Skip to main content

Automatic Directions for Object Localization in Virtual Environments

  • Conference paper
  • First Online:
  • 4145 Accesses

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 746))

Abstract

In order to assist users in the process of locating objects in Virtual Environments (VE), we automatize the process of giving directions through a computational model. This model generates directions in natural language by using spatial and perceptual aspects. It involves three main processes: (1) a computational model of perceptual saliency for 3D objects; (2) a user model and an explicit representation of virtual world semantics; and (3) the algorithm for automatic generation of directions to locate objects in natural language. Reference frames and reference objects support the model. For the selection of the best reference 3D object are considered three criteria: the perceptual saliency of the objects, the probability of the user to remember the object location, and prior knowledge from the user about the object. This paper presents the structure and the processes of the proposed model.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. McNamara, T.P.: How are the locations of objects in the environment represented in memory? In: Spatial Cognition III. Lecture Notes in Computer Science, vol. 2685, pp. 174–191. Springer (2003)

    Google Scholar 

  2. Gapp, K.-P.: Processing spatial relations in object localization tasks, pp. 1–7. Universität des Saarlandes, Federal Republic of Germany (1996a)

    Google Scholar 

  3. Barclay, M.: Reference object choice in spatial language: machine and human models. Ph.D. thesis. University of Exeter, p. 274 (2010)

    Google Scholar 

  4. Kelleher, J.D.: A perceptually based computational framework for the interpretation of spatial language. Ph.D. thesis, School of Computing, Dublin City University, Dublin, pp. 1–463 (2003)

    Google Scholar 

  5. Gorniak, P., Roy, D.: Grounded semantic composition for visual scenes. J. Artif. Intell. Res. 21, 429–470 (2004)

    Google Scholar 

  6. Trinh, T.-H.: A constraint-based approach to modelling spatial semantics of virtual environments. Ph.D. thesis, Université de Bretagne Occidentale (2013)

    Google Scholar 

  7. Schütte, N.: Resolving perception based problems in human-computer dialogue, pp. 1–370. School of Computing, Dublin Institute of Technology, Ireland (2016)

    Google Scholar 

  8. Hou, Z., Marjorie, S.: Natural spatial description generation for human-robot interaction in indoor environments. In: IEEE International Conference on Smart Computing (SMARTCOMP), pp. 1–3. IEEE (2016)

    Google Scholar 

  9. Lara, G., De Antonio, A., Peña, A.: Computerized spatial language generation for object location. Virtual Real. 20(3), 183–192 (2016)

    Article  Google Scholar 

  10. Frintrop, S., Rome, E., Christensen, H.I.: Computational visual attention systems and their cognitive foundations: a survey. ACM Trans. Appl. Percept. (TAP) 7(1), 6:1–6:39 (2010)

    Google Scholar 

  11. Vargas, M.L., Lahera, G.: “Asignación de relavancia”: Una propuesta para el término inglés “salience”. Actas Esp Psiquiatría 39, 271–272 (2011)

    Google Scholar 

  12. Lahera, G., Freund, N., Sáin-Ruíz, J.: Asignación de relevancia (salience) y desregulación del sistema dopaminérgico. Revista de Psiquiatría y Salud Mental 6(1), 45–51 (2013)

    Article  Google Scholar 

  13. Hall, D., Leibe, B., Schile, B.: Saliency of interest points under scale changes. In: British Machine Vision Conference (BMVC 2002), Cardiff, UK, pp. 646–655 (2002)

    Google Scholar 

  14. Lara, L.G., et al.: Comparative analysis of shape descriptors for 3D objects. Multimed. Tools Appl. 76(5), 6993–7040 (2017)

    Article  Google Scholar 

  15. Tkalčič, M., Tasič, J.F.: Colour spaces - perceptual, historical and applicational background. In: The IEEE Region 8 EUROCON 2003: Computer as a Tool, vol. 1, pp. 304–308. IEEE (2003)

    Google Scholar 

  16. Lara, G., De Antonio, A., Peña, A.: A computational measure of saliency of the shape of 3D objects. In: Trends and Applications in Software Engineering. Springer, Cham (2016)

    Google Scholar 

  17. Lara, G., et al.: 3D objects shape relevance for saliency measure. In: Trends and Applications in Software Engineering, 6th International Conference on Software Process Improvement (CIMPS 2017). Springer, México (2017)

    Google Scholar 

  18. Lara, G., De Antonio, A., Peña, A.: A computational model of perceptual saliency for 3D objects in virtual environment (2017, in press)

    Google Scholar 

  19. Bataller, S.B., Meléndez Moral, J.: Cambios en la memoria asociados al envejecimiento. Geriátrika 22(5), 179–185 (2006)

    Google Scholar 

  20. Craik, F.I., Lockhart, R.S.: Niveles de procesamiento: Un marco para la investigación sobre la memoria. Estudios de psicología. Taylor & Francis 1(2), 93–109 (1980)

    Article  Google Scholar 

  21. Mou, W., McNamara, T.P.: Intrinsic frames of reference in spatial memory. J. Exp. Psychol. Learn. Mem. Cogn. 28(1), 162–170 (2002)

    Article  Google Scholar 

  22. Gapp, K.-P.: Object localization: selection of optimal reference objects. In: Spatial Information Theory. A Theoretical Basis For GIS, pp. 519–536 (1995)

    Google Scholar 

  23. Harrington, D.O., Drake, M.V.: Los campos visuales: texto y atlas de perimetría clínica. Ediciones Científicas y Técnicas (1993)

    Google Scholar 

  24. Gapp, K.-P.: Selection of best reference objects in objects localizations. In: Proceedings of the AAAI Spring Symposium on Cognitive and Comutational Models of Spatial Representations, Stanford, CA (1996b)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graciela Lara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lara, G., De Antonio, A., Peña, A., Muñoz, M. (2018). Automatic Directions for Object Localization in Virtual Environments. In: Rocha, Á., Adeli, H., Reis, L., Costanzo, S. (eds) Trends and Advances in Information Systems and Technologies. WorldCIST'18 2018. Advances in Intelligent Systems and Computing, vol 746. Springer, Cham. https://doi.org/10.1007/978-3-319-77712-2_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77712-2_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77711-5

  • Online ISBN: 978-3-319-77712-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics