Skip to main content

The Impact of Particle Sorting on Particle-In-Cell Simulation Performance

  • Conference paper
  • First Online:
Parallel Processing and Applied Mathematics (PPAM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10777))

Abstract

The Particle-In-Cell (PIC) simulation method is a modern technique in studies of collisionless plasmas in applications to astrophysics and laboratory plasma physics. Inherent to this method is its parallel nature, which enables massively parallel MPI applications which can use thousands of CPU-cores on HPC systems. In order to achieve a good performance of a PIC code several techniques are available. In this work we study the impact of particle sorting on the performance of the PIC code THISMPI. We compare dual-pivot five-way quicksort with the standard quicksort. We focus on finding optimum sorting frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Niemiec, J., Pohl, M., Stroman, T., Nishikawa, K.-I.: Production of magnetic turbulence by cosmic rays drifting upstream of supernova remnant shocks. Astrophys. J. 684, 1174–1189 (2008)

    Article  Google Scholar 

  2. Stroman, T., Pohl, M., Niemiec, J.: Kinetic simulations of turbulent magnetic-field growth by streaming cosmic rays. Astrophys. J. 706, 38–44 (2009)

    Article  Google Scholar 

  3. Bowers, K.J., Albright, B.J., Yin, L., Bergen, B., Kwan, T.J.T.: Ultrahigh performance three-dimensional electromagnetic relativistic kinetic plasma simulation. Phys. Plasmas 15, 055703 (2008)

    Article  Google Scholar 

  4. Fonseca, R.A., Martins, S.F., Silva, L.O., Tonge, J.W., Tsung, F.S., Mori, W.B.: One-to-one direct modeling of experiments and astrophysical scenarios: pushing the envelope on kinetic plasma simulations. Plasma Phys. Control. Fusion 50, 124034 (2008)

    Article  Google Scholar 

  5. Fonseca, R.A., Vieira, J., Fiuza, F., Davidson, A., Tsung, F.S., Mori, W.B., Silva, L.O.: Exploiting multi-scale parallelism for large scale numerical modelling of laser wakefield accelerators. Plasma Phys. Control. Fusion 55, 124011 (2013)

    Article  Google Scholar 

  6. Jocksch, A., Hariri, F., Tran, T.-M., Brunner, S., Gheller, C., Villard, L.: A bucket sort algorithm for the particle-in-cell method on manycore architectures. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K., Kitowski, J., Wiatr, K. (eds.) PPAM 2015. LNCS, vol. 9573, pp. 43–52. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32149-3_5

    Chapter  Google Scholar 

  7. Buneman, O.: TRISTAN. In: Matsumoto, H., Omura, Y. (eds.) Computer Space Plasma Physics: Simulation Techniques and Software, pp. 67–84. Terra Scientific, Tokyo (1993)

    Google Scholar 

  8. Cai, D., Li, Y., Nishikawa, K.-I., Xiao, C., Yan, X., Pu, Z.: Parallel 3-D electromagnetic particle code using high performance FORTRAN: parallel TRISTAN. In: Büchner, J., Scholer, M., Dum, C.T. (eds.) Space Plasma Simulation. LNP, vol. 615, pp. 25–53. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36530-3_2

    Chapter  Google Scholar 

  9. Niemiec, J., Pohl, M., Bret, A., Wieland, V.: Nonrelativistic parallel shocks in unmagnetized and weakly magnetized plasmas. Astrophys. J. 759, 73 (2012)

    Article  Google Scholar 

  10. Greenwood, A.D., Cartwright, K.L., Luginsland, J.W., Baca, E.A.: On the elimination of numerical Cerenkov radiation in PIC simulations. J. Comput. Phys. 201, 665–684 (2004)

    Article  MATH  Google Scholar 

  11. Umeda, T., Omura, Y., Tominaga, T., Matsumoto, H.: A new charge conservation method in electromagnetic particle-in-cell simulations. Comput. Phys. Commun. 156, 73–85 (2003)

    Article  Google Scholar 

  12. Vay, J.-L.: Simulation of beams or plasmas crossing at relativistic velocity. Phys. Plasmas 15, 056701 (2008)

    Article  Google Scholar 

  13. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd edn, pp. 329–333. Cambridge University Press, Cambridge (1992). Chap. 8, Sect. 4

    MATH  Google Scholar 

Download references

Acknowledgement

This work has been supported by Narodowe Centrum Nauki through research project DEC-2013/10/E/ST9/00662 and in part by PL-Grid Infrastructure using Prometheus cluster at Academic Computer Center Cyfronet AGH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Dorobisz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dorobisz, A., Kotwica, M., Niemiec, J., Kobzar, O., Bohdan, A., Wiatr, K. (2018). The Impact of