Skip to main content

Expressive Piano Music Playing Using a Kalman Filter

  • Conference paper
  • First Online:
Computational Intelligence in Music, Sound, Art and Design (EvoMUSART 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10783))

  • 1891 Accesses

Abstract

In this paper, we present an algorithm that uses the Kalman filter to combine simple phrase structure models with observed differences in pitch within the phrase to refine the phrase model and hence adjust the loudness level and tempo of qualities of the melody line. We show how similar adjustments may be made to the accompaniment to introduce expressive attributes to a midi file representation of a score. In the paper, we show that the subjects had some difficulty in distinguishing between the resulting expressive renderings and human performances of the same score.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://musescore.org/en.

  2. 2.

    http://www.avid.com/sibelius.

  3. 3.

    https://goo.gl/eYNpJy.

  4. 4.

    Audio files may be accessed from https://goo.gl/x8SLds.

References

  1. Bainbridge, D., Bell, T.: A music notation construction engine for optical music recognition. Softw. Pract. Exp. 33(2), 173–200 (2003)

    Article  MATH  Google Scholar 

  2. Bishop, G., Welch, G.: An introduction to the kalman filter. Proc of SIGGRAPH, Course 8(27599–23175), 41 (2001)

    Google Scholar 

  3. Bresin, R., Friberg, A.: Evaluation of computer systems for expressive music performance. In: Kirke, A., Miranda, E. (eds.) Guide to computing for expressive music performance, pp. 181–203. Springer, London (2013). https://doi.org/10.1007/978-1-4471-4123-5_7

    Chapter  Google Scholar 

  4. Cancino-Chacón, C.E., Gadermaier, T., Widmer, G., Grachten, M.: An evaluation of linear and non-linear models of expressive dynamics in classical piano and symphonic music. Mach. Learn. 106(6), 887–909 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cemgil, A.T., Kappen, B., Desain, P., Honing, H.: On tempo tracking: tempogram representation and kalman filtering. J. New Music Res. 29(4), 259–273 (2000)

    Article  Google Scholar 

  6. Fober, D., Letz, S., Orlarey, Y., Askenfelt, A., Hansen, K.F., Schoonderwaldt, E.: Imutus: an interactive music tuition system. In: The Sound and Music Computing Conference (SMC 04), October 20–22, 2004, IRCAM, Paris, France, pp. 97–103 (2004)

    Google Scholar 

  7. Friberg, A.: Generative rules for music performance: a formal description of a rule system. Comput. Music J. 15(2), 56–71 (1991)

    Article  MathSciNet  Google Scholar 

  8. Friberg, A., Bresin, R., Sundberg, J.: Overview of the kth rule system for musical performance. Adv. Cogn. Psychol. 2(2–3), 145–161 (2006)

    Article  Google Scholar 

  9. Giraldo, S.I., Ramirez, R.: A machine learning approach to discover rules for expressive performance actions in jazz guitar music. Frontiers in psychology 7, 1965 (2016)

    Article  Google Scholar 

  10. Gu, Y., Raphael, C.: Modeling piano interpretation using switching kalman filter. In: ISMIR, pp. 145–150 (2012)

    Google Scholar 

  11. Hashida, M., Hirata, K., Katayose, H.: Rencon workshop 2011 (SMC-Rencon): performance rendering contest for computer systems (2011)

    Google Scholar 

  12. Kim, T.H., Fukayama, S., Nishimoto, T., Sagayama, S.: Statistical approach to automatic expressive rendition of polyphonic piano music. In: Kirke, A., Miranda, E. (eds.) Guide to Computing for Expressive Music Performance, pp. 145–179. Springer, London (2013). https://doi.org/10.1007/978-1-4471-4123-5_6

    Chapter  Google Scholar 

  13. Kirke, A., Miranda, E.R.: An overview of computer systems for expressive music performance. In: Kirke, A., Miranda, E. (eds.) Guide to computing for expressive music performance, pp. 1–47. Springer, London (2013). https://doi.org/10.1007/978-1-4471-4123-5_1

    Chapter  Google Scholar 

  14. Kosta, K., Ramirez, R., Bandtlow, O.F., Chew, E.: Mapping between dynamic markings and performed loudness: a machine learning approach. J. Math. Music 10(2), 149–172 (2016)

    Article  MathSciNet  Google Scholar 

  15. Krebs, F., Grachten, M.: Combining score and filter based models to predict tempo fluctuations in expressive music performances. In: Proceedings of the Ninth Sound and Music Computing Conference (SMC), pp. 358–363. Copenhagen Denmark (2012)

    Google Scholar 

  16. Lewis, J.P.: Fast normalized cross-correlation. In: Vision Interface, vol. 10, pp. 120–123 (1995)

    Google Scholar 

  17. Pluta, M., Spalek, L.J., Delekta, R.J.: An automatic synthesis of musical phrases from multi-pitch samples. Arch. Acoust. 42(2), 235–247 (2017)

    Google Scholar 

  18. Todd, N.: A model of expressive timing in tonal music. Music Percept. Interdisc. J. 3(1), 33–57 (1985)

    Article  Google Scholar 

  19. Werner, G., Widmer, G.: Modern methods for musicology: prospects, proposals, and realities. In: On the Use of Computational Methods for Expressive Music Performance, pp. 93–113. Routledge (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Bonnici .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bonnici, A., Mifsud, M., Camilleri, K.P. (2018). Expressive Piano Music Playing Using a Kalman Filter. In: Liapis, A., Romero Cardalda, J., Ekárt, A. (eds) Computational Intelligence in Music, Sound, Art and Design. EvoMUSART 2018. Lecture Notes in Computer Science(), vol 10783. Springer, Cham. https://doi.org/10.1007/978-3-319-77583-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77583-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77582-1

  • Online ISBN: 978-3-319-77583-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics