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Abstract. Alignment in the error space is a recent idea to exploit semantic
awareness in genetic programming. In a previous contribution, the concepts of
optimally aligned and optimally coplanar individuals were introduced, and it was
shown that given optimally aligned, or optimally coplanar, individuals, it is pos-
sible to construct a globally optimal solution analytically. As a consequence, ge-
netic programming methods, aimed at searching for optimally aligned, or opti-
mally coplanar, individuals were introduced. In this paper, we critically discuss
those methods, analyzing their major limitations and we propose new genetic pro-
gramming systems aimed at overcoming those limitations. The presented exper-
imental results, conducted on four real-life symbolic regression problems, show
that the proposed algorithms outperform not only the existing methods based on
the concept of alignment in the error space, but also geometric semantic genetic
programming and standard genetic programming.

1 Introduction

In the last few years, the use of semantic awareness for improving Genetic Program-
ming (GP) [1,2] and other heuristic methods [3] became popular. A survey discussing
large part of the existing semantic approaches in GP can be found in [4]. In that survey,
the existing work was categorized into three broad classes: approaches based on se-
mantic diversity, on semantic locality and on semantic geometry. Among several other
references, semantic diversity and semantic locality, and their relationship with the ef-
fectiveness of GP, were investigated in depth in [5,6]. On the other hand, the idea of
studying semantic geometry revealed itself about a decade ago (see for instance [7,8]),
and became a GP hot topic in 2013, when a new version of GP, called Geometric Se-
mantic GP (GSGP) was introduced [9]. GSGP uses new operators, called geometric se-
mantic operators (GSOs), instead of traditional crossover and mutation, and it owes part
of its successes to the fact that GSOs induce a unimodal fitness landscape [10,11,12]
for any supervised learning problem. In the last six years, a large number of contri-
butions showed that GSGP is competitive with the state of the art in many applicative
domains (see for instance [13,14,15]). Few years after the introduction of GSGP, a
new way of exploiting semantic awareness was presented in [16] and further developed
in [17,18]. The idea, which is also the focus of this paper, can be sketched as follows.
We define semantics of an individual as the vector of its output values on the train-
ing cases [9]. Hence, semantics can be represented as a point in a space that we call
semantic space. In supervised learning, the target is also a point in the semantic space,
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but usually (unless the rare case where the target value is equal to zero for each training
case) it does not correspond to the origin of the Cartesian system. Then, we translate
each point in the semantic space by subtracting the target from it. In this way, for each
individual, we obtain a new point, that we call error vector, and we call the corre-
sponding space error space. The target, by construction, corresponds to the origin of
the Cartesian system in the error space.

In [16], it was proven that, given sets of individuals with particular characteristics
of alignment in the error space (called optimally aligned, and optimally coplanar, indi-
viduals), it is possible to analytically reconstruct a globally optimal solution (see Sec-
tion 2.1). Keeping this in mind, it makes sense to develop GP systems whose objective
is looking for optimally aligned, or optimally coplanar, individuals (instead of looking
directly for an optimal solution, as in traditional GP). The first attempt at developing
a system aimed at searching for optimally aligned, or optimally coplanar, individuals
was presented in [16], where the ESAGP method was proposed. While ESAGP reported
interesting results, it has the important limitation of constraining the alignment only in
one particular direction in the error space, that is prefixed a priori. In order to overcome
this limitation, a particular version of GP must be defined, that evolves individuals that
are sets of programs, instead of just one program as in traditional GP. The first pre-
liminary attempt was made in [17], where the POGP system was introduced. However,
in [17] severe limitations of POGP, which make it unusable in practice, were reported.

The objective of this paper is to present new GP systems aimed at evolving sets of
programs with the objective of generating optimally aligned individuals, and able to
overcome all the limitations of POGP. The new systems (called Align, Nested_Align
and Nested_Align_3) will be compared to standard GP, GSGP and ESAGP on four
complex real-life symbolic regression problems.

The rest of the paper is structured as follows: in Section 2, we revise previous and
related work, with particular focus on ESAGP and POGP, describing the known is-
sues of POGP. Section 3 describes the proposed methods (Align, Nested_Align and
Nested_Align_f3), explaining how they overcome the previously discussed issues of
POGP. In Section 4, we present our experimental study, in which the experimental
settings and test problems are described and the obtained results discussed. Finally,
Section 5 concludes the paper, also suggesting ideas for future research.

2 Previous and Related Work

2.1 Error Space Alignment GP

In [16], the concept of optimal alignment was introduced for the first time, together with
a new GP method, called ESAGP (which stands for Error Space Alignment GP), that
exploits it. Two individuals A and B are optimally aligned if a scalar constant k exists
such that ey = k - e, where e4 and ep are the error vectors of A and B respectively.
From this definition, it is not difficult to see that two individuals are optimally aligned
if the straight line joining their error vectors also intersects the origin in the error space.
Analogously, and extending the idea to three dimensions, three individuals are optimally
coplanar if the bi-dimensional plane in which their error vectors lie in the error space
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also intersects the origin. In [16], it is proven that given any pair of optimally aligned
individuals A and B, it is possible to reconstruct a globally optimal solution P,;. This
solution is defined in Equation (1):

1 k
Foe =134~ 1%
Analogously, in [16], it is also proven that given any triplet of optimally coplanar indi-
viduals, it is possible to analytically construct a globally optimal solution (the reader is
referred to [16] for the equation of the globally optimal solution in that case).

Keeping all this in mind, the ESAGP method introduced in [16] was composed by
two GP systems: ESAGP-1, whose objective is looking for optimally aligned pairs of
individuals, and ESAGP-2 whose objective is looking for triplets of optimally coplanar
individuals. The biggest difference between these systems and traditional GP is that
the search in ESAGP-1 and ESAGP-2 is not guided by the quality of the single solu-
tions, but only on their alignment properties. Several possible ways of searching for
alignments can be imagined. In ESAGP, one direction, called attractor, is fixed and all
the individuals in the population are pushed towards an alignment with the attractor. In
this way, ESAGP-1 and ESAGP-2 can maintain the traditional representation of solu-
tions where each solution is represented by one program. The other face of the coin is
that ESAGP-1 and ESAGP-2 strongly restrict what GP can do, forcing the alignment
to necessarily happen in just one prefixed direction, i.e. the one of the attractor. The
ESAGP systems were also studied in [18], where the operators used to reach the align-
ment with the attractor were GSOs. The authors of [18] report severe overfitting for this
new ESAGP version. The objective of this paper is to relieve the constraint of ESAGP
by defining a new GP system that is generally able to evolve vectors of programs (even
though only vectors of size equal to 2 will be used in this paper). As already mentioned,
a preliminary attempt is represented by POGP [17], described below.

«B (1

2.2 Pair Optimization GP

In [17], Pair Optimization GP (POGP) was introduced. Limiting itself to the bi-
dimensional case (i.e. to the case in which pairs of optimally aligned individuals are
sought for), POGP extends ESAGP-1, releasing the limitation of forcing alignments in
a prefixed direction. In POGP, individuals are pairs of programs, and fitness is the an-
gle between the respective error vectors. From now on, for the sake of clarity, this type
of individual (i.e. individuals characterized by more than one program) will be called
multi-individuals. In [17], the following problems of POGP were reported: (¢) gener-
ation of semantically identical, or very similar, expressions; (i7) k constant in Equa-
tion (1) equal, or very close, to zero; (ii¢) generation of expressions with huge error
values. These problems are discussed here:

Issue 1: generation of semantically identical, or very similar, expressions. A simple
way for GP to find two expressions that are optimally aligned in the error space is to find
two expressions that have exactly the same semantics (and consequently the same error
vector). However, this causes a problem once we try to reconstruct the optimal solution
as in Equation (1). In fact, if the two expressions have the same error vector, the k value
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in Equation (1) is equal to 1, which gives a denominator equal to zero. Experience tells
us that GP tends very often to generate multi-individuals that have this kind of problem.
Also, it is worth pointing out that even preventing GP from generating multi-individuals
that have an identical sematics, GP may still push the evolution towards the generation
of multi-individuals whose expressions have semantics that are very similar between
each other. This leads to a k constant in Equation (1) that, although not being exactly
equal to 1, has a value that is very close to 1. As a consequence, the denominator in
Equation (1), although not being exactly equal to zero, may be very close to zero and
thus the value calculated by Equation (1) could be a huge number. This would force a
GP system to deal with unbearably large numbers during all its execution, which may
lead to several problems, including numeric overflow.

Issue 2: & constant in Equation (1) equal, or very close, to zero. Looking at Equa-
tion (1), one may notice that if k is equal to zero, then expression B is irrelevant and the
reconstructed solution P, is equal to expression A. A similar problem also manifests
itself when & is not exactly equal to zero, but very close to zero. In this last case, both
expressions A and B contribute to P, but the contribution of B may be so small to be
considered as marginal, and P,,; would de facto be extremely similar to A. Experience
tells us that, unless this issue is taken care of, the evolution would very often generate
such situations. This basically turns a multi-individual alignment based system into tra-
ditional GP, in which only one of the expressions in the multi-individual matters. If we
really want to study the effectiveness of multi-individual alignment based systems, we
have to impede these kind of situations.

Issue 3: generation of expressions with huge error values. As previously mentioned,
systems based on the concept of alignment in the error space could limit themselves to
searching for expressions that are optimally aligned, without taking into account their
performance (i.e. how close their semantics are to the target). However, experience
tells us that, if we give GP the only task of finding aligned expressions, GP frequently
tends to generate expressions whose semantics contain unbearably large numbers. Once
again, this may lead to several problems, including numeric overflow, and a successful
system should definitely prevent this from happening.

One fact that should be remarked is that none of the previous issues can be taken into
account with simple conditions that prevent some precise situations from happening.
For instance, one may consider solving Issue 1 by simply testing if the expressions in a
multi-individual are semantically identical between each other, and rejecting the multi-
individual if that happens. But, as already discussed, expressions that have very similar
semantics between each other may also lead to problems. Furthermore, the idea of intro-
ducing a threshold ¢ to the semantic diversity of the expressions in a multi-individual,
and rejecting all the multi-individuals for which the diversity is smaller than e does
not seem a brilliant solution. In fact, experience tells us that GP would tend to gener-
ate multi-individuals with a diversity equal, or very close to ¢ itself. Analogously, if
we consider Issue 2, neither rejecting multi-individuals that have a k constant equal
to zero, nor rejecting individuals that have an absolute value of k larger than a given
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threshold would solve the problem. Finally, considering Issue 3, also rejecting individ-
uals that have the coordinates of the semantic vector larger than a given threshold d,,,4,
would not solve the problem, since GP would tend to generate expressions in which the
coordinates of the semantic vector are equal, or very close, to d,, itself.

In such a situation, we believe that a promising way to effectively solve these issues
is (besides defining the specific conditions mentioned above) to take the issues into ac-
count in the selection process, for instance giving more probability of being selected
for mating to multi-individuals that have large semantic diversity between the expres-
sions, values of k that are, as much as possible, far from zero and expressions whose
semantics are, as much as possible, close to the target. These ideas are implemented in
the proposed systems, which are described below.

3 Description of the Proposed Methods

In order to introduce the proposed methods in a compact way, we describe first the
Nested_Align method, and then we discuss the other methods by simply pointing out
the differences between them and Nested_Align.

3.1 Nested_Align

Here, we describe selection, mutation and population initialization of Nested_Align,
keeping in mind that no crossover has been defined yet for this method.

Selection. Besides trying to optimize the performance of the multi-individuals, selec-
tion is the phase that takes into account the issues of the previous alignment-based
methods discussed in Section 2.2. Nested_Align contains five selection criteria, that
have been organized into a nested tournament. Let ¢1, ¢a, ..., ¢y be the expressions
characterizing a multi-individual. Once again, it is worth pointing out that only the
case m = 2 was taken into account in this paper. But the concept is general, and so it
will be explained using m expressions. The selection criteria are:

— Criterion 1: diversity (calculated using the standard deviation) of the semantics of
the expressions ¢1, @2, ..., dm (to be maximized).

— Criterion 2: the absolute value of the k& constant that characterizes the reconstructed
expression, as in Equation (1) (to be maximized).

— Criterion 3: the sum of the errors of the single expressions ¢1, ¢2, ..., ¢m (to be
minimized).

— Criterion 4: the angle between the error vectors of the expressions ¢, @2, ..., dm
(to be minimized).

— Ciriterion 5: the error of the reconstructed expression F,,; in Equation (1) (to be
minimized).

The nested tournament works as follows: an individual is selected if it is the winner of a
tournament, that we call 75, that is based on Criterion 5. All the participants in tourna-
ment 75, instead of being individuals chosen at random as in the traditional tournament
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selection algorithm, are winners of previous tournaments (that we call tournaments of
type T4), which are based on Criterion 4. Analogously, for all ¢ = 4, 3, 2, all partici-
pants in the tournaments of type 7; are winners of previous tournaments (that we will
call tournaments of type T;_1), based on Criterion ¢ — 1. Finally, the participants in
the tournaments of type 73 (the kind of tournament that is based on Criterion 1) are
individuals selected at random from the population. In this way, an individual, in order
to be selected, has to undergo five selection layers, each of which is based on one of the
five different chosen criteria. Motivations for the chosen criteria follow:

— Criterion 1 was introduced to counteract Issue 1 in Section 2.2. Maximizing the
semantic diversity of the expressions in a multi-individual should naturally prevent
GP from creating multi-individuals with identical semantics or semantics that are
very similar between each other.

— Criterion 2 was introduced to counteract Issue 2 in Section 2.2. Maximizing the
absolute value of constant & should naturally allow GP to generate multi-individuals
for which k’s value is neither equal nor close to zero.

— Criterion 3 was introduced to counteract Issue 3 in Section 2.2. If the expressions
that characterize a multi-individual will have a “reasonable” error, then their seman-
tics will be reasonably similar to the target, thus naturally avoiding the appearance
of unbearably large numbers.

— Criterion 4 is a performance criterion: if the angle between the error vectors of the
expressions ¢1, @z, ..., m 1s equal to zero, then Equation (1) allows us to recon-
struct a perfect solution P,,;. Also, the smaller this angle, the smaller should be
the error of P,,;. Nevertheless, experience tells us that multi-individuals may exist
with similar values of this angle, but very different values of the error of the re-
constructed solution F,,;, due for example to individuals with a very large distance
from the target. This fact made us conclude that Criterion 4 cannot be the only
performance objective, and suggested to us to also introduce Criterion 5.

— Criterion 5 is a further performance criterion. Among multi-individuals with the
same angle between the error vectors of the expressions ¢1, @2, ..., dm, the pre-
ferred ones will be the ones for which the reconstructed solution P, has the small-
est error.

Mutation. The mechanism we have implemented for applying mutation to a multi-
individual is extremely simple: for each expression ¢; in a multi-individual, mutation
is applied to ¢; with a given mutation probability p,,, where p,, is a parameter of the
system. It is worth remarking that in our implementation all expressions ¢; of a multi-
individual have the same probability of undergoing mutation, but this probability is
applied independently to each one of them. So, some expressions could be mutated, and
some other could remain unchanged. The type of mutation that is applied to expressions
is Koza’s standard subtree mutation [1].

To this “basic” mutation algorithm, we have also decided to add a mechanism of
rejection, in order to help the selection process in counteracting the issues discussed
in Section 2.2. Given a prefixed parameter that we call dy, if the multi-individual gen-
erated by mutation has a k constant included in the range [1 — &, 1 + O], or in the
range [—dx, 0], then the k constant is considered, respectively, too close to 1 or too
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close to 0 and the multi-individual is rejected. In this case, a new individual is selected
for mutation, using again the nested tournament discussed above.

The combined effect of this rejection process and of the selection algorithm should
strongly counteract the issues discussed in Section 2.2. In fact, when & is equal to 1,
or equal to 0, or even close to 1 or O inside a given prefixed toleration radius dy, the
multi-individual is not allowed to survive. For all the other multi-individuals, distance
between k and 1 and between k and O are used as optimization objectives, to be max-
imized. This allows GP to evolve multi-individuals with k values that are “reasonably
far” from 0 and 1.

Initialization. Nested_Align initializes a population of multi-individuals using multiple
executions of the Ramped Half and Half algorithm [1]. More specifically, let n be the
number of expressions in a multi-individual (n = 2 in our experiments), and let m
be the size of the population that has to be initialized. Nested_Align runs n times the
Ramped Half and Half algorithm, thus creating n “traditional” populations of trees
Py, P, ..., P,, each of which containing m trees. Let P = {II;, I, ..., II,,,} be the
population that Nested_Align has to initialize (where, for each ¢« = 1,2, ...,m, II; is
an n-dimensional multi-individual). Then, for each ¢ = 1,2,...,m and for each j =
1,2,...,n, the j*" tree of multi-individual I7; is the j*" tree in population P;.

To this “basic” initialization algorithm, we have added an adjustment mechanism
to make sure that the initial population does not contain multi-individuals with a k
equal, or close, to 0 and 1. More in partcular, given a prefixed number of expressions «,
that is a new parameter of the system, if the created multi-individual has a k value
included in the range [1 — 0y, 1 4 %], or in the range [0k, 0] (Where §j, is the same
parameter as the one used for implementing rejections of mutated individuals), then «
randomly chosen expressions in the multi-individual are removed and replaced by as
many new randomly generated expressions. Then the % value is calculated again, and
the process is repeated until the multi-individual has a k value that stays outside the
ranges [1 — 0, 1 + dx] and [0k, dx]. Only when this happens, the multi-individual is
accepted inside the population. Given that only multi-individuals of two expressions are
considered in this paper, in our experiments we have always used a = 1.

3.2 Differences Between Align, Nested_Align_3 and Nested_Align

Align. The difference between Align and Nested_Align is that Align does not use the
nested tournament discussed above. Selection in Align is implemented by a traditional
tournament algorithm, using as fitness the error of the reconstructed expression P,
in Equation (1). Mutation and initialization in Align work exactly as in Nested_Align.
In this way, the only mechanism that Align has to counteract the issues described in
Section 2.2 is to make sure that initialization and mutation only create multi-individuals
with a k value outside the ranges [1 — dy, 1 + x| and [~y Jx]. The motivation for the
introduction of Align is that the nested tournament that characterizes Nested_Align may
be complex and time-consuming. Comparing the performance of Nested_Align to the
ones of Align, we will be able to evaluate to importance of the nested tournament and
its impact on the performance of the system.
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Nested _Align_53. This method integrates a multi-individual approach with a traditional
single-expression GP approach. More precisely, the method begins as Nested_Align, but
after 3 generations, the evolution is done by GSGP. In order to transform a population
of multi-individuals into a population of traditional single-expression individuals, each
individual is replaced by the reconstructed solution P,,; in Equation (1). The rationale
behind the introduction of Nested_Align_{ is that alignment-based systems are known
to have a very quick improvement in fitness in the first generations, which may some-
times cause overfitting of training data (the reader is referred to [16,17,18,19,20] for a
discussion of the issue). Given that GSGP is instead known for being a slow optimiza-
tion process, able to limit overfitting under certain circumstances (see [21]), the idea is
transforming Nested_Align into GSGP, possibly before overfitting arises. Even though
a deep study of parameter [ is strongly in demand, only 5 = 50 was tested in this paper.
For this reason, from now on, the name Nested_Align_50 will be used for this method.

4 Experimental Study

4.1 Experimental Settings and Test Problems

For each model, 30 runs were performed, each on a different randomly selected split of
the dataset into training set (70%) and test set (30%). The parameters used are summa-
rized in Table 1. Besides those parameters, the primitive operators were addition, sub-
traction, multiplication and division protected as in [1]. The terminal symbols included
one variable for each feature in the dataset, plus the following numerical constants: -1.0,
-0.75, -0.5, -0.25, 0.25, 0.5, 0.75, 1.0. Parent selection was done using tournaments of
size 5, with the exception of the models which use nested selection (i.e. Nested_Align
and, in the first 50 generations, Nested_Align_50), which used a tournament of size
10 for each layer of the nested selection. For standard GP subtree crossover and sub-
tree mutation were used [1], where crossover rate was equal to 0.9 and mutation rate
was equal to 0.1. For all the other studied methods, crossover rate was equal to zero
(i.e. no crossover was performed during the evolution). While Align, Nested_Align and
Nested_Align_50 do not have a crossover operator implemented yet, the motivation for
not using crossover in GSGP can be found in [17], where it is clearly shown that GSGP
using only mutation often overcomes GSGP using both crossover and mutation. The
test problems that we have used in our experimental study are four symbolic regression
real-life applications. All these problems have already been used in previous GP stud-
ies [17,21,22,23,24]. Table 2 reports, for each dataset, the number of features (variables)
and the number of instances (observations). For a complete description of these datasets,
the reader is referred to the references reported in the same table.

4.2 Experimental Results

The results we have obtained are reported in Figures 1, 2, 3, 4 and 5. They are or-
ganized as follows: in Figures 1 and 2, we report the results of the best error obtained
on training data (more particularly, in Figure 1 the proposed methods are compared to
standard GP and GSGP, while in Figure 2 they are compared to ESAGP-1 and ESAGP-
2); in Figures 3 and 4, we report the results of the best training model on unseen test
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Parameter Setting
Population size 100

Max. # of generations 200
Initialization Ramped H-H
Max. depth for evolution 17

Max. depth for initialization 6

Ok 0.02

Table 1. GP parameters used in our experi-
ments.

bioav training errors

Dataset # Features # Instances
Bioavailability [25] 241 206
PPB [25] 626 131
Toxicity [25] 626 234
Energy [24] 8 768

Table 2. Description of the test problems. For
each dataset, the number of features (indepen-
dent variables) and the number of instances
(observations) are reported.

tox training errors
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Fig. 1. Results on the fraining set. Comparison between the prososed methods (Nested_Align,
Align and Nested_Align_50), standard GP and GSGP. Plot (a): Bioavailability; plot (b): Toxicity;

plot (c): PPB; plot (d): Energy.

data (in Figure 3 the proposed methods are compared to standard GP and GSGP, while
in Figure 4 they are compared to ESAGP-1 and ESAGP-2); in Figure 5, we report
the results relative to the size of the programs (calculated as the number tree nodes).
In Figures 1 and 3 (i.e. the ones where the proposed methods are compared to stan-
dard GP and GSGP), plot (a) reports the results obtained on the Bioavailability problem,
plot (b) reports the ones obtained on the Toxicity problem, plot (c) on the PPB prob-
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Fig. 2. Results on the fraining set. Comparison between the prososed methods (Nested_Align,
Align and Nested_Align_50), ESAGP-1 and ESAGP-2. Plot (a): Bioavailability; plot (b): Toxicity;
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Fig. 3. Results on the fest set. Comparison between the prososed methods (Nested_Align, Align
and Nested_Align_50), standard GP and GSGP. Plot (a): Bioavailability; plot (b): Toxicity;
plot (c): PPB; plot (d): Energy.
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Fig.5. Results concerning the program size. Comparison between the prososed methods
(Nested_Align, Align and Nested_Align_50), standard GP and GSGP. Plot (a): Bioavailability;
plot (b): Toxicity; plot (c): PPB; plot (d): Energy.
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lem, and plot (d) on Energy. Concerning the ESAGP methods, we have taken the results
directly from [16], for comparison. In that paper, only results relative to training and
unseen error on the Bioavailability and Toxicity datasets were made available. For this
reason, in Figures 2 and 4, plot (a) reports the results obtained on the Bioavailabil-
ity problem and plot (b) reports the ones obtained on the Toxicity problem, and those
figures do not contain any other plot. Finally, Table 3 reports the results of the statistical
tests performed on the obtained unseen errors.

Table 3. p-values of the Wilcoxon rank-sum test on unseen data, under the alternative hypothesis
that the samples do not have equal medians. Bold denotes statistically significant values.

BIOAVAILABILITY
STGP NESTED_ALIGN NESTED_ALIGN_50 ALIGN ESAGP-1
GSGP 0.133 9.33E-05 1.02E-05 1.21E-04 3.18E-05
STGP 3.29E-04 1.81E-05 0.002 2.58E-04
NESTED_ALIGN 0.289 0.438 0.624
NESTED_ALIGN_50 0.962 0.420
ALIGN 0.646
TOXICITY
STGP NESTED_ALIGN NESTED_ALIGN_50 ALIGN ESAGP-1
GSGP 0.035 1.13E-09 3.04E-07 1.88E-08 2.39E-09
STGP 3.26E-06 1.86E-04 5.98E-05 1.93E-05
NESTED_ALIGN 0.511 0.307 0.246
NESTED_ALIGN_50 0.704 0.678
ALIGN 0.986
PPB

STGP NESTED_ALIGN NESTED_ALIGN_50 ALIGN

GSGP 0.237 0.153 0.043 0.001

STGP 0.474 0.124 6.98E-04

NESTED_ALIGN 0.359 0.021

NESTED_ALIGN_50 0.099

ENERGY

STGP NESTED_ALIGN NESTED_ALIGN_50 ALIGN

GSGP 0.109 1.24E-05 1.33E-05 0.270

STGP 8.75E-04 3.08E-06 0.023

NESTED_ALIGN 1.26E-08 6.03E-06

NESTED_ALIGN_50 1.01E-04

Let us begin commenting the results on the training set. As Figure 1 shows, on the
training set Nested_Align_50 is the method that obtains the best results on one prob-
lem over four (Energy). On two of the other problems (Bioavailability and Toxicity)
the method that was able to find the best results was GSGP. Finally, on the PPB dataset
all the methods returned comparable results between each other, with a slight prefer-
ence for Align. Remembering that, after 50 generations, Nested_Align_50 “turns into”
GSGP, our interpretation of these results is that, in general, GSGP is an appropriate
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method for optimizing training data, which is not surprising, given that GSOs induce
a unimodal fitness landscape. In particular, the “switch” between the Nested_Align al-
gorithm and GSGP at generation 50 seems beneficial in much of the cases. This can
be seen in the Bioavailability and Energy problems, where a rapid improvement of the
curve of Nested_Align_50, looking like a sudden descending “step”, is clearly visible
at generation 50. So, given that in the last part of the runs Nested_Align_50 and GSGP
are identical, Nested_Align_50 prevails if the initial phase in which Nested_Align was
executed was beneficial. On the other hand, GSGP prevails if it was not. From the
above discussed results, we can conclude that it is beneficial on one problem, while it
is not on two others (and it is irrelevant in the fourth of the studied problems, where
Nested_Align_50 and GSGP perform comparably). Concerning a comparison between
the proposed methods and ESAGP-1 and ESAGP-2 (Figure 2), two considerations have
to be done: first of all, in [16] results were reported only until generation 50, and those
are the only ESAGP-1 and ESAGP-2 results in our possession. Secondly, it is possi-
ble to “speculate” that both ESAGP-1 and ESAGP-2 are outperformed by other meth-
ods both on the Bioavailability and on the Toxicity datasets (more in particular, by
Nested_Align_50 and Align on Bioavailability and by Align on Toxicity). In fact, even
though we cannot be sure because we do not have the data of the last 150 generations,
the curve of both the ESAGP methods, after a rapid decrease in the first 20 generations,
seems to stabilize and to remain practically constant, approximately from generation 20
to generation 50.

Now, let us discuss the results on the test set, starting from Figure 3. On the Bioavail-
ability, PPB and Toxicity problems, the three proposed methods clearly outperform both
GSGP and standard GP, with Nested_Align_50 that is slightly preferable compared to
the other two methods on Bioavailability and Align on Toxicity. On the Energy prob-
lem, the method that performs better than all the others is Nested_Align_50, and, also
on the test set, we can observe a clear fitness improvement, looking like a sudden de-
scending “step”, at generation 50, where the switch between Nested_Align and GSGP
takes place. In conclusion, on the test set all the three methods that we have introduced
in this paper show reasonable results, improving the ones of GSGP and standard GP.
Among those methods, Nested_Align_50 seems the most preferable one, corroborating
our intuition that Nested_Align learns fast in the beginning, while the switch to GSGP
allows us to continue the learning while limiting overfitting. Concerning a compari-
son between the proposed methods and ESAGP-1 and ESAGP-2 (Figure 4), what we
can conclude using the data at our disposal is that both ESAGP-1 and ESAGP-2 are out-
performed by Nested_Align_50 for the Bioavailability problem and by Nested_Align_50
and Nested_Align on the Toxicity problem. However, it is worth pointing out that, when
discussing the results on the test set, having data only until generation 50 strongly limits
our possible conclusions. In fact, we do not have any information that, later in the run,
the ESAGP methods will not begin to overfit, as it happens to, for instance, to Align
on the Toxicity problem. Actually, on the Toxicity problem, Align outperforms both
ESAGP-1 and ESAGP-2 in the first 50 generations, and only later in the run the test
error of Align starts increasing. In synthesis, we consider our conclusions (i.e. that the
ESAGP methods are outperformed by Nested_Align_50 for the Bioavailability problem
and by Nested_Align_50 and Nested_Align on the Toxicity problem) the most “opti-
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mistic” scenario for the ESAGP methods. If we had the results until generation 200, the
picture for ESAGP could be even worse.

