Smart Innovation, Systems and Technologies

Volume 92

Series editors

Robert James Howlett, Bournemouth University and KES International,
Shoreham-by-sea, UK
e-mail: rjhowlett@kesinternational.org

Lakhmi C. Jain, University of Canberra, Canberra, Australia
Bournemouth University, UK;

KES International, UK

e-mails: jainlc2002@yahoo.co.uk; Lakhmi.Jain @canberra.edu.au

The Smart Innovation, Systems and Technologies book series encompasses the
topics of knowledge, intelligence, innovation and sustainability. The aim of the
series is to make available a platform for the publication of books on all aspects of
single and multi-disciplinary research on these themes in order to make the latest
results available in a readily-accessible form. Volumes on interdisciplinary research
combining two or more of these areas is particularly sought.

The series covers systems and paradigms that employ knowledge and
intelligence in a broad sense. Its scope is systems having embedded knowledge
and intelligence, which may be applied to the solution of world problems in
industry, the environment and the community. It also focusses on the
knowledge-transfer methodologies and innovation strategies employed to make
this happen effectively. The combination of intelligent systems tools and a broad
range of applications introduces a need for a synergy of disciplines from science,
technology, business and the humanities. The series will include conference
proceedings, edited collections, monographs, handbooks, reference books, and
other relevant types of book in areas of science and technology where smart
systems and technologies can offer innovative solutions.

High quality content is an essential feature for all book proposals accepted for the
series. It is expected that editors of all accepted volumes will ensure that
contributions are subjected to an appropriate level of reviewing process and adhere
to KES quality principles.

More information about this series at http://www.springer.com/series/8767

http://www.springer.com/series/8767

Sergey V. Zykov

Managing Software Crisis:
A Smart Way to Enterprise
Agility

@ Springer

Sergey V. Zykov
Higher School of Economics
National Research University

Moscow

Russia

ISSN 2190-3018 ISSN 2190-3026 (electronic)
Smart Innovation, Systems and Technologies

ISBN 978-3-319-77916-4 ISBN 978-3-319-77917-1 (eBook)

https://doi.org/10.1007/978-3-319-77917-1
Library of Congress Control Number: 2018938776

© Springer International Publishing AG, part of Springer Nature 2018

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper
This Springer imprint is published by the registered company Springer International Publishing AG

part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

To God, my teachers, and my family

Foreword

As computers and machines have become increasingly intelligent and capable of
performing complex activities, the software that lies at the heart of every action is
under more pressure to deploy successfully each and every time it is called upon.
Yet companies rush the production cycle in order to be first to market; machines are
called upon to operate in environments for which they were not designed; and
enterprises lose business with computer software crashes. The resulting unhappy
customers, expensive opportunity costs, and potentially unsafe operations have led
to a crisis in software production. Thus, this book is timely in addressing one of the
most challenging problems in technology and one that is mostly hidden—devel-
oping reliable flexible software that works “out of the box.”

Indeed, software development has been studied for decades. Project management
techniques have been applied to the software development life cycle and have led to
recommendations for methods such as waterfall, agile, object-oriented, scrum, lean,
iterative. However, rather than focusing on a single method, this book takes a
broader approach and investigates software production complexity resulting from
the interplay between software quality characteristics, technological factors, and
human-related factors. Issues and best practices for software development are
illustrated with case studies.

This book will be a valuable and thought-provoking read for anyone interested
in software development. The authors are experts who have studied both the
problems and the successes associated with software. Their combined wisdom will
benefit the community and hopefully contribute to better software in the future.

Baltimore, MD, USA Dr. Gloria Phillips-Wren, Ph.D.
Professor and Chair

Department of Information Systems

Law and Operations

The Sellinger School of Business and Management

Loyola University Maryland

vii

Acknowledgements

I would like to thank the colleagues of mine who essentially contributed to this
book. They clarified initially vague ideas and helped with translation, copyediting,
proofreading, diagramming, etc. Many of them are the students who did their
master/Ph.D. theses under my supervision. Some of their papers findings and
takeaways were transformed and included into this book as case studies on agility
improvement and crisis responses. They are: Vlad Abdulmianov, Eunice Agyei,
Artem Aslanyan, Vera Ermakova, Nikita Fomichyov, Ramis Gabeydulin, Prof.
Alexander Gromoff, Alexandra Gureeva, Mikhail Kupriyanov, Maria Mamontova,
Dinara Nikolaeva, Isheyemi Olufemi, Victor Rotari, Gaurav Sharma, Grigory
Shilin, Alexander Sivtsov, and Sabina Supibek.

I would like to thank the Springer executive editor Dr. Thomas Ditzinger and the
Springer project coordinator for books production Mr. Ayyasamy Gowrishankar,
for their continuous availability and prompt assistance.

In addition, I would like to express my deep appreciation and sincere gratitude to
the editors in chief of the Springer series in Smart Innovation, Systems and
Technologies, Prof. Lakhmi C. Jain and Prof. Robert J. Howlett, for their coop-
erative efforts in supporting my initiative.

ix

Contents

1 The Agile Way
1.1 Introduction: Adjustment for Agility

1.2 What Is Agility?.

1.3 The Story of Russian Bridges
Why Is the Number of Bridges so Small in Russia?

1.3.2 Bridge Collapses in Russia.

1.3.3 Building the Kerch Bridge in Crimea

1.4 Digital Transformation
Transparent Voting Platform Based on Blockchain

1.4.2 Decentralized Applications

1.5 Architecting for Agility.
Sentiment Analysis System Based on Events Feedback . . .

1.6 Conclusion: How Agile Way Works
References

2 Agile Languages
2.1 Introduction: Communication Agility
2.2 Why Languages?
2.3 Making Processes Communicate
2.4 Developing an Embedded System
2.5 Conclusion: How Languages Work
References

3 Agile Services
3.1 Introduction: What Is an Agile Service?.
3.2 The Microservice Approach
3.3 Enterprise MiCroservices
3.4 Bank MIiCroservices,
3.5 CRM MICIOSEIVICES . . . vttt e

Analysis of Existing Solutions

OO0 DN M= =

xi

Xii Contents
3.6 Cloud Servicesttt 90
3.6.1 Process Modeling for Virtual Machines in Clouds 90
3.6.2 Information Process Model. 92
3.6.3 Optimization of Virtual Machine Configuration 95

3.6.4 Experimental Design of Automatic Virtual Machine
Configuration i 97
3.6.5 Conditions, Objects and Order of Testing 98
3.6.6 Analysis of Testing Results 101
3.7 Conclusion: How Services Work 103
References 104
4 Agile Patterns and Practices 107
4.1 Introduction: Why Agile Patterns and Practices?. 107
4.2 Agile Knowledge Transfer 108
4.3 Open Education Metadata Warehouse 118
4.4 Aircraft Communication System 125
4.5 Conclusion: How Patterns and Practices Work 132
References 133
Conclusion: Agility Revisited: What, Why and How 135
GloSSary. 139

Acronyms

3D
AAC
ABS
ACARS

ACDM
Al
AOC
APEC
API
APL
ARIS
AST
ATAM
ATC
BPM
CABS
CAD
CASE
CD
CEO
CERN
CI
CID
CIDL
CMU
CORBA
CPU
CQRS
CRM

Three dimension

Airline Administrative Control

Automated banking system

Aircraft Communications Addressing and Reporting
System

Architecture-centric design method

Artificial intelligence

Aeronautical operational control

Asia-Pacific Economic Cooperation
Application programming interface
Application programming language
Architecture of integrated information systems
Abstract syntax tree

Architecture tradeoff analysis method

Air traffic control

Business process modeling

Centralized automated banking system
Computer-aided design

Computer-aided software engineering
Continuous delivery

Chief executive officer

Conseil Européen pour la Recherche Nucléaire
Continuous integration

Common interface definition

Common interface definition language
Carnegie Mellon University

Common Object Request Broker Architecture
Central processing unit

Command Query Responsibility Separation
Customer relationship management

Xiii

Xiv

CSVv
DB
DBMS
DOM
DPU
DRE
DSL
DSM
DSML
EA
EAI
EMF
EPL
EQCS
ER
ERP
ETL
FIFA
FTP
GDP
GMF
GRPC
GUI
HTML
TAAS (aka IaaS)
IDE
IDL
IEEE
J1(0)
10T (aka IoT)
IS

ISO
U
JDBC
JSON
KAIST

KPI
KT
LED
LISP
LMS
LOM

Comma-separated values

Database

Database management systems
Document Object Model

Data processing unit
Direct-recording electronic
Domain-specific language
Domain-specific modeling
Domain-specific modeling language
Enterprise architecture

Enterprise application integration
Eclipse Modeling Framework
Eclipse Public License

Education quality control system
Enterprise resource

Enterprise resource planning
Extract—transform—load

Federation International of Football Association
File Transfer Protocol

Gross domestic production
Graphical Modeling Framework
Google Remote Procedure Call
Graphical user interface

Hypertext Markup Language
Infrastructure as a service

Integrated development environment
Interface definition language
Institute of Electrical and Electronics Engineers
Internet Inter-ORB Protocol

Internet of Things

Information system

International Organization for Standardization
Innopolis University

Java Database Connectivity
JavaScript Object Notation

South Korea Advanced Institute of Science and
Technology

Key performance indicator
Knowledge transfer

Light-emitting diode

List processing

Learning management system
Learning Object Metadata

Acronyms

Acronyms

LOP
LW
MEPHI (aka MEPhI)
METAR
MIT
ML
MODS
MOOC
MS
NATO
NLP
NPP
ODBC
OER
000I
ORB
(ON]
PAAS (aka PaaS)
PDF

PL
PLM
PR
PROLOG
R&D
RAM
RDF
REST
RPC
RUR
SAAS (aka SaaS)
SE
SML
SMS
SOA
SOAP
SQL
SSL
SVM
TCP/TP
TF.IDF
Ul
UML
VHF
VLDB

XV

Language-oriented programming
Language workbench

Moscow Engineering and Physics Institute
Meteorological Aerodrome Report
Massachusetts Institute of Technology
Machine learning

Metadata Object Description Schema
Massive open online course
Microsoft

North Atlantic Treaty Organization
Natural-language processing

Nuclear power plant

Open Database Connectivity

Open educational resources

Out, Off, On, In

Object request broker

Operating system

Platform as a service

Portable Document Format
Production life cycle

Production life cycle management
Public relations

PROgramming in LOGic

Research & Development
Random-access memory

Resource Description Framework
Representational State Transfer
Remote procedure call

Russian ruble

Software as a service

Software engineering

Standard Meta Language

Short Message Service
Service-oriented architecture

Simple Object Access Protocol
Structured query language

Secure Sockets Layer

Support vector machine
Transmission Control Protocol/Internet Protocol
Term Frequency—Inverse Document Frequency
User interface

Unified Modeling Language

Very high frequency

Very large database

Xvi Acronyms

VM Virtual machine
VS Visual Studio
XML Extensible Markup Language

XPATH (aka XPath) XML Path Language
ZKP Zero-knowledge proof

Abstract

This book is about enterprise agility and crisis-resistant software engineering.

Chapter 1 gives an overview of the concept of enterprise agility and its impact on
organizational flexibility. This includes an in-depth evaluation of modern
enterprise-scale projects and case studies on their non-agility, which often results in
disastrous consequences. The ways we suggest to avoid these mission-critical errors
are based on the existing research results in the field. Another key aspect is the
agility improvement by means of the architectural trade-offs. We outline a few types
of crisis recovery strategies and determine their links to the software architectures.
We consider mission-critical systems for deeper understanding of how to increase
scalability and avoid potential design errors. We provide case studies of bridge
construction as examples of careless crisis management and foundations for agility
improvement. We also focus on the digital integrity protection and particularly
blockchain technology, and its application to secure voting. Afterward, we discuss
decentralized applications and using their bit-torrent sharing networks in cryp-
tocurrencies. We present a case study on sentiment analysis and its application to
the agility issues in crisis.

Chapter 2 discusses the concept of programming languages and their use in
application development. We analyze the evolution of programming languages
from primitive to high-level ones. We examine the concept of domain-specific
languages and a few problem domains for their testing and verification under
specific environments, the focus being on inter-process communication with
CORBA and ICE technologies. This chapter also describes the embedded systems
and how they promote agility in mission-critical systems.

Chapter 3 describes the best practices in service-oriented enterprise software
development. We define Microservices and illustrate how they improve organiza-
tional agility. We analyze how service-oriented architectures and particularly
Microservices differ from the monolithic approach and identify their potential
application areas. We discuss implementations of continuous delivery and contin-
uous integration of the application life cycle and illustrate their importance. We
present a case of Microservices for the banking sector and investigate how it helps

Xvii

XViii Abstract

to meet the requirements. We examine the integration of customer relationship
management and geo-marketing and identify the business value of this synergy. We
discuss the cloud services (and particularly virtual machines) as an agility booster;
this includes in-depth testing of the proposed architecture.

Chapter 4 focuses on how the best software development practices depend on
human-related factors; we further investigate the pattern-based approach as an
agility driver. We discuss the principles of knowledge transfer and detect the key
factors, which promote agile transfer in crisis. We look at the application of these
factors to a Russian start-up, Innopolis University, and analyze the implications on
the project flexibility improvement. We discuss patterns and anti-patterns of
crisis-resistant development for increasing agility in mission-critical systems.

Keywords Agility - Architecture - Crisis resistance - Blockchain
Decentralized application - Life cycle model - Software product

CASE tool - Functional - Logical - Object-oriented - Domain-specific language
Reusability -+ Embedded system - Enterprise software development
Microservice - Customer relationship management - Banking - Cloud service
Best practice - Layer-based approach - Knowledge transfer - Design pattern

Introduction: Agility or Extinction

The focus of this book is smart agility management in crisis for large-scale software
systems.

Marx explained crises and their nature. He stated that crises result from mis-
balanced production and the realization of a surplus value on the market [1]. The
root cause of this misbalance is the separation between the producers and the means
of production [2]. In software development, the nature of crises is somewhat dif-
ferent; a crisis is typically a disproportion between client’s expectations and the
actual product behavior.

Enterprise systems are typically complex; they combine a large number of
hardware and software components. Managing the development of such complex
software products, even under uncertainties and in crisis, is a key aim of software
engineering. This discipline emerged in the 1960s as a response to the so-called
software crisis. This term originated from the critical development complexity
because of overwhelming computing power. In 1967, the issue became so critical
that NATO had to arrange an invitation-only conference to find an immediate
solution. The conference was held in Germanys; its key participants were such gurus
in computer science as A. Perlis, E. Dijkstra, F. Bauer, and P. Naur. These
researchers and practitioners were Turing Award winners and the NATO Science
Committee representatives from the USA, Germany, Denmark, and the
Netherlands. At that time, the complexity of the hardware and software systems
became unmanageable by the traditional methods and techniques. A large number
of software products were late, over budget, or totally unsuccessful. To clarify this
state of software production management, F. Bauer introduced the term “crisis” at
the conference; E. Dijkstra used it later in his Turing Award lecture. The partici-
pants suggested “software engineering” (this term is also attributed to F. Bauer) as a
remedy for that crisis. The idea was applying engineering methods of material
production to the emerging large-scale software development in order to create
better measurable and less uncertain products, i.e., to achieve a new agility level.

Now, we are on the same page concerning the crisis. However, what is agility?
Intuitively, it is clear. For some experts, agile means flexible. For the other experts,
agile means adjustable. Before giving a formal definition, let us turn to an example.

XiX

XX Introduction: Agility or Extinction

One can easily imagine a dancing puma or cat; these are typical instances of agile
behavior or agility. However, can you imagine a waltzing elephant or a bigger (and
more outdated) creature, like a mammoth or a dinosaur?

Why do we turn to large ancient beasts and waltzing? This is a metaphor.
Metaphor is often used as an agile software engineering technique in order to
disseminate a novel software system concept among the shareholders.

In our case, waltzing is an example of activity that requires agility. An elephant
or a mammoth is a large-scale company which is an instance of a slow responsive
and hard-to-adjust actor. The challenges of agile management are easier to track and
monitor by means of large-scale company cases. An old-fashioned dinosaur
example refers to an enterprise with complex and somewhat outdated management
patterns and legacy computer systems. State-of-the-art business environment
requires increased responsiveness, which is similar to following a tune while
waltzing. Moreover, waltzing requires complex motion and constant coordination
of the dancer’s body parts.

Waltzing also requires a partner, which involves another level of coordination.
This dancing style has a clearly recognizable pattern, which is certainly different
from any other, such as salsa or polka. Though following a specific style might
appear too difficult for an elephant or a mammoth, performing in any different style
from the partner will likely result in a crash. This is due to an unexpected and/or
unpredictable behavior, which in fact is an example of a crisis. Conversely, to
perform harmoniously, i.e., to avoid a crisis, the partners need to coordinate (i.e.,
monitor and adjust) their actions following the same style. Therefore, to reach this
agile harmony the partners need to master the waltzing process through training
which requires both personal and team activities.

Currently, the Earth faces a global warming, which looks so slow that certain
individuals do not notice it. As the warming accelerates, it may result dramatically
for these non-responsive individuals in just a few decades. In crisis, it is very risky
to remain old-fashioned and non-agile. Dramatic business climate change, uncer-
tainties of resources, business and technical requirements, emerging and collapsing
markets are radical and may result in critical consequences. In crisis, agility requires
instant attention as insufficient agility is synonymous with extinction.

Agility is related to balancing business requirements and technology constraints.
Many local crises result from misbalancing of these two aspects. Therefore, a
well-balanced software solution means better agility. In other words, agility is a
remedy for crisis. In crisis, agility is vital for any kind of a business structure.
However, agility is better observed and understood in large-scale structures such as
enterprises. Thus, building enterprise-scale systems requires a good balance. Not
only should this balance be present in the design and construction, but also it should
be present in each and every stage of the enterprise system life cycle. In the case of
an enterprise, its agility is a concept that incorporates the ideas of “flexibility,
balance, adaptability, and coordination under one umbrella” [3].

The early crisis in software development and the recent global economic crisis
taught us a few lessons. One very important lesson is that the so-called human
factor errors, which result from critical uncertainties and undisciplined life cycle

Introduction: Agility or Extinction XXi

management, often dramatically influence the software quality, and project success.
Our systematic approach to the impact of these human-related factors on agile
enterprise system development embraces the perspectives of business processes,
data flows, and system interfaces. These three perspectives correspond to dynamic,
static, and system architectural views. For each of the perspectives, we identify a set
of business management levels, such as strategic decision-making or everyday
management. After we combine these perspectives and the business management
levels, we get the enterprise engineering matrix (Fig. 1).

BUSINESS PROCESSES DATA FLOWS SYSTEM TYPES
STRATEGY STRATEGY Bl / PORTAL
INTEGRATION / METAKNOWLEDGE = METAKNOWLEDGE =
KNOWLEDGE ANALYSIS = WISDOM = WISDOM
RELATIONSHIP MGMT RELATIONSHIP MGMT CRM / SCM
INTEGRATION / METADATA = METADATA =
DATA ANALYSIS = KNOWLEDGE = KNOWLEDGE
RESOURCE PLANNING RESOURCE PLANNING ERP
PRESRICTION SUPPLIES / ORDERS SUPPLIES / ORDERS
PLANNING
ACCOUNTING, ACCOUNTING, MES
DAILY MGMT DAILY MGMT
PRODUCTION MGMT TECHNOLOGY MAPS TECHNOLOGY MAPS
(PLANT LEVEL)
SUPERVISORY CONTROL | SUPERVISORY CONTROL SCADA
TELEMETRY DATA COLLECTION/
HARDWARE DEVICE MGMT CLEAN DATA CLEZS DATA
DATA STORAGE DATA STORAGE DB / DWH
ANALOG-TO-DIGITAL RAW DATA RAW DATA
DEVICES/ SENSORS DEVICES/ SENSORS SENSOR / BOT

Fig. 1 Enterprise agility matrix

XXii Introduction: Agility or Extinction

Another and perhaps a better name for this is the enterprise agility matrix as it
determines enterprise agility. This matrix allows the detection of mission-critical
dependencies in human (and other) factors for the systemic properties of the soft-
ware products. These dependencies are based on relationships between certain
values of the matrix cells. As such, we can build a set of constraints to guard the
software development process from critical design errors and give an early warning
of risky decisions. The matrix allows for agility estimation in terms of process
management, data integrity, and interface quality. Informally, it will indicate
whether the system set to be designed will behave like a puma or like a mammoth in
an unstable, uncertain, or crisis environment. It will also recommend how to design
an agile system that naturally accommodates to digital transformation.

This book is organized as follows. Chapter 1 covers the key concepts, such as
agility and crisis, in more detail; it outlines crisis-resistant agility improvements for
the age of digital transformation including blockchain-based decentralized software
for transparent voting and a sentiment analysis application. Chapter 2 describes the
history of programming languages and their agility in terms of large-scale software
development; it discusses languages for domain-specific applications. Chapter 3
investigates the evolution of services in software development; it focuses on agile
approaches including cloud computing and Microservices. Chapter 4 addresses
agile and crisis-resistant pattern- and practice-based software development; it also
discusses the human factors which promote software-related knowledge transfer.
The conclusion summarizes the key outcomes of the book; it suggests agile ways to
smartly manage software development in crises.

This book will recommend crisis adjustments and improvements in order to
maintain agility and competitiveness in the global environment change. These
recommendations are typically real case-based. Certainly, this book will not give a
universal solution for agility. However, it will recommend technologies and
approaches to start the new style of agile “dancing.”

References

1. Chakravarty et al. (2013). Supply chain transformation: Evolving with emerging business
paradigms. In Springer Texts in Business and Economics 2014th Edition, Kindle Edition.

2. Lowry, P. B., & Wilson, D. (2016). Creating agile organizations through IT: The influence of
internal IT service perceptions on IT service quality and IT agility. Journal of Strategic
Information Systems (JSIS), 25(3), 211-226. Available at SSRN: https://ssrn.com/abstract=
2786236.

3. Chen, C., Liao, J., & Wen, P. (2014) Why does formal mentoring matter? The mediating role of
psychological safety and the moderating role of power distance orientation in the Chinese
context. International Journal of Human Resource Management, 25(8), 1112-1130.

	Foreword
	Acknowledgements
	Contents
	Acronyms
	Abstract
	Introduction: Agility or Extinction
	References

