument in [STW04] is that, due to the use of the
multi-objective fitness, a vertex that is connected to the source via a shortest
path (let us call such a vertex optimized in the following) remains optimized
for the remaining run of the algorithm. Hence we can perform a structural
fitness level argument over the number of optimized vertices. The probability
to increase this number is at least p := 1

e(n−1)(n−2)
because there is at least

one non-optimized vertex v for which the next vertex u on a shortest path
from v to s is already optimized. Hence with probability 1

e
we have k = 0,

with probability 1
n−1

we choose v, and with probability 1
n−2

we rewire its
pointer to u. This gives an expected runtime of at most

E[T] ≤ (n− 1)/p = e(n− 1)2(n− 2).

To obtain better bounds for certain graph classes, the number ni of ver-
tices for which a shortest path with fewest edges consists of i edges is defined
in [STW04]. With a fitness level argument similar to the one above, it takes
an expected time of at most en2Hn1

to have all n1-type vertices optimally
connected to the source. After this, an expected number of at most en2Hn2

iteration suffices to connect all n2-vertices to the source. Iterating this argu-
ment, a runtime estimate of

E[T] ≤ en2
n−1
∑

i=1

Hni
≤ en2

n−1
∑

i=1

(ln(ni) + 1)

is obtained in [STW04]. This expression remains of order Θ(n3) in the worst
case, but becomes, e.g., O(n2ℓ log(2n

ℓ
)) when each vertex can be connected

to the source via a shortest path having at most ℓ edges.
By arguments different from fitness levels and with some technical effort,

this result was improved to O(n2max{logn, ℓ}) in [DHK11]. We now show
that this improvement could have been obtained via domination arguments
in a very natural way.

Consider some vertex v different from the source. Fix some shortest path
P from v to s having at most ℓ edges. Let Vv be the set of (at most ℓ) vertices
on P different from s. As before, in each iteration we have a probability of
at least p = 1

e(n−1)(n−2)
that a non-optimized vertex of Vv becomes optimized.

Consequently, the time Tv to connect v to s via a shortest path is dominated
by a sum of ℓ independent Geom(p) random variables. We conclude that
there are random variables Xij , i ∈ [1..ℓ], j ∈ [1..n− 1], such that

(i) Xij ∼ Geom(p) for all i ∈ [1..ℓ] and j ∈ [1..n− 1],

(ii) for all j ∈ [1..n− 1] the variables X1j , . . . , Xℓj are independent, and

29

(iii) the runtime T is dominated by max{Yj | j ∈ [1..n − 1]}, where Yj :=
∑ℓ

i=1Xij for all j ∈ [1..n− 1].

It remains to deduce from this domination statement a runtime bound.

Let δ = max{4 ln(n−1)
ℓ−1

,
√

4 ln(n−1)
ℓ−1

}. For all j ∈ [1..n− 1], by (10), we estimate

Pr[Yj ≥ (1 + δ)E[Yj]] ≤ exp

(

−
1

2

δ2

1 + δ
(ℓ− 1)

)

≤ exp

(

−
1

4
min{δ2, δ}(ℓ− 1)

)

≤ exp

(

−
1

4

4 ln(n− 1)

ℓ− 1
(ℓ− 1)

)

=
1

n− 1
.

For all ε > 0, again by (10), we compute

Pr[Yj ≥ (1 + ε)(1 + δ)E[Yj]] ≤ exp

(

−
1

2

(δ + ε+ δε)2

(1 + δ)(1 + ε)
(ℓ− 1)

)

≤ exp

(

−
1

2

δ2(1 + ε)2

(1 + δ)(1 + ε)
(ℓ− 1)

)

≤ exp

(

−
1

2

δ2

1 + δ
(ℓ− 1)

)1+ε

≤ (n− 1)−(1+ε).

Recall that the runtime T is dominated by Y = max{Yj | j ∈ [1..n− 1]},
where we did not make any assumption on the correlation of the Yj. In
particular, they do not need to be independent. Let

T0 = (1 + δ)E[Y1] = (1 + δ)
ℓ

p
.

Then

Pr[Y ≥ (1 + ε)T0] ≤

n−1
∑

j=1

Pr[Yj ≥ (1 + ε)T0] ≤ (n− 1)−ε

by the union bound. Transforming this tail bound into an expectation via
standard arguments, e.g., Corollary 6.2 (c) in [Doe18b], we obtain E[Y] ≤
(1 + 1

ln(n−1)
)T0. We thus have shown the following result.

Theorem 20. Let G be an undirected graph on n vertices together with in-
tegral edge weights. Let s be a vertex. Assume that all vertices are connected

30

to s via a shortest path consisting of at most ℓ edges. Let T be the runtime
of the EA proposed in [STW04] to solve the single-source shortest path prob-

lem in G. Then, with δ = max{4 ln(n−1)
ℓ−1

,
√

4 ln(n−1)
ℓ−1

}, p = 1
e(n−1)(n−2)

, and

T0 := (1 + δ) ℓ
p
, we have

E[T] ≤

(

1 +
1

ln(n− 1)

)

T0,

Pr[T ≥ (1 + ε)T0] ≤ (n− 1)−ε

for all ε ≥ 0.

This result is of same asymptotic order as the bound in [DHK11]. We
see the main advantage of the proof above in the fact that it is less technical
and more natural than the previous one. However, our analysis also gives
a better leading constant. For ℓ ≫ log(n), for example, our bound on the
expected runtime is (1+ o(1))eℓn2, whereas it is 8(1+ o(1))eℓn2 in [DHK11].

6 Structural Domination

So far we have used stochastic domination to compare runtime distributions.
We now show that stochastic domination can be a very useful tool also to
express structural properties of the optimization process. As an example, we
give a short and elegant proof for the result of Witt [Wit13] that compares
the runtimes of mutation-based algorithms. The main reason why our proof
is significantly shorter than the one of Witt is that we use the notion of
stochastic domination also for the distance from the optimum.

To state this result, we need the notion of a (µ, p) mutation-based al-
gorithm introduced in [Sud13]. This class of algorithms is called only
mutation-based in [Sud13], but since (i) it does not include all adaptive algo-
rithms using mutation only, e.g., those regarded in [JW06,OLN09,BDN10,
BLS14,DL16,DGWY17,DWY18], (ii) it does not include all algorithms us-
ing a different mutation operator than standard-bit mutation, e.g., those
in [DDY16a,DDY16b,LOW17,DLMN17], and (iii) this notion collides with
the notion of unary unbiased black-box complexity algorithms (see [LW12]),
which with some justification could also be called the class of mutation-based
algorithms, we feel that a notion making these restrictions precise is more
appropriate.

The class of (µ, p) mutation-based algorithms comprises all algorithms
which first generate a set of µ search points uniformly and independently at
random from {0, 1}n and then repeat generating new search points from any

31

of the previous ones via standard-bit mutation with probability p (that is, by
flipping bits independently with probability p). This class includes all (µ+λ)
and (µ, λ) EAs which only use standard-bit mutation with static mutation
rate p.

Denote by (1 + 1) EAµ,p the following algorithm in this class. It first
generates µ random search points. From these, it selects uniformly at ran-
dom one with highest fitness and then continues from this search point as a
(1 + 1) EA, that is, repeatedly generates a new search point from the current
one via standard-bit mutation with rate p and replaces the previous one by
the new one if the new one is not worse (in terms of the fitness). This algo-
rithm was called (1 + 1) EA with BestOf(µ) initialization in [dPdLDD15].

For any algorithm A from the class of (µ, p) mutation-based algorithms
and any fitness function f : {0, 1}n → R, let us denote by T (A, f) the runtime
of the algorithm A on the fitness function f , that is, the number of the first
individual that is an optimal solution. Usually, this will be µ plus the number
of the iteration in which the optimum was generated. To cover also the case
that one of the random initial individuals is optimal, let us assume that these
initial individuals are generated sequentially.

In this language, Witt [Wit13] shows the following remarkable result.

Theorem 21. For any (µ, p) mutation-based algorithm A and any
f : {0, 1}n → R with unique global optimum,

T ((1 + 1) EAµ,p,OneMax) � T (A, f).

This result significantly extends results of a similar flavor in [BE08,
DJW12, Sud13]. The importance of such types of results is that they al-
low to prove lower bounds for the performance of many algorithm on es-
sentially arbitrary fitness functions by just regarding the performance of the
(1 + 1) EAµ,p on OneMax.

Let us denote by |x|1 the number of ones in the bit string x ∈ {0, 1}n.
Using similar arguments as in [DJW00, Section 5] and [DJW12, Lemma 13],
Witt [Wit13] shows the following natural domination relation between off-
spring generated via standard-bit mutation.

Lemma 22. Let x, y ∈ {0, 1}n. Let p ∈ [0, 1
2
]. Let x′, y′ be obtained from

x, y via standard-bit mutation with rate p. If |x|1 ≤ |y|1, then |x
′|1 � |y

′|1.

We are now ready to give our alternate proof for Theorem 21. While
it is clearly shorter that the original one in [Wit13], we also feel that it
is more natural. In very simple words, it shows that T (A, f) dominates
T ((1 + 1) EAµ,p,OneMax) because the search points generated in the run

32

of the (1+1) EAµ,p on OneMax always are at least as close to the optimum
(in the domination sense) as in the run of A on f , and this follows from the
previous lemma, a suitable coupling, and induction.

Proof of Theorem 21. As a first small technicality, let us assume that the
(1 + 1) EAµ,p in iteration µ + 1 does not choose a random optimal search
point, but the last optimal search point. Since all the first µ individuals are
generated independently, this modification does not change anything.

SinceA treats bit-positions and bit-values in a symmetric fashion, we may
without loss of generality assume that the unique optimum of f is (1, . . . , 1).

Let x(1), x(2), . . . be the sequence of search points generated in a run of
A on the fitness function f . Hence x(1), . . . , x(µ) are independently and uni-
formly distributed in {0, 1}n and all subsequent search points are generated
from suitably chosen previous ones via standard-bit mutation with rate p.
Let y(1), y(2), . . . be the sequence of search points generated in a run of the
(1 + 1) EAµ,p on the fitness function OneMax.

We show how to couple these random sequences of search points in a way
that |x̃(t)|1 ≤ |ỹ

(t)|1 for all t ∈ N. We take as common probability space Ω
simply the space that (x(t))t∈N is defined on and let x̃(t) = x(t) for all t ∈ N.

We define the ỹ(t) inductively as follows. For t ∈ [1..µ], let ỹ(t) = x(t). Note
that this trivially implies |x̃(t)|1 ≤ |ỹ

(t)|1 for these search points. Let t > µ
and assume that |x̃(t′)|1 ≤ |ỹ

(t′)|1 for all t′ < t. Let s ∈ [1..t− 1] be maximal
such that |ỹ(s)|1 is maximal among |ỹ(1)|1, . . . , |ỹ

(t−1)|1. Let r ∈ [1..t − 1] be
such that x(t) was generated from x(r) in the run of A on f . By induction, we
have |x(r)|1 ≤ |ỹ

(r)|1. By choice of s we have |ỹ(r)|1 ≤ |ỹ
(s)|1. Consequently,

we have |x(r)|1 ≤ |ỹ
(s)|1. By Lemma 22 and Theorem 12, there is a random

ỹ(t) (defined on Ω) such that ỹ(t) has the distribution of being obtained from
ỹ(s) via standard-bit mutation with rate p and such that |x(t)|1 ≤ |ỹ

(t)|1.
With this construction, the sequence (ỹ(t))t∈N has the same distribu-

tion as (y(t))t∈N. This is because the first µ elements are random and
then each subsequent one is generated via standard-bit mutation from the
current-best one, which is just the way the (1 + 1) EAµ,p is defined. At
the same time, we have |x̃(t)|1 ≤ |ỹ

(t)|1 for all t ∈ N. Consequently, we
have min{t ∈ N | |ỹ(t)|1 = n} ≤ min{t ∈ N | |x(t)|1 = n}. Since
T ((1 + 1) EAµ,p,OneMax) and min{t ∈ N | |ỹ(t)|1 = n} are identically
distributed and also T (A, f) and min{t ∈ N | |x(t)|1 = n} are identically
distributed, we have T ((1 + 1) EAµ,p,OneMax) � T (A, f).

33

7 Counter-Examples

Stochastic domination is a strong property. Therefore, it is easy to encounter
situations in which the intuitive feeling that one process is faster than a
second one does not imply stochastic domination. Here are a few examples.

Random search vs. (1 + 1) EA on OneMax. Let us compare the per-
formance of the random search heuristic (cf. Section 2.1) and the (1 + 1) EA
on the OneMax benchmark function. Both intuitive considerations and the
known results on the expected runtimes (2n for random search, see Lemma 1,
and at most en(ln(n) + 1) for the (1 + 1) EA, see (16)) suggest that the
(1 + 1) EA is much more efficient than random search. Nevertheless, the
runtime TRS of random search does not dominate the runtime TEA of the
(1 + 1) EA, as we show now.

Note that to have a fair comparison between these two algorithms, we
here regard as runtime truly the number of individuals evaluated until the
optimum is first evaluated, that is, we do count the evaluation of the initial
individual for the (1 + 1) EA. For either of the two algorithms, let X1 andX2

be the first two individuals generated (where we assume that the algorithm
does not stop when X1 is already the optimum). Denoting the optimal
solution by x∗, the runtime T of this algorithm satisfies

Pr[T ≤ 2] = Pr[X1 = x∗] + Pr[X2 = x∗]− Pr[X1 = X2 = x∗].

Note that X2 also for the (1 + 1) EA is uniformly distributed in {0, 1}n.
Hence

Pr[TRS ≤ 2] = 2−n+1 − 2−2n = (1 + o(1))2−n+1,

Pr[TEA ≤ 2] = 2−n+1 − (1− 1
n
)n2−n = (1 + o(1))(1− 1

2e
)2−n+1,

contradicting the assertion that TEA � TRS .

Fitness-proportionate selection. When optimizing objective functions
with a strong fitness-distance correlation via a reasonable evolutionary algo-
rithm, then it seems plausible that replacing individuals by better ones can
only improve the performance. This is not true, for example, when fitness-
proportionate selection is used, as the following example shows.

Consider the optimization of the OneMax function, which has the per-
fect fitness-distance correlation. Assume we use an algorithm which at some
time selects an individual x from a population P = {x1, . . . , xµ}, µ ≥ 2, via
fitness-proportionate selection, that is, we have

Pr[x = xi] =
f(xi)

∑µ
j=1 f(xi)

,

34

where f = OneMax. Now let x′
1, . . . , x

′
µ be search points with f(x′

i) ≥ f(xi)
for all i ∈ [1..µ]. Let P ′ = {x′

1, . . . , x
′
µ} and assume that we select x′ from P ′

via fitness-proportionate selection. Then we do not necessarily have f(x) �
f(x′).

For an extreme counter-example, let n be a multiple of 10 and let the
search points xi be such that f(x1) = 0.8n and f(xi) = 0 for i ∈ [2..µ]. Then

Pr[f(x) ≥ 0.8n] = Pr[x = x1] = 1.

Assume that f(x′
i) = f(xi) + 0.1n for all i ∈ [1..µ]. Then

Pr[f(x′) ≥ 0.8n] = Pr[x′ = x′
1] =

0.8n+ 0.1n

0.8n+ µ · 0.1n
=

9

µ+ 8
< 1.

.

Dependencies. So far, we mostly experienced that stochastic domination
is very well-behaved. If X � Y , then all reasonable upper bound statements
on Y hold as well for X . Also, stochastic domination allowed us to compare
two random variables irrespective of possible dependencies (in fact, we do
not even need that they are defined over a common probability space). We
now want to outline a point where some caution is required, and this is
that dependencies between other random variables cannot be ignored. For
example, X1 � Y1 and X2 � Y2 do not necessarily imply that

max{X1, X2} � max{Y1, Y2}.

Whether such a statement is true depends on the correlation between the Xi

and the correlation between the Yi. For this reason, we needed to construct
the coupling (which determines the dependencies) of the two processes in the
proof of Theorem 21.

As a simple counter-example, we can again regard the processes of run-
ning random search and the (1 + 1) EA on the OneMax function. Let
X0, X1, . . . denote the search points generated by random search and let
Y0, Y1, . . . denote the search points generated by the (1 + 1) EA. Clearly,
each Xi is uniformly distributed in {0, 1}, hence f(Xi) ∼ Bin(n, 1

2
). For

the OneMax process, we have f(Y0) ∼ Bin(n, 1
2
). For all i ≥ 0, we also

have f(Y0) � f(Yi), and hence f(Xi) � f(Yi). Consequently, we have
f(Xi) � f(Yi) for all i ≥ 0. However, as shown above, we do not have
max{f(X0), f(X1)} � max{f(Y0), f(Y1)}.

35

8 Conclusion

In this work, we argued that stochastic domination can be very useful in
runtime analysis, both to formulate more informative results and to obtain
simpler and more natural proofs. We also showed that in many situations,
in particular, whenever the fitness level method is applicable, it is easily
possible to describe the runtime via a domination statement.

We note however that not all classic proofs easily reveal details on the
distribution. For results obtained via random walk arguments, e.g., the op-
timization of the short path function SPCn [JW01], monotone polynomi-
als [WW05], or vertex covers on paths-like graphs [OHY09], as well as for
results proven via additive drift [HY01], the proofs often give little informa-
tion about the runtime distribution. Note however that in [GKS99] results
on the convergence of the (suitably scaled) runtime distribution could be
obtained.

For results obtained via the average weight decrease method [NW07] or
multiplicative drift analysis [DG13], the proofs also do not give information
on the runtime distribution. However, the probabilistic runtime bound of
type Pr[T ≥ T0 + λ] ≤ (1 − δ)λ obtained from these methods implies that
the runtime is dominated by T � T0 − 1 + Geom(1− δ).

Overall, both from regarding these results and the history of the field,
we suggest to more frequently formulate results via domination statements.
Even in those cases where the probabilistic tools at the moment are not
ready to exploit such a statement, there is a good chance future developments
overcome this shortage and then it pays off if the result is readily available
in a distribution form and not just as an expectation.

References

[ADFH18] Denis Antipov, Benjamin Doerr, Jiefeng Fang, and Tangi
Hetet. Runtime analysis for the (µ + λ) EA optimizing
OneMax. In Genetic and Evolutionary Computation Confer-
ence, GECCO 2018, pages 1459–1466. ACM, 2018.

[BDN10] Süntje Böttcher, Benjamin Doerr, and Frank Neumann. Op-
timal fixed and adaptive mutation rates for the LeadingOnes
problem. In Parallel Problem Solving from Nature, PPSN 2010,
pages 1–10. Springer, 2010.

36

[BE08] Pavel A. Borisovsky and Anton V. Eremeev. Comparing evo-
lutionary algorithms to the (1+1)-EA. Theoretical Computer
Science, 403:33–41, 2008.

[BF13] Karl Bringmann and Tobias Friedrich. Parameterized average-
case complexity of the hypervolume indicator. In Genetic and
Evolutionary Computation Conference, GECCO 2013, pages
575–582. ACM, 2013.

[BLS14] Golnaz Badkobeh, Per Kristian Lehre, and Dirk Sudholt. Unbi-
ased black-box complexity of parallel search. In Parallel Prob-
lem Solving from Nature, PPSN 2014, pages 892–901. Springer,
2014.

[CD17] Eduardo Carvalho Pinto and Carola Doerr. Discussion of a
more practice-aware runtime analysis for evolutionary algo-
rithms. In Artificial Evolution, EA 2017, pages 298–305, 2017.

[CDF14] Sylvain Colin, Benjamin Doerr, and Gaspard Férey. Mono-
tonic functions in EC: anything but monotone! In Genetic and
Evolutionary Computation Conference, GECCO 2014, pages
753–760. ACM, 2014.

[DAS+17] Yifei Du, Kenji Aoki, Makoto Sakamoto, Hiroshi Furutani, and
Kunihito Yamamori. Markov chain analysis of Leading Ones
problem. Artificial Life and Robotics, 22:443–448, 2017.

[DD15] Benjamin Doerr and Carola Doerr. A tight runtime analysis
of the (1+(λ, λ)) genetic algorithm on OneMax. In Proceed-
ings of the Genetic and Evolutionary Computation Conference,
GECCO 2015, pages 1423–1430. ACM, 2015.

[DD16] Benjamin Doerr and Carola Doerr. The impact of random
initialization on the runtime of randomized search heuristics.
Algorithmica, 75:529–553, 2016.

[DD18] Benjamin Doerr and Carola Doerr. Optimal static and self-
adjusting parameter choices for the (1 + (λ, λ)) genetic algo-
rithm. Algorithmica, 80:1658–1709, 2018.

[DDE15] Benjamin Doerr, Carola Doerr, and Franziska Ebel. From
black-box complexity to designing new genetic algorithms.
Theoretical Computer Science, 567:87–104, 2015.

37

[DDK17] Benjamin Doerr, Carola Doerr, and Timo Kötzing. Unknown
solution length problems with no asymptotically optimal run
time. In Genetic and Evolutionary Computation Conference,
GECCO 2017, pages 921–928. ACM, 2017.

[DDY16a] Benjamin Doerr, Carola Doerr, and Jing Yang. k-bit mutation
with self-adjusting k outperforms standard bit mutation. In
Parallel Problem Solving from Nature, PPSN 2016, pages 824–
834. Springer, 2016.

[DDY16b] Benjamin Doerr, Carola Doerr, and Jing Yang. Optimal pa-
rameter choices via precise black-box analysis. In Genetic and
Evolutionary Computation Conference, GECCO 2016, pages
1123–1130. ACM, 2016.

[DEN+11] Benjamin Doerr, Anton V. Eremeev, Frank Neumann,
Madeleine Theile, and Christian Thyssen. Evolutionary al-
gorithms and dynamic programming. Theoretical Computer
Science, 412:6020–6035, 2011.

[DFF+17] Benjamin Doerr, Philipp Fischbeck, Clemens Frahnow, Tobias
Friedrich, Timo Kötzing, and Martin Schirneck. Island models
meet rumor spreading. In Genetic and Evolutionary Computa-
tion Conference, GECCO 2017, pages 1359–1366. ACM, 2017.

[DFW10] Benjamin Doerr, Mahmoud Fouz, and Carsten Witt. Quasir-
andom evolutionary algorithms. In Genetic and Evolution-
ary Computation Conference, GECCO 2010, pages 1457–1464.
ACM, 2010.

[DFW11] Benjamin Doerr, Mahmoud Fouz, and Carsten Witt. Sharp
bounds by probability-generating functions and variable
drift. In Genetic and Evolutionary Computation Conference,
GECCO 2011, pages 2083–2090. ACM, 2011.

[DG13] Benjamin Doerr and Leslie Ann Goldberg. Adaptive drift
analysis. Algorithmica, 65:224–250, 2013.

[DGWY17] Benjamin Doerr, Christian Gießen, Carsten Witt, and Jing
Yang. The (1+λ) evolutionary algorithm with self-adjusting
mutation rate. In Genetic and Evolutionary Computation Con-
ference, GECCO 2017, pages 1351–1358. ACM, 2017. Full ver-
sion available at http://arxiv.org/abs/1704.02191.

38

http://arxiv.org/abs/1704.02191

[DH08] Benjamin Doerr and Edda Happ. Directed trees: A powerful
representation for sorting and ordering problems. In Congress
on Evolutionary Computation, CEC 2008, pages 3606–3613.
IEEE, 2008.

[DHK11] Benjamin Doerr, Edda Happ, and Christian Klein. Tight
analysis of the (1+1)-EA for the single source shortest path
problem. Evolutionary Computation, 19:673–691, 2011.

[DHK12] Benjamin Doerr, Edda Happ, and Christian Klein. Crossover
can provably be useful in evolutionary computation. Theoreti-
cal Computer Science, 425:17–33, 2012.

[DHN07] Benjamin Doerr, Nils Hebbinghaus, and Frank Neumann.
Speeding up evolutionary algorithms through asymmetric mu-
tation operators. Evolutionary Computation, 15:401–410, 2007.

[DJ07] Benjamin Doerr and Daniel Johannsen. Adjacency list match-
ings: an ideal genotype for cycle covers. In Genetic and Evolu-
tionary Computation Conference, GECCO 2007, pages 1203–
1210. ACM, 2007.

[DJ10] Benjamin Doerr and Daniel Johannsen. Edge-based represen-
tation beats vertex-based representation in shortest path prob-
lems. In Genetic and Evolutionary Computation Conference,
GECCO 2010, pages 759–766. ACM, 2010.

[DJW00] Stefan Droste, Thomas Jansen, and Ingo Wegener. A nat-
ural and simple function which is hard for all evolutionary
algorithms. In IEEE International Conference on Industrial
Electronics, Control, and Instrumentation, IECON 2000, pages
2704–2709. IEEE, 2000.

[DJW02] Stefan Droste, Thomas Jansen, and Ingo Wegener. On the
analysis of the (1+1) evolutionary algorithm. Theoretical Com-
puter Science, 276:51–81, 2002.

[DJW12] Benjamin Doerr, Daniel Johannsen, and Carola Winzen. Mul-
tiplicative drift analysis. Algorithmica, 64:673–697, 2012.

[DJWZ13] Benjamin Doerr, Thomas Jansen, Carsten Witt, and Christine
Zarges. A method to derive fixed budget results from expected
optimisation times. In Genetic and Evolutionary Computation
Conference, GECCO 2013, pages 1581–1588. ACM, 2013.

39

[DK15] Benjamin Doerr and Marvin Künnemann. Optimizing lin-
ear functions with the (1+λ) evolutionary algorithm—different
asymptotic runtimes for different instances. Theoretical Com-
puter Science, 561:3–23, 2015.

[DKLL17] Benjamin Doerr, Timo Kötzing, J. A. Gregor Lagodzinski, and
Johannes Lengler. Bounding bloat in genetic programming. In
Genetic and Evolutionary Computation Conference, GECCO
2017, pages 921–928. ACM, 2017.

[DKLW13] Benjamin Doerr, Timo Kötzing, Johannes Lengler, and Carola
Winzen. Black-box complexities of combinatorial problems.
Theoretical Computer Science, 471:84–106, 2013.

[DKS07] Benjamin Doerr, Christian Klein, and Tobias Storch. Faster
evolutionary algorithms by superior graph representation. In
Foundations of Computational Intelligence, FOCI 2007, pages
245–250. IEEE, 2007.

[DKV13] Benjamin Doerr, Bojana Kodric, and Marco Voigt. Lower
bounds for the runtime of a global multi-objective evolution-
ary algorithm. In Congress on Evolutionary Computation, CEC
2013, pages 432–439. IEEE, 2013.

[DL16] Duc-Cuong Dang and Per Kristian Lehre. Self-adaptation of
mutation rates in non-elitist populations. In Parallel Prob-
lem Solving from Nature, PPSN 2016, pages 803–813. Springer,
2016.

[DL17] Carola Doerr and Johannes Lengler. Introducing elitist black-
box models: When does elitist behavior weaken the perfor-
mance of evolutionary algorithms? Evolutionary Computation,
25:587–606, 2017.

[DLMN17] Benjamin Doerr, Huu Phuoc Le, Régis Makhmara, and
Ta Duy Nguyen. Fast genetic algorithms. In Genetic
and Evolutionary Computation Conference, GECCO 2017,
pages 777–784. ACM, 2017. Full version available at
http://arxiv.org/abs/1703.03334.

[DNDD+18] Raphaël Dang-Nhu, Thibault Dardinier, Benjamin Doerr, Gau-
tier Izacard, and Dorian Nogneng. A new analysis method for

40

http://arxiv.org/abs/1703.03334

evolutionary optimization of dynamic and noisy objective func-
tions. In Genetic and Evolutionary Computation Conference,
GECCO 2018. ACM, 2018.

[Doe11] Benjamin Doerr. Analyzing randomized search heuristics:
Tools from probability theory. In Anne Auger and Benjamin
Doerr, editors, Theory of Randomized Search Heuristics, pages
1–20. World Scientific, 2011.

[Doe18a] Benjamin Doerr. Better runtime guarantees via stochastic
domination. In Evolutionary Computation in Combinatorial
Optimization, EvoCOP 2018, pages 1–17. Springer, 2018.

[Doe18b] Benjamin Doerr. Probabilistic tools for the analysis of random-
ized optimization heuristics. CoRR, abs/1801.06733v3, 2018.

[dPdLDD15] Axel de Perthuis de Laillevault, Benjamin Doerr, and Carola
Doerr. Money for nothing: Speeding up evolutionary algo-
rithms through better initialization. In Genetic and Evolution-
ary Computation Conference, GECCO 2015, pages 815–822.
ACM, 2015.

[Dro03] Stefan Droste. Analysis of the (1+1) EA for a dynamically
bitwise changing OneMax. In Genetic and Evolutionary Com-
putation Conference, GECCO 2003, pages 909–921. Springer,
2003.

[Dro04] Stefan Droste. Analysis of the (1+1) EA for a noisy OneMax. In
Genetic and Evolutionary Computation Conference, GECCO
2004, pages 1088–1099. Springer, 2004.

[DW18] Carola Doerr and Markus Wagner. Simple on-the-fly param-
eter selection mechanisms for two classical discrete black-box
optimization benchmark problems. In Genetic and Evolution-
ary Computation Conference, GECCO 2018, pages 943–950.
ACM, 2018.

[DWY18] Benjamin Doerr, Carsten Witt, and Jing Yang. Runtime
analysis for self-adaptive mutation rates. In Genetic and Evo-
lutionary Computation Conference, GECCO 2018, pages 1475–
1482. ACM, 2018.

41

[Fau31] Johannes Faulhaber. Academia Algebrae, darinnen die miracu-
losische Inventiones, zu den höchsten Cossen weiters continuirt
und profitiert werden. 1631.

[FKKS17] Tobias Friedrich, Timo Kötzing, Martin S. Krejca, and An-
drew M. Sutton. The compact genetic algorithm is efficient
under extreme gaussian noise. IEEE Trans. Evolutionary Com-
putation, 21:477–490, 2017.

[GKS99] Josselin Garnier, Leila Kallel, and Marc Schoenauer. Rigorous
hitting times for binary mutations. Evolutionary Computation,
7:173–203, 1999.

[HPR+18] Hsien-Kuei Hwang, Alois Panholzer, Nicolas Rolin, Tsung-Hsi
Tsai, and Wei-Mei Chen. Probabilistic analysis of the (1+1)-
evolutionary algorithm. Evolutionary Computation, 26:299–
345, 2018.

[HY01] Jun He and Xin Yao. Drift analysis and average time complex-
ity of evolutionary algorithms. Artificial Intelligence, 127:51–
81, 2001.

[Jan17] Swante Janson. Tail bounds for sums of geometric and expo-
nential variables. ArXiv e-prints, arXiv:1709.08157, 2017.

[JW01] Thomas Jansen and Ingo Wegener. Evolutionary algorithms -
how to cope with plateaus of constant fitness and when to reject
strings of the same fitness. IEEE Transactions on Evolutionary
Computation, 5:589–599, 2001.

[JW06] Thomas Jansen and Ingo Wegener. On the analysis of a dy-
namic evolutionary algorithm. Journal of Discrete Algorithms,
4:181–199, 2006.

[JZ11] Thomas Jansen and Christine Zarges. On benefits and draw-
backs of aging strategies for randomized search heuristics. The-
oretical Computer Science, 412:543–559, 2011.

[KW17] Martin S. Krejca and Carsten Witt. Lower bounds on the
run time of the univariate marginal distribution algorithm on
OneMax. In Foundations of Genetic Algorithms, FOGA 2017,
pages 65–79. ACM, 2017.

42

[Lad05] Véronique Ladret. Asymptotic hitting time for a simple evolu-
tionary model of protein folding. Journal of Applied Probability,
42:39–51, 2005.

[Len18] Johannes Lengler. A general dichotomy of evolutionary algo-
rithms on monotone functions. CoRR, abs/1803.09227, 2018.

[LOW17] Andrei Lissovoi, Pietro Simone Oliveto, and John Alasdair
Warwicker. On the runtime analysis of generalised selection
hyper-heuristics for pseudo-boolean optimisation. In Genetic
and Evolutionary Computation Conference, GECCO 2017,
pages 849–856. ACM, 2017.

[LS15] Johannes Lengler and Nicholas Spooner. Fixed budget perfor-
mance of the (1+1) EA on linear functions. In Foundations of
Genetic Algorithms, FOGA 2015, pages 52–61. ACM, 2015.

[LW12] Per Kristian Lehre and Carsten Witt. Black-box search by
unbiased variation. Algorithmica, 64:623–642, 2012.

[LY12] Per Kristian Lehre and Xin Yao. On the impact of mutation-
selection balance on the runtime of evolutionary algorithms.
IEEE Transactions on Evolutionary Computation, 16:225–241,
2012.

[MS02] Alfred Müller and Dietrich Stoyan. Comparison Methods for
Stochastic Models and Risks. Wiley, 2002.

[Neu08] Frank Neumann. Expected runtimes of evolutionary algorithms
for the eulerian cycle problem. Computers & OR, 35:2750–2759,
2008.

[NW07] Frank Neumann and Ingo Wegener. Randomized local search,
evolutionary algorithms, and the minimum spanning tree prob-
lem. Theoretical Computer Science, 378:32–40, 2007.

[OHY09] Pietro Simone Oliveto, Jun He, and Xin Yao. Analysis of the
(1+1)-EA for finding approximate solutions to vertex cover
problems. IEEE Transactions on Evolutionary Computation,
13:1006–1029, 2009.

[OLN09] Pietro Simone Oliveto, Per Kristian Lehre, and Frank Neu-
mann. Theoretical analysis of rank-based mutation - combin-
ing exploration and exploitation. In Congress on Evolutionary
Computation, CEC 2009, pages 1455–1462. IEEE, 2009.

43

[OW15] Pietro Simone Oliveto and Carsten Witt. Improved time com-
plexity analysis of the simple genetic algorithm. Theoretical
Computer Science, 605:21–41, 2015.

[RS14] Jonathan E. Rowe and Dirk Sudholt. The choice of the offspring
population size in the (1, λ) evolutionary algorithm. Theoretical
Computer Science, 545:20–38, 2014.

[Rud97] Günter Rudolph. Convergence Properties of Evolutionary Al-
gorithms. Verlag Dr. Kovǎc, 1997.

[Sch00] Christian Scheideler. Probabilistic Methods for
Coordination Problems. University of Pader-
born, 2000. Habilitation thesis. Available at
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.1319.

[ST12] Dirk Sudholt and Christian Thyssen. A simple ant colony op-
timizer for stochastic shortest path problems. Algorithmica,
64:643–672, 2012.

[STW04] Jens Scharnow, Karsten Tinnefeld, and Ingo Wegener. The
analysis of evolutionary algorithms on sorting and shortest
paths problems. Journal of Mathematical Modelling and Al-
gorithms, 3:349–366, 2004.

[Sud09] Dirk Sudholt. The impact of parametrization in memetic evo-
lutionary algorithms. Theoretical Computer Science, 410:2511–
2528, 2009.

[Sud13] Dirk Sudholt. A new method for lower bounds on the run-
ning time of evolutionary algorithms. IEEE Transactions on
Evolutionary Computation, 17:418–435, 2013.

[SW08] Dirk Sudholt and Carsten Witt. Runtime analysis of binary
PSO. In Genetic and Evolutionary Computation Conference,
GECCO 2008, pages 135–142. ACM, 2008.

[The09] Madeleine Theile. Exact solutions to the traveling salesperson
problem by a population-based evolutionary algorithm. In Evo-
lutionary Computation in Combinatorial Optimization, Evo-
COP 2009, pages 145–155. Springer, 2009.

[Weg01] Ingo Wegener. Theoretical aspects of evolutionary algorithms.
In International Colloquium on Automata, Languages and Pro-
gramming, ICALP 2001, pages 64–78. Springer, 2001.

44

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.1319

[Wit06] Carsten Witt. Runtime analysis of the (µ + 1) EA on simple
pseudo-Boolean functions. Evolutionary Computation, 14:65–
86, 2006.

[Wit08] Carsten Witt. Population size versus runtime of a simple evolu-
tionary algorithm. Theoretical Computer Science, 403:104–120,
2008.

[Wit13] Carsten Witt. Tight bounds on the optimization time of a ran-
domized search heuristic on linear functions. Combinatorics,
Probability & Computing, 22:294–318, 2013.

[Wit14] Carsten Witt. Fitness levels with tail bounds for the analysis of
randomized search heuristics. Information Processing Letters,
114:38–41, 2014.

[WW05] Ingo Wegener and Carsten Witt. On the optimization of mono-
tone polynomials by simple randomized search heuristics. Com-
binatorics, Probability & Computing, 14:225–247, 2005.

[ZLLH12] Dong Zhou, Dan Luo, Ruqian Lu, and Zhangang Han. The
use of tail inequalities on the probable computational time of
randomized search heuristics. Theoretical Computer Science,
436:106–117, 2012.

45

	1 Introduction
	1.1 Our Results

	2 Exact Distributions
	2.1 Random Search
	2.2 Randomized Local Search
	2.3 The LeadingOnes Benchmark Problem
	2.4 Conclusion on Exact Runtime Distributions

	3 Stochastic Domination
	3.1 Definition of Stochastic Domination
	3.2 Properties of Stochastic Domination
	3.3 Coupling

	4 Domination-based Fitness Level Method
	4.1 Domination-Version of the Fitness Level Theorem
	4.2 Chernoff Bounds for Sums of Independent Geometric Random Variables
	4.3 Applications of the Fitness Level Theorem
	4.3.1 General Upper Bound for Mutation-based Algorithms
	4.3.2 Performance of the (1+1) EA and (1+lambda) EA on ONEMAX
	4.3.3 Performance of the (mu+1) EA on LeadingOnes
	4.3.4 Performance of the (1+1) EA on Jump Functions
	4.3.5 Performance of the (1+1) EA on the Sorting Problem
	4.3.6 Further Results

	5 Beyond the Fitness Level Theorem
	6 Structural Domination
	7 Counter-Examples
	8 Conclusion