We finally discuss Figure 5, reporting the dimensions of the evolved programs,
a very important criterion that has direct link with the models’ interpretability [26].
GSGP and Nested_Align_50 generate much larger individuals compared to the other
methods. This was expected, given that generating large individual is a known draw-
back of GSOs [9]. The fact that in the first 50 generations Nested_Align_S0 does not
use GSOs only partially limits the problem, simply delaying the code growth, that is,
after generation 50, exactly as important as for GSGP. On the other hand, it is clearly
visible that Align and Nested_Align are able to generate individuals that are smaller
than the ones of standard GP. Furthermore, after a first initial phase in which the size
of the individuals grow, we can see that Align and Nested_Align basically have no code
growth (the curves of these two methods, after an initial phase of growth, are practically
parallel to the horizontal axis). Last but not least, in all the studied problems the final
models generated by Align and Nested_Align have around only 50 tree nodes.

All this considered, our conclusions are: if we are interested in performance and
we can accept models that are “black boxes” (meaning with this, models that are too
complicated to be interpreted and understood), then Nested_Align_50 seems the most
appropriate of the proposed methods. On the other hand, if the readability of the model
is an issue, then Align and Nested_Align are good compromises between performance
and model simplicity.

To analyse the statistical significance of the results that we have obtained on unseen
data, a set of tests has been performed. The Lilliefors test has shown that the data are
not normally distributed and hence a rank-based statistic has been used. The Wilcoxon
rank-sum test for pairwise data comparison with Bonferroni correction has been used,
under the alternative hypothesis that the samples do not have equal medians at the end
of the run, with a significance level @ = 0.05. The p-values are reported in Table 3,
where statistically significant differences are highlighted with p-values in bold. As we
can observe, on the Bioavailability and Toxicity datasets the differences between the
proposed methods (Align, Nested_Align and Nested_Align_50) and the existing ones
(standard GP, GSGP and ESAGP-1) are statistically significant, while the differences
of the proposed methods between each other are not statistically significant. The same
thing also holds for the Energy dataset, with the only exception of the Align method,
whose results are not statistically different from the ones of GSGP and standard GP.
The only dataset in which the statistical test gives us a different picture is PPB, where,
among the proposed methods, Align is the only one that was able to return results that
are statistically different from the ones of GSGP and standard GP.

5 Conclusions and Future Work

Three new genetic programming systems, called Align, Nested_Align and
Nested_Align_50, based on the idea of alignment in the error space, were introduced
in this paper. These new systems overcome some limitations of the previously existing
alignment-based algorithms. On four real-life symbolic regression problems, the pro-
posed systems have outperformed not only the state-of-the-art alignment-based meth-
ods, but also standard genetic programming and geometric semantic genetic program-
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ming. More specifically, Nested_Align_50 was the method that returned the best re-
sults, but Nested_Align_50 also generated very large programs. On the other hand,
Align and Nested_Align, although returning results that are slightly worse compared
to Nested_Align_50 in terms of accuracy, were able to evolve much smaller programs.

One of the most important limitations of this paper is that only alignments in two
dimensions are considered. In other words, the proposed systems use individuals that
are pairs of programs and they are only able to search for pairs of optimally aligned
programs. Our current research is focused on extending the method to more then two
dimensions. For instance, we are currently working on the development of systems that
evolve individuals that are triplets of programs, aimed at finding triplets of optimally
coplanar individuals. The subsequent step will be to further extend the method, possibly
generalizing to any number of dimensions. The design of self-configuring methods, that
automatically decide the most appropriate dimension, is one of the most ambitious goals
of our current work.
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