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Foreword

As computers and machines have become increasingly intelligent and capable of
performing complex activities, the software that lies at the heart of every action is
under more pressure to deploy successfully each and every time it is called upon.
Yet companies rush the production cycle in order to be first to market; machines are
called upon to operate in environments for which they were not designed; and
enterprises lose business with computer software crashes. The resulting unhappy
customers, expensive opportunity costs, and potentially unsafe operations have led
to a crisis in software production. Thus, this book is timely in addressing one of the
most challenging problems in technology and one that is mostly hidden—devel-
oping reliable flexible software that works “out of the box.”

Indeed, software development has been studied for decades. Project management
techniques have been applied to the software development life cycle and have led to
recommendations for methods such as waterfall, agile, object-oriented, scrum, lean,
iterative. However, rather than focusing on a single method, this book takes a
broader approach and investigates software production complexity resulting from
the interplay between software quality characteristics, technological factors, and
human-related factors. Issues and best practices for software development are
illustrated with case studies.

This book will be a valuable and thought-provoking read for anyone interested
in software development. The authors are experts who have studied both the
problems and the successes associated with software. Their combined wisdom will
benefit the community and hopefully contribute to better software in the future.

Baltimore, MD, USA Dr. Gloria Phillips-Wren, Ph.D.
Professor and Chair

Department of Information Systems

Law and Operations

The Sellinger School of Business and Management

Loyola University Maryland
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Abstract

This book is about enterprise agility and crisis-resistant software engineering.

Chapter 1 gives an overview of the concept of enterprise agility and its impact on
organizational flexibility. This includes an in-depth evaluation of modern
enterprise-scale projects and case studies on their non-agility, which often results in
disastrous consequences. The ways we suggest to avoid these mission-critical errors
are based on the existing research results in the field. Another key aspect is the
agility improvement by means of the architectural trade-offs. We outline a few types
of crisis recovery strategies and determine their links to the software architectures.
We consider mission-critical systems for deeper understanding of how to increase
scalability and avoid potential design errors. We provide case studies of bridge
construction as examples of careless crisis management and foundations for agility
improvement. We also focus on the digital integrity protection and particularly
blockchain technology, and its application to secure voting. Afterward, we discuss
decentralized applications and using their bit-torrent sharing networks in cryp-
tocurrencies. We present a case study on sentiment analysis and its application to
the agility issues in crisis.

Chapter 2 discusses the concept of programming languages and their use in
application development. We analyze the evolution of programming languages
from primitive to high-level ones. We examine the concept of domain-specific
languages and a few problem domains for their testing and verification under
specific environments, the focus being on inter-process communication with
CORBA and ICE technologies. This chapter also describes the embedded systems
and how they promote agility in mission-critical systems.

Chapter 3 describes the best practices in service-oriented enterprise software
development. We define Microservices and illustrate how they improve organiza-
tional agility. We analyze how service-oriented architectures and particularly
Microservices differ from the monolithic approach and identify their potential
application areas. We discuss implementations of continuous delivery and contin-
uous integration of the application life cycle and illustrate their importance. We
present a case of Microservices for the banking sector and investigate how it helps
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to meet the requirements. We examine the integration of customer relationship
management and geo-marketing and identify the business value of this synergy. We
discuss the cloud services (and particularly virtual machines) as an agility booster;
this includes in-depth testing of the proposed architecture.

Chapter 4 focuses on how the best software development practices depend on
human-related factors; we further investigate the pattern-based approach as an
agility driver. We discuss the principles of knowledge transfer and detect the key
factors, which promote agile transfer in crisis. We look at the application of these
factors to a Russian start-up, Innopolis University, and analyze the implications on
the project flexibility improvement. We discuss patterns and anti-patterns of
crisis-resistant development for increasing agility in mission-critical systems.

Keywords Agility - Architecture - Crisis resistance - Blockchain
Decentralized application - Life cycle model - Software product

CASE tool - Functional - Logical - Object-oriented - Domain-specific language
Reusability -+ Embedded system - Enterprise software development
Microservice - Customer relationship management - Banking - Cloud service
Best practice - Layer-based approach - Knowledge transfer - Design pattern



Introduction: Agility or Extinction

The focus of this book is smart agility management in crisis for large-scale software
systems.

Marx explained crises and their nature. He stated that crises result from mis-
balanced production and the realization of a surplus value on the market [1]. The
root cause of this misbalance is the separation between the producers and the means
of production [2]. In software development, the nature of crises is somewhat dif-
ferent; a crisis is typically a disproportion between client’s expectations and the
actual product behavior.

Enterprise systems are typically complex; they combine a large number of
hardware and software components. Managing the development of such complex
software products, even under uncertainties and in crisis, is a key aim of software
engineering. This discipline emerged in the 1960s as a response to the so-called
software crisis. This term originated from the critical development complexity
because of overwhelming computing power. In 1967, the issue became so critical
that NATO had to arrange an invitation-only conference to find an immediate
solution. The conference was held in Germanys; its key participants were such gurus
in computer science as A. Perlis, E. Dijkstra, F. Bauer, and P. Naur. These
researchers and practitioners were Turing Award winners and the NATO Science
Committee representatives from the USA, Germany, Denmark, and the
Netherlands. At that time, the complexity of the hardware and software systems
became unmanageable by the traditional methods and techniques. A large number
of software products were late, over budget, or totally unsuccessful. To clarify this
state of software production management, F. Bauer introduced the term “crisis” at
the conference; E. Dijkstra used it later in his Turing Award lecture. The partici-
pants suggested “software engineering” (this term is also attributed to F. Bauer) as a
remedy for that crisis. The idea was applying engineering methods of material
production to the emerging large-scale software development in order to create
better measurable and less uncertain products, i.e., to achieve a new agility level.

Now, we are on the same page concerning the crisis. However, what is agility?
Intuitively, it is clear. For some experts, agile means flexible. For the other experts,
agile means adjustable. Before giving a formal definition, let us turn to an example.

XiX



XX Introduction: Agility or Extinction

One can easily imagine a dancing puma or cat; these are typical instances of agile
behavior or agility. However, can you imagine a waltzing elephant or a bigger (and
more outdated) creature, like a mammoth or a dinosaur?

Why do we turn to large ancient beasts and waltzing? This is a metaphor.
Metaphor is often used as an agile software engineering technique in order to
disseminate a novel software system concept among the shareholders.

In our case, waltzing is an example of activity that requires agility. An elephant
or a mammoth is a large-scale company which is an instance of a slow responsive
and hard-to-adjust actor. The challenges of agile management are easier to track and
monitor by means of large-scale company cases. An old-fashioned dinosaur
example refers to an enterprise with complex and somewhat outdated management
patterns and legacy computer systems. State-of-the-art business environment
requires increased responsiveness, which is similar to following a tune while
waltzing. Moreover, waltzing requires complex motion and constant coordination
of the dancer’s body parts.

Waltzing also requires a partner, which involves another level of coordination.
This dancing style has a clearly recognizable pattern, which is certainly different
from any other, such as salsa or polka. Though following a specific style might
appear too difficult for an elephant or a mammoth, performing in any different style
from the partner will likely result in a crash. This is due to an unexpected and/or
unpredictable behavior, which in fact is an example of a crisis. Conversely, to
perform harmoniously, i.e., to avoid a crisis, the partners need to coordinate (i.e.,
monitor and adjust) their actions following the same style. Therefore, to reach this
agile harmony the partners need to master the waltzing process through training
which requires both personal and team activities.

Currently, the Earth faces a global warming, which looks so slow that certain
individuals do not notice it. As the warming accelerates, it may result dramatically
for these non-responsive individuals in just a few decades. In crisis, it is very risky
to remain old-fashioned and non-agile. Dramatic business climate change, uncer-
tainties of resources, business and technical requirements, emerging and collapsing
markets are radical and may result in critical consequences. In crisis, agility requires
instant attention as insufficient agility is synonymous with extinction.

Agility is related to balancing business requirements and technology constraints.
Many local crises result from misbalancing of these two aspects. Therefore, a
well-balanced software solution means better agility. In other words, agility is a
remedy for crisis. In crisis, agility is vital for any kind of a business structure.
However, agility is better observed and understood in large-scale structures such as
enterprises. Thus, building enterprise-scale systems requires a good balance. Not
only should this balance be present in the design and construction, but also it should
be present in each and every stage of the enterprise system life cycle. In the case of
an enterprise, its agility is a concept that incorporates the ideas of “flexibility,
balance, adaptability, and coordination under one umbrella” [3].

The early crisis in software development and the recent global economic crisis
taught us a few lessons. One very important lesson is that the so-called human
factor errors, which result from critical uncertainties and undisciplined life cycle
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management, often dramatically influence the software quality, and project success.
Our systematic approach to the impact of these human-related factors on agile
enterprise system development embraces the perspectives of business processes,
data flows, and system interfaces. These three perspectives correspond to dynamic,
static, and system architectural views. For each of the perspectives, we identify a set
of business management levels, such as strategic decision-making or everyday
management. After we combine these perspectives and the business management
levels, we get the enterprise engineering matrix (Fig. 1).

BUSINESS PROCESSES DATA FLOWS SYSTEM TYPES
STRATEGY STRATEGY Bl / PORTAL
INTEGRATION / METAKNOWLEDGE = METAKNOWLEDGE =
KNOWLEDGE ANALYSIS = WISDOM = WISDOM
RELATIONSHIP MGMT RELATIONSHIP MGMT CRM / SCM
INTEGRATION / METADATA = METADATA =
DATA ANALYSIS = KNOWLEDGE = KNOWLEDGE
RESOURCE PLANNING RESOURCE PLANNING ERP
PRESRICTION SUPPLIES / ORDERS SUPPLIES / ORDERS
PLANNING
ACCOUNTING, ACCOUNTING, MES
DAILY MGMT DAILY MGMT
PRODUCTION MGMT TECHNOLOGY MAPS TECHNOLOGY MAPS
(PLANT LEVEL)
SUPERVISORY CONTROL | SUPERVISORY CONTROL SCADA
TELEMETRY DATA COLLECTION/
HARDWARE DEVICE MGMT CLEAN DATA CLEZS DATA
DATA STORAGE DATA STORAGE DB / DWH
ANALOG-TO-DIGITAL RAW DATA RAW DATA
DEVICES/ SENSORS DEVICES/ SENSORS SENSOR / BOT

Fig. 1 Enterprise agility matrix
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Another and perhaps a better name for this is the enterprise agility matrix as it
determines enterprise agility. This matrix allows the detection of mission-critical
dependencies in human (and other) factors for the systemic properties of the soft-
ware products. These dependencies are based on relationships between certain
values of the matrix cells. As such, we can build a set of constraints to guard the
software development process from critical design errors and give an early warning
of risky decisions. The matrix allows for agility estimation in terms of process
management, data integrity, and interface quality. Informally, it will indicate
whether the system set to be designed will behave like a puma or like a mammoth in
an unstable, uncertain, or crisis environment. It will also recommend how to design
an agile system that naturally accommodates to digital transformation.

This book is organized as follows. Chapter 1 covers the key concepts, such as
agility and crisis, in more detail; it outlines crisis-resistant agility improvements for
the age of digital transformation including blockchain-based decentralized software
for transparent voting and a sentiment analysis application. Chapter 2 describes the
history of programming languages and their agility in terms of large-scale software
development; it discusses languages for domain-specific applications. Chapter 3
investigates the evolution of services in software development; it focuses on agile
approaches including cloud computing and Microservices. Chapter 4 addresses
agile and crisis-resistant pattern- and practice-based software development; it also
discusses the human factors which promote software-related knowledge transfer.
The conclusion summarizes the key outcomes of the book; it suggests agile ways to
smartly manage software development in crises.

This book will recommend crisis adjustments and improvements in order to
maintain agility and competitiveness in the global environment change. These
recommendations are typically real case-based. Certainly, this book will not give a
universal solution for agility. However, it will recommend technologies and
approaches to start the new style of agile “dancing.”
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