Abstract
The paper describes an experimental system for generating 3D-printable models inspired by arbitrary textual input. Utilizing a transliteration pipeline, the system pivots on Natural Language Understanding technologies and 3D data available via online repositories to result in a bag of retrieved 3D models that are then concatenated in order to produce original designs. Such artefacts celebrate a post-digital kind of objecthood, as they are concretely physical while, at the same time, incorporate the cybernetic encodings of their own making. Twelve individuals were asked to reflect on some of the 3D-printed, physical artefacts. Their responses suggest that the created artefacts succeed in triggering imagination, and in accelerating moods and narratives of various sorts.
M. Koutsomichalis is supported by an ERCIM “Alain Bensoussan” Fellowship. The authors would like to thank the reviewers for their insightful comments that helped improve the paper.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Willis, K.D., Xu, C., Wu, K.J., Levin, G., Gross, M.D.: Interactive fabrication: new interfaces for digital fabrication. In: Proceedings of the 5th International Conference on Tangible, Embedded, and Embodied Interaction, pp. 69–72. ACM, New York (2011). https://doi.org/10.1145/1935701.1935716
Clune, J., Lipson, H.: Evolving three-dimensional objects with a generative encoding inspired by developmental biology. In: Proceedings of the 20th European Conference on Artificial Life, pp. 141–148 (2011)
Lehman, J., Risi, S., Clune, J.: Creative generation of 3D objects with deep learning and innovation engines. In: Proceedings of the 7th International Conference on Computational Creativity (2016)
Reed, K.: Aesthetic measures for evolutionary vase design. In: Machado, P., McDermott, J., Carballal, A. (eds.) EvoMUSART 2013. LNCS, vol. 7834, pp. 59–71. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36955-1_6
Horn, B., Smith, G., Masri, R., Stone, J.: Visual information vases: towards a framework for transmedia creative inspiration. In: Proceedings of the International Conference on Computational Creativity, pp. 182–188 (2015)
Khot, R.A., Hjorth, L., Mueller, F.F.: Understanding physical activity through 3D printed material artifacts. In: Proceedings of the 32nd Annual ACM Conference on Human Factors in Computing Systems, pp. 3835–3844. ACM, New York (2014). https://doi.org/10.1145/2556288.2557144
Stusak, S., Tabard, A., Sauka, F., Khot, R.A., Butz, A.: Activity sculptures: exploring the impact of physical visualizations on running activity. IEEE Trans. Visual. Comput. Graphics 20(12), 2201–2210 (2014). https://doi.org/10.1109/TVCG.2014.2352953
Jafarinaimi, N., Forlizzi, J., Hurst, A., Zimmerman, J.: Breakaway: an ambient display designed to change human behavior. In: Extended Abstracts of the 23rd SIGCHI Conference on Human Factors in Computing Systems, pp. 1945–1948. ACM, New York (2005). https://doi.org/10.1145/1056808.1057063
Jansen, Y., Dragicevic, P., Fekete, J.D.: Evaluating the efficiency of physical visualizations. In: Proceedings of the 31st SIGCHI Conference on Human Factors in Computing Systems, pp. 2593–2602. ACM, New York (2013). https://doi.org/10.1145/2470654.2481359
Séquin, C.H.: Rapid prototyping: a 3D visualization tool takes on sculpture and mathematical forms. Commun. ACM 48(6), 66–73 (2005). https://doi.org/10.1145/1064830.1064860
Alexander, J., Jansen, Y., Hornbæk, K., Kildal, J., Karnik, A.: Exploring the challenges of making data physical. In: Proceedings of the 33rd SIGCHI Conference Extended Abstracts on Human Factors in Computing Systems, pp. 2417–2420. ACM, New York (2015). https://doi.org/10.1145/2702613.2702659
Zhao, J., Moere, A.V.: Embodiment in data sculpture: a model of the physical visualization of information. In: Proceedings of the 3rd International Conference on Digital Interactive Media in Entertainment and Arts, pp. 343–350. ACM, New York (2008). https://doi.org/10.1145/1413634.1413696
Stone, J.: Systems and methods for transforming and/or generating a tangible physical structure based on user input information. US Patent App. 13/467,713, 23 May 2013
Lee, T.: New typographic experience in the post-digital age with 3D printing and ceramics. In: Chung, W., Shin, C.S. (eds.) Proceedings of the 8th International Conference of Applied Human Factors and Ergonomics on Affective and Pleasurable Design, pp. 161–170. Springer, New York (2018). https://doi.org/10.1007/978-3-319-60495-4_17
Blikstein, P., Krannich, D.: The makers’ movement and FabLabs in education: experiences, technologies, and research. In: Proceedings of the 12th International Conference on Interaction Design and Children, pp. 613–616. ACM, New York (2013). https://doi.org/10.1145/2485760.2485884
Posch, I., Ogawa, H., Lindinger, C., Haring, R., Hörtner, H.: Introducing the FabLab as interactive exhibition space. In: Proceedings of the 9th International Conference on Interaction Design and Children, pp. 254–257. ACM, New York (2010). https://doi.org/10.1145/1810543.1810584
Tanenbaum, J.G., Williams, A.M., Desjardins, A., Tanenbaum, K.: Democratizing technology: pleasure, utility and expressiveness in DIY and maker practice. In: Proceedings of the 31st SIGCHI Conference on Human Factors in Computing Systems, pp. 2603–2612. ACM, New York (2013). https://doi.org/10.1145/2470654.2481360
Kuznetsov, S., Paulos, E.: Rise of the expert amateur: DIY projects, communities, and cultures. In: Proceedings of the 6th Nordic Conference on Human-Computer Interaction, pp. 295–304. ACM, New York (2010). https://doi.org/10.1145/1868914.1868950
Gershenfeld, N.: Fab: The Coming Revolution on Your Desktop-From Personal Computers to Personal Fabrication. Basic Books, New York (2008)
Dougherty, D.: The maker movement. Innovations 7(3), 11–14 (2012). https://doi.org/10.1162/INOV_a_00135
Toombs, A., Bardzell, S., Bardzell, J.: Becoming makers: hackerspace member habits, values, and identities. J. Peer Prod. 5, 1–8 (2014)
Rayna, T., Striukova, L., Darlington, J.: Open innovation, co-creation and mass customisation: what role for 3D printing platforms? In: Brunoe, T.D., Nielsen, K., Joergensen, K.A., Taps, S.B. (eds.) Proceedings of the 7th World Conference on Mass Customization, Personalization, and Co-creation (MCPC 2014). LNPE, pp. 425–435. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04271-8_36
Groenendyk, M.: Cataloging the 3D web: the availability of educational 3D models on the internet. Libr. Hi Tech 34(2), 239–258 (2016). https://doi.org/10.1108/LHT-09-2015-0088
Bird, S., Klein, E., Loper, E.: Natural Language Processing with Python: Analyzing Text with the Natural Language Toolkit. O’Reilly Media, Sebastopol, CA (2009)
Speer, R., Havasi, C.: ConceptNet 5: a large semantic network for relational knowledge. In: Gurevych, I., Kim, J. (eds.) The People’s Web Meets NLP: Collaboratively Constructed Language Resources, pp. 161–176. Springer, Berlin (2013). https://doi.org/10.1007/978-3-642-35085-6_6
Miller, G.A., Beckwith, R., Fellbaum, C., Gross, D., Miller, K.J.: Introduction to WordNet: an on-line lexical database. Int. J. Lexicography 3(4), 235–244 (1990). https://doi.org/10.1093/ijl/3.4.235
Azzam, S., Humphreys, K., Gaizauskas, R.: Using coreference chains for text summarization. In: Proceedings of the Workshop on Coreference and Its Applications, pp. 77–84. Association for Computational Linguistics, Stroudsburg (1999)
Barzilay, R., Elhadad, M.: Using lexical chains for text summarization. In: Advances in Automatic Text Summarization, pp. 111–121 (1999)
Lee, H., Peirsman, Y., Chang, A., Chambers, N., Surdeanu, M., Jurafsky, D.: Stanford’s multi-pass Sieve coreference resolution system at the CoNLL-2011 shared task. In: Proceedings of the 15th Conference on Computational Natural Language Learning, pp. 28–34. Association for Computational Linguistics (2011)
Morris, J., Hirst, G.: Lexical cohesion computed by thesaural relations as an indicator of the structure of text. Comput. Linguist. 17(1), 21–48 (1991)
Bergler, S., Witte, R., Khalife, M., Li, Z., Rudzicz, F.: Using knowledge-poor coreference resolution for text summarization. In: Proceedings of 3rd Document Understanding Conference, vol. 3 (2003)
Brunn, M., Chali, Y., Pinchak, C.J.: Text summarization using lexical chains. In: Proceedings of 1st Document Understanding Conference (2001)
Boden, M.: The Creative Mind: Myths and Mechanisms. Routledge, New York (2004)
Paul, C.: From immateriality to neomateriality: art and the conditions of digital materiality. In: Proceedings of the 21st International Symposium on Electronic Art (2015)
Groys, B.: From image to image-file–and back: art in the age of digitalization. In: Groys, B. (ed.) Art Power, pp. 83–91. MIT Press, Cambridge (2008)
Koutsomichalis, M.: From music to big music: listening in the age of big data. Leonardo Music J. 26, 24–27 (2016). https://doi.org/10.1162/LMJ_a_00962
Philipsen, L.: Who’s afraid of the audience? Digital and post-digital perspectives on aesthetics. Peer-Reviewed J. About Post-Digital Res. 3(1) (2014). http://www.aprja.net/whos-afraid-of-the-audience-digital-and-post-digital-perspectives-on-aesthetics/
Hielscher, S., Smith, A.G.: Community-based digital fabrication workshops: a review of the research literature. Technical report, SWPS 2014–08, University of Sussex, Brighton, UK (2014). http://sro.sussex.ac.uk/49214/1/2014-08_SWPS_Hielscher_Smith.pdf. Accessed 13 Jan 2018
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Koutsomichalis, M., Gambäck, B. (2018). Generative Solid Modelling Employing Natural Language Understanding and 3D Data. In: Liapis, A., Romero Cardalda, J., Ekárt, A. (eds) Computational Intelligence in Music, Sound, Art and Design. EvoMUSART 2018. Lecture Notes in Computer Science(), vol 10783. Springer, Cham. https://doi.org/10.1007/978-3-319-77583-8_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-77583-8_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-77582-1
Online ISBN: 978-3-319-77583-8
eBook Packages: Computer ScienceComputer Science (R0)