
Smart Innovation, Systems and Technologies

Volume 92

Series editors

Robert James Howlett, Bournemouth University and KES International,
Shoreham-by-sea, UK
e-mail: rjhowlett@kesinternational.org

Lakhmi C. Jain, University of Canberra, Canberra, Australia
Bournemouth University, UK;
KES International, UK
e-mails: jainlc2002@yahoo.co.uk; Lakhmi.Jain@canberra.edu.au

The Smart Innovation, Systems and Technologies book series encompasses the
topics of knowledge, intelligence, innovation and sustainability. The aim of the
series is to make available a platform for the publication of books on all aspects of
single and multi-disciplinary research on these themes in order to make the latest
results available in a readily-accessible form. Volumes on interdisciplinary research
combining two or more of these areas is particularly sought.

The series covers systems and paradigms that employ knowledge and
intelligence in a broad sense. Its scope is systems having embedded knowledge
and intelligence, which may be applied to the solution of world problems in
industry, the environment and the community. It also focusses on the
knowledge-transfer methodologies and innovation strategies employed to make
this happen effectively. The combination of intelligent systems tools and a broad
range of applications introduces a need for a synergy of disciplines from science,
technology, business and the humanities. The series will include conference
proceedings, edited collections, monographs, handbooks, reference books, and
other relevant types of book in areas of science and technology where smart
systems and technologies can offer innovative solutions.

High quality content is an essential feature for all book proposals accepted for the
series. It is expected that editors of all accepted volumes will ensure that
contributions are subjected to an appropriate level of reviewing process and adhere
to KES quality principles.

More information about this series at http://www.springer.com/series/8767

http://www.springer.com/series/8767

Sergey V. Zykov

Managing Software Crisis:
A Smart Way to Enterprise
Agility

123

Sergey V. Zykov
Higher School of Economics
National Research University
Moscow
Russia

ISSN 2190-3018 ISSN 2190-3026 (electronic)
Smart Innovation, Systems and Technologies
ISBN 978-3-319-77916-4 ISBN 978-3-319-77917-1 (eBook)
https://doi.org/10.1007/978-3-319-77917-1

Library of Congress Control Number: 2018938776

© Springer International Publishing AG, part of Springer Nature 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG
part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

To God, my teachers, and my family

Foreword

As computers and machines have become increasingly intelligent and capable of
performing complex activities, the software that lies at the heart of every action is
under more pressure to deploy successfully each and every time it is called upon.
Yet companies rush the production cycle in order to be first to market; machines are
called upon to operate in environments for which they were not designed; and
enterprises lose business with computer software crashes. The resulting unhappy
customers, expensive opportunity costs, and potentially unsafe operations have led
to a crisis in software production. Thus, this book is timely in addressing one of the
most challenging problems in technology and one that is mostly hidden—devel-
oping reliable flexible software that works “out of the box.”

Indeed, software development has been studied for decades. Project management
techniques have been applied to the software development life cycle and have led to
recommendations for methods such as waterfall, agile, object-oriented, scrum, lean,
iterative. However, rather than focusing on a single method, this book takes a
broader approach and investigates software production complexity resulting from
the interplay between software quality characteristics, technological factors, and
human-related factors. Issues and best practices for software development are
illustrated with case studies.

This book will be a valuable and thought-provoking read for anyone interested
in software development. The authors are experts who have studied both the
problems and the successes associated with software. Their combined wisdom will
benefit the community and hopefully contribute to better software in the future.

Baltimore, MD, USA Dr. Gloria Phillips-Wren, Ph.D.
Professor and Chair

Department of Information Systems
Law and Operations

The Sellinger School of Business and Management
Loyola University Maryland

vii

Acknowledgements

I would like to thank the colleagues of mine who essentially contributed to this
book. They clarified initially vague ideas and helped with translation, copyediting,
proofreading, diagramming, etc. Many of them are the students who did their
master/Ph.D. theses under my supervision. Some of their papers findings and
takeaways were transformed and included into this book as case studies on agility
improvement and crisis responses. They are: Vlad Abdulmianov, Eunice Agyei,
Artem Aslanyan, Vera Ermakova, Nikita Fomichyov, Ramis Gabeydulin, Prof.
Alexander Gromoff, Alexandra Gureeva, Mikhail Kupriyanov, Maria Mamontova,
Dinara Nikolaeva, Isheyemi Olufemi, Victor Rotari, Gaurav Sharma, Grigory
Shilin, Alexander Sivtsov, and Sabina Supibek.

I would like to thank the Springer executive editor Dr. Thomas Ditzinger and the
Springer project coordinator for books production Mr. Ayyasamy Gowrishankar,
for their continuous availability and prompt assistance.

In addition, I would like to express my deep appreciation and sincere gratitude to
the editors in chief of the Springer series in Smart Innovation, Systems and
Technologies, Prof. Lakhmi C. Jain and Prof. Robert J. Howlett, for their coop-
erative efforts in supporting my initiative.

ix

Contents

1 The Agile Way . 1
1.1 Introduction: Adjustment for Agility . 1
1.2 What Is Agility? . 2
1.3 The Story of Russian Bridges . 8

1.3.1 Why Is the Number of Bridges so Small in Russia? 8
1.3.2 Bridge Collapses in Russia . 10
1.3.3 Building the Kerch Bridge in Crimea 11

1.4 Digital Transformation . 11
1.4.1 Transparent Voting Platform Based on Blockchain 11
1.4.2 Decentralized Applications . 16

1.5 Architecting for Agility . 17
1.5.1 Sentiment Analysis System Based on Events Feedback . . . 17

1.6 Conclusion: How Agile Way Works . 27
References . 28

2 Agile Languages . 35
2.1 Introduction: Communication Agility . 35
2.2 Why Languages? . 36
2.3 Making Processes Communicate . 40
2.4 Developing an Embedded System . 54
2.5 Conclusion: How Languages Work . 62
References . 63

3 Agile Services . 65
3.1 Introduction: What Is an Agile Service? . 65
3.2 The Microservice Approach . 67
3.3 Enterprise Microservices . 71
3.4 Bank Microservices . 82
3.5 CRM Microservices . 87

3.5.1 Analysis of Existing Solutions . 89

xi

3.6 Cloud Services . 90
3.6.1 Process Modeling for Virtual Machines in Clouds 90
3.6.2 Information Process Model . 92
3.6.3 Optimization of Virtual Machine Configuration 95
3.6.4 Experimental Design of Automatic Virtual Machine

Configuration . 97
3.6.5 Conditions, Objects and Order of Testing 98
3.6.6 Analysis of Testing Results . 101

3.7 Conclusion: How Services Work . 103
References . 104

4 Agile Patterns and Practices . 107
4.1 Introduction: Why Agile Patterns and Practices? 107
4.2 Agile Knowledge Transfer . 108
4.3 Open Education Metadata Warehouse . 118
4.4 Aircraft Communication System . 125
4.5 Conclusion: How Patterns and Practices Work 132
References . 133

Conclusion: Agility Revisited: What, Why and How 135

Glossary . 139

Index . 151

xii Contents

Acronyms

3D Three dimension
AAC Airline Administrative Control
ABS Automated banking system
ACARS Aircraft Communications Addressing and Reporting

System
ACDM Architecture-centric design method
AI Artificial intelligence
AOC Aeronautical operational control
APEC Asia-Pacific Economic Cooperation
API Application programming interface
APL Application programming language
ARIS Architecture of integrated information systems
AST Abstract syntax tree
ATAM Architecture tradeoff analysis method
ATC Air traffic control
BPM Business process modeling
CABS Centralized automated banking system
CAD Computer-aided design
CASE Computer-aided software engineering
CD Continuous delivery
CEO Chief executive officer
CERN Conseil Européen pour la Recherche Nucléaire
CI Continuous integration
CID Common interface definition
CIDL Common interface definition language
CMU Carnegie Mellon University
CORBA Common Object Request Broker Architecture
CPU Central processing unit
CQRS Command Query Responsibility Separation
CRM Customer relationship management

xiii

CSV Comma-separated values
DB Database
DBMS Database management systems
DOM Document Object Model
DPU Data processing unit
DRE Direct-recording electronic
DSL Domain-specific language
DSM Domain-specific modeling
DSML Domain-specific modeling language
EA Enterprise architecture
EAI Enterprise application integration
EMF Eclipse Modeling Framework
EPL Eclipse Public License
EQCS Education quality control system
ER Enterprise resource
ERP Enterprise resource planning
ETL Extract–transform–load
FIFA Federation International of Football Association
FTP File Transfer Protocol
GDP Gross domestic production
GMF Graphical Modeling Framework
GRPC Google Remote Procedure Call
GUI Graphical user interface
HTML Hypertext Markup Language
IAAS (aka IaaS) Infrastructure as a service
IDE Integrated development environment
IDL Interface definition language
IEEE Institute of Electrical and Electronics Engineers
IIOP Internet Inter-ORB Protocol
IOT (aka IoT) Internet of Things
IS Information system
ISO International Organization for Standardization
IU Innopolis University
JDBC Java Database Connectivity
JSON JavaScript Object Notation
KAIST South Korea Advanced Institute of Science and

Technology
KPI Key performance indicator
KT Knowledge transfer
LED Light-emitting diode
LISP List processing
LMS Learning management system
LOM Learning Object Metadata

xiv Acronyms

LOP Language-oriented programming
LW Language workbench
MEPHI (aka MEPhI) Moscow Engineering and Physics Institute
METAR Meteorological Aerodrome Report
MIT Massachusetts Institute of Technology
ML Machine learning
MODS Metadata Object Description Schema
MOOC Massive open online course
MS Microsoft
NATO North Atlantic Treaty Organization
NLP Natural-language processing
NPP Nuclear power plant
ODBC Open Database Connectivity
OER Open educational resources
OOOI Out, Off, On, In
ORB Object request broker
OS Operating system
PAAS (aka PaaS) Platform as a service
PDF Portable Document Format
PL Production life cycle
PLM Production life cycle management
PR Public relations
PROLOG PROgramming in LOGic
R&D Research & Development
RAM Random-access memory
RDF Resource Description Framework
REST Representational State Transfer
RPC Remote procedure call
RUR Russian ruble
SAAS (aka SaaS) Software as a service
SE Software engineering
SML Standard Meta Language
SMS Short Message Service
SOA Service-oriented architecture
SOAP Simple Object Access Protocol
SQL Structured query language
SSL Secure Sockets Layer
SVM Support vector machine
TCP/IP Transmission Control Protocol/Internet Protocol
TF.IDF Term Frequency–Inverse Document Frequency
UI User interface
UML Unified Modeling Language
VHF Very high frequency
VLDB Very large database

Acronyms xv

VM Virtual machine
VS Visual Studio
XML Extensible Markup Language
XPATH (aka XPath) XML Path Language
ZKP Zero-knowledge proof

xvi Acronyms

Abstract

This book is about enterprise agility and crisis-resistant software engineering.
Chapter 1 gives an overview of the concept of enterprise agility and its impact on

organizational flexibility. This includes an in-depth evaluation of modern
enterprise-scale projects and case studies on their non-agility, which often results in
disastrous consequences. The ways we suggest to avoid these mission-critical errors
are based on the existing research results in the field. Another key aspect is the
agility improvement by means of the architectural trade-offs. We outline a few types
of crisis recovery strategies and determine their links to the software architectures.
We consider mission-critical systems for deeper understanding of how to increase
scalability and avoid potential design errors. We provide case studies of bridge
construction as examples of careless crisis management and foundations for agility
improvement. We also focus on the digital integrity protection and particularly
blockchain technology, and its application to secure voting. Afterward, we discuss
decentralized applications and using their bit-torrent sharing networks in cryp-
tocurrencies. We present a case study on sentiment analysis and its application to
the agility issues in crisis.

Chapter 2 discusses the concept of programming languages and their use in
application development. We analyze the evolution of programming languages
from primitive to high-level ones. We examine the concept of domain-specific
languages and a few problem domains for their testing and verification under
specific environments, the focus being on inter-process communication with
CORBA and ICE technologies. This chapter also describes the embedded systems
and how they promote agility in mission-critical systems.

Chapter 3 describes the best practices in service-oriented enterprise software
development. We define Microservices and illustrate how they improve organiza-
tional agility. We analyze how service-oriented architectures and particularly
Microservices differ from the monolithic approach and identify their potential
application areas. We discuss implementations of continuous delivery and contin-
uous integration of the application life cycle and illustrate their importance. We
present a case of Microservices for the banking sector and investigate how it helps

xvii

to meet the requirements. We examine the integration of customer relationship
management and geo-marketing and identify the business value of this synergy. We
discuss the cloud services (and particularly virtual machines) as an agility booster;
this includes in-depth testing of the proposed architecture.

Chapter 4 focuses on how the best software development practices depend on
human-related factors; we further investigate the pattern-based approach as an
agility driver. We discuss the principles of knowledge transfer and detect the key
factors, which promote agile transfer in crisis. We look at the application of these
factors to a Russian start-up, Innopolis University, and analyze the implications on
the project flexibility improvement. We discuss patterns and anti-patterns of
crisis-resistant development for increasing agility in mission-critical systems.

Keywords Agility � Architecture � Crisis resistance � Blockchain
Decentralized application � Life cycle model � Software product
CASE tool � Functional � Logical � Object-oriented � Domain-specific language
Reusability � Embedded system � Enterprise software development
Microservice � Customer relationship management � Banking � Cloud service
Best practice � Layer-based approach � Knowledge transfer � Design pattern

xviii Abstract

Introduction: Agility or Extinction

The focus of this book is smart agility management in crisis for large-scale software
systems.

Marx explained crises and their nature. He stated that crises result from mis-
balanced production and the realization of a surplus value on the market [1]. The
root cause of this misbalance is the separation between the producers and the means
of production [2]. In software development, the nature of crises is somewhat dif-
ferent; a crisis is typically a disproportion between client’s expectations and the
actual product behavior.

Enterprise systems are typically complex; they combine a large number of
hardware and software components. Managing the development of such complex
software products, even under uncertainties and in crisis, is a key aim of software
engineering. This discipline emerged in the 1960s as a response to the so-called
software crisis. This term originated from the critical development complexity
because of overwhelming computing power. In 1967, the issue became so critical
that NATO had to arrange an invitation-only conference to find an immediate
solution. The conference was held in Germany; its key participants were such gurus
in computer science as A. Perlis, E. Dijkstra, F. Bauer, and P. Naur. These
researchers and practitioners were Turing Award winners and the NATO Science
Committee representatives from the USA, Germany, Denmark, and the
Netherlands. At that time, the complexity of the hardware and software systems
became unmanageable by the traditional methods and techniques. A large number
of software products were late, over budget, or totally unsuccessful. To clarify this
state of software production management, F. Bauer introduced the term “crisis” at
the conference; E. Dijkstra used it later in his Turing Award lecture. The partici-
pants suggested “software engineering” (this term is also attributed to F. Bauer) as a
remedy for that crisis. The idea was applying engineering methods of material
production to the emerging large-scale software development in order to create
better measurable and less uncertain products, i.e., to achieve a new agility level.

Now, we are on the same page concerning the crisis. However, what is agility?
Intuitively, it is clear. For some experts, agile means flexible. For the other experts,
agile means adjustable. Before giving a formal definition, let us turn to an example.

xix

One can easily imagine a dancing puma or cat; these are typical instances of agile
behavior or agility. However, can you imagine a waltzing elephant or a bigger (and
more outdated) creature, like a mammoth or a dinosaur?

Why do we turn to large ancient beasts and waltzing? This is a metaphor.
Metaphor is often used as an agile software engineering technique in order to
disseminate a novel software system concept among the shareholders.

In our case, waltzing is an example of activity that requires agility. An elephant
or a mammoth is a large-scale company which is an instance of a slow responsive
and hard-to-adjust actor. The challenges of agile management are easier to track and
monitor by means of large-scale company cases. An old-fashioned dinosaur
example refers to an enterprise with complex and somewhat outdated management
patterns and legacy computer systems. State-of-the-art business environment
requires increased responsiveness, which is similar to following a tune while
waltzing. Moreover, waltzing requires complex motion and constant coordination
of the dancer’s body parts.

Waltzing also requires a partner, which involves another level of coordination.
This dancing style has a clearly recognizable pattern, which is certainly different
from any other, such as salsa or polka. Though following a specific style might
appear too difficult for an elephant or a mammoth, performing in any different style
from the partner will likely result in a crash. This is due to an unexpected and/or
unpredictable behavior, which in fact is an example of a crisis. Conversely, to
perform harmoniously, i.e., to avoid a crisis, the partners need to coordinate (i.e.,
monitor and adjust) their actions following the same style. Therefore, to reach this
agile harmony the partners need to master the waltzing process through training
which requires both personal and team activities.

Currently, the Earth faces a global warming, which looks so slow that certain
individuals do not notice it. As the warming accelerates, it may result dramatically
for these non-responsive individuals in just a few decades. In crisis, it is very risky
to remain old-fashioned and non-agile. Dramatic business climate change, uncer-
tainties of resources, business and technical requirements, emerging and collapsing
markets are radical and may result in critical consequences. In crisis, agility requires
instant attention as insufficient agility is synonymous with extinction.

Agility is related to balancing business requirements and technology constraints.
Many local crises result from misbalancing of these two aspects. Therefore, a
well-balanced software solution means better agility. In other words, agility is a
remedy for crisis. In crisis, agility is vital for any kind of a business structure.
However, agility is better observed and understood in large-scale structures such as
enterprises. Thus, building enterprise-scale systems requires a good balance. Not
only should this balance be present in the design and construction, but also it should
be present in each and every stage of the enterprise system life cycle. In the case of
an enterprise, its agility is a concept that incorporates the ideas of “flexibility,
balance, adaptability, and coordination under one umbrella” [3].

The early crisis in software development and the recent global economic crisis
taught us a few lessons. One very important lesson is that the so-called human
factor errors, which result from critical uncertainties and undisciplined life cycle

xx Introduction: Agility or Extinction

management, often dramatically influence the software quality, and project success.
Our systematic approach to the impact of these human-related factors on agile
enterprise system development embraces the perspectives of business processes,
data flows, and system interfaces. These three perspectives correspond to dynamic,
static, and system architectural views. For each of the perspectives, we identify a set
of business management levels, such as strategic decision-making or everyday
management. After we combine these perspectives and the business management
levels, we get the enterprise engineering matrix (Fig. 1).

Fig. 1 Enterprise agility matrix

Introduction: Agility or Extinction xxi

Another and perhaps a better name for this is the enterprise agility matrix as it
determines enterprise agility. This matrix allows the detection of mission-critical
dependencies in human (and other) factors for the systemic properties of the soft-
ware products. These dependencies are based on relationships between certain
values of the matrix cells. As such, we can build a set of constraints to guard the
software development process from critical design errors and give an early warning
of risky decisions. The matrix allows for agility estimation in terms of process
management, data integrity, and interface quality. Informally, it will indicate
whether the system set to be designed will behave like a puma or like a mammoth in
an unstable, uncertain, or crisis environment. It will also recommend how to design
an agile system that naturally accommodates to digital transformation.

This book is organized as follows. Chapter 1 covers the key concepts, such as
agility and crisis, in more detail; it outlines crisis-resistant agility improvements for
the age of digital transformation including blockchain-based decentralized software
for transparent voting and a sentiment analysis application. Chapter 2 describes the
history of programming languages and their agility in terms of large-scale software
development; it discusses languages for domain-specific applications. Chapter 3
investigates the evolution of services in software development; it focuses on agile
approaches including cloud computing and Microservices. Chapter 4 addresses
agile and crisis-resistant pattern- and practice-based software development; it also
discusses the human factors which promote software-related knowledge transfer.
The conclusion summarizes the key outcomes of the book; it suggests agile ways to
smartly manage software development in crises.

This book will recommend crisis adjustments and improvements in order to
maintain agility and competitiveness in the global environment change. These
recommendations are typically real case-based. Certainly, this book will not give a
universal solution for agility. However, it will recommend technologies and
approaches to start the new style of agile “dancing.”

References

1. Chakravarty et al. (2013). Supply chain transformation: Evolving with emerging business
paradigms. In Springer Texts in Business and Economics 2014th Edition, Kindle Edition.

2. Lowry, P. B., & Wilson, D. (2016). Creating agile organizations through IT: The influence of
internal IT service perceptions on IT service quality and IT agility. Journal of Strategic
Information Systems (JSIS), 25(3), 211–226. Available at SSRN: https://ssrn.com/abstract=
2786236.

3. Chen, C., Liao, J., & Wen, P. (2014) Why does formal mentoring matter? The mediating role of
psychological safety and the moderating role of power distance orientation in the Chinese
context. International Journal of Human Resource Management, 25(8), 1112–1130.

xxii Introduction: Agility or Extinction

	Foreword
	Acknowledgements
	Contents
	Acronyms
	Abstract
	Introduction: Agility or Extinction
	References

