Skip to main content

Visual Art Inspired by the Collective Feeding Behavior of Sand-Bubbler Crabs

  • Conference paper
  • First Online:
Computational Intelligence in Music, Sound, Art and Design (EvoMUSART 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10783))

  • 1974 Accesses

Abstract

Sand-bubblers are crabs of the genera Dotilla and Scopimera which are known to produce remarkable patterns and structures at tropical beaches. From these pattern-making abilities, we may draw inspiration for digital visual art. A simple mathematical model is proposed and an algorithm is designed that may create such sand-bubbler patterns artificially. In addition, design parameters to modify the patterns are identified and analyzed by computational aesthetic measures. Finally, an extension of the algorithm is discussed that may enable controlling and guiding generative evolution of the art-making process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    See https://feit-msr.htwk-leipzig.de/sandbubblerart/ for further images and videos.

References

  1. Abbood, Z.A., Amlal, O., Vidal, F.P.: Evolutionary art using the fly algorithm. In: Squillero, G., Sim, K. (eds.) EvoApplications 2017. LNCS, vol. 10199, pp. 455–470. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55849-3_30

    Chapter  Google Scholar 

  2. Ansell, A.D.: Migration or shelter? Behavioural options for deposit feeding crabs on tropical sandy shores. In: Chelazzi, G., Vannini, M. (eds.) Behavioral Adaptation to Intertidal Life. NATO ASI Series (Series A: Life Sciences), vol. 151, pp. 15–26. Springer, Boston (1988). https://doi.org/10.1007/978-1-4899-3737-7_2

    Chapter  Google Scholar 

  3. Bigalke, R.: On the habits of the crab Dotilla fenestrata, Hilgendorf, with special reference to the mode of feeding. South Afr. J. Nat. Hist. 3, 205–209 (1921)

    Google Scholar 

  4. Burton, A.: Symbols in sand. Front. Ecol. Environ. 14, 456 (2016)

    Article  Google Scholar 

  5. Chakrabarti, A., Chakrabarti, R., Hertweck, G.: Surface traces and bioturbate textures from bubbler crabs: an indicator of subtropical to tropical tidal flat environments. Senckenb. Marit 36, 19–27 (2006)

    Article  Google Scholar 

  6. den Heijer, E., Eiben, A.E.: Investigating aesthetic measures for unsupervised evolutionary art. Swarm Evol. Comput. 16, 52–68 (2014)

    Article  Google Scholar 

  7. Fielder, D.R.: The feeding behaviour of the sand crab Scopimera inflata (Decapoda, Ocypodidae). J. Zool. (Lond.) 160, 35–49 (1970)

    Article  Google Scholar 

  8. Galanter, P.: The problem with evolutionary art is \(\ldots \). In: Di Chio, C., et al. (eds.) EvoApplications 2010. LNCS, vol. 6025, pp. 321–330. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12242-2_33

    Chapter  Google Scholar 

  9. Galanter, P.: Computational aesthetic evaluation: past and future. In: McCormack, J., d’Inverno, M. (eds.) Computers and Creativity, pp. 255–293. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31727-9_10

    Chapter  Google Scholar 

  10. Galanter, P.: Generative art theory. In: Paul, C. (ed.) A Companion to Digital Art, pp. 146–180. John Wiley, Chichester (2016)

    Chapter  Google Scholar 

  11. Gherardi, F., Russo, S.: Burrowing activity in the sand-bubbler crab, Dotilla fenestrata (Crustacea, Ocypodidae), inhabiting a mangrove swamp in Kenya. J. Zool. (Lond.) 253, 211–223 (2001)

    Article  Google Scholar 

  12. Greenfield, G., Machado, P.: Ant- and ant-colony-inspired alife visual art. Artif. Life 21, 293–306 (2015)

    Article  Google Scholar 

  13. Hartnoll, R.G.: Factors affecting the distribution and behaviour of the crab Dotilla fenestrata on East African shores. Estuar. Coast. Mar. Sci. 1, 137–152 (1973)

    Article  Google Scholar 

  14. House, A., Agah, A.: Autonomous evolution of digital art using genetic algorithms. J. Intell. Syst. 25, 319–333 (2016)

    Google Scholar 

  15. Jacob, C.J., Hushlak, G., Boyd, J.E., Nuytten, P., Sayles, M., Pilat, M.: Swarmart: interactive art from swarm intelligence. Leonardo 40, 248–254 (2007)

    Article  Google Scholar 

  16. Johnson, C.G.: Fitness in evolutionary art and music: a taxonomy and future prospects. Int. J. Arts Technol. 9, 4–25 (2016)

    Article  Google Scholar 

  17. Luschi, P., Del Seppia, C., Crosio, E.: Orientation during short-range feeding in the crab Dotilla wichmanni. J. Comp. Physiol. A. 181, 461–468 (1997)

    Article  Google Scholar 

  18. Machado, P., Martins, T., Amaro, H., Abreu, P.H.: An interface for fitness function design. In: Romero, J., McDermott, J., Correia, J. (eds.) EvoMUSART 2014. LNCS, vol. 8601, pp. 13–25. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44335-4_2

    Google Scholar 

  19. Mallon, B., Redies, C., Hayn-Leichsenring, G.U.: Beauty in abstract paintings: perceptual contrast and statistical properties. Front. Hum. Neurosci. 8, 161 (2014)

    Article  Google Scholar 

  20. Mohan, P.M., Pandey, P., Vijay, D., Dhivya, P.: Studies on morphology and orientation of pseudofaecal pellets of sand bubbler crab. J. Coast. Env. 2, 129–142 (2011)

    Google Scholar 

  21. Neumann, A., Alexander, B., Neumann, F.: Evolutionary image transition using random walks. In: Correia, J., Ciesielski, V., Liapis, A. (eds.) EvoMUSART 2017. LNCS, vol. 10198, pp. 230–245. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55750-2_16

    Chapter  Google Scholar 

  22. Romero, J., Machado, P. (eds.): The Art of Artificial Evolution: A Handbook on Evolutionary Art and Music. Natural Computing Series. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-72877-1

    Google Scholar 

  23. Ross, B.J., Ralph, W., Zong, H.: Evolutionary image synthesis using a model of aesthetics. In: Yen, G.G. (ed.) Proceedings of the IEEE Congress on Evolutionary Computation, IEEE CEC 2006, pp. 1087–1094. IEEE Press, Piscataway (2006)

    Google Scholar 

  24. Spehar, B., Clifford, C.W., Newell, B.R., Taylor, R.P.: Universal aesthetic of fractals. Comput. Graph. 27, 813–820 (2003)

    Article  Google Scholar 

  25. Urbano, P.: The T. albipennis sand painting artists. In: Di Chio, C., et al. (eds.) EvoApplications 2011. LNCS, vol. 6625, pp. 414–423. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20520-0_42

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendrik Richter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Richter, H. (2018). Visual Art Inspired by the Collective Feeding Behavior of Sand-Bubbler Crabs. In: Liapis, A., Romero Cardalda, J., Ekárt, A. (eds) Computational Intelligence in Music, Sound, Art and Design. EvoMUSART 2018. Lecture Notes in Computer Science(), vol 10783. Springer, Cham. https://doi.org/10.1007/978-3-319-77583-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77583-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77582-1

  • Online ISBN: 978-3-319-77583-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics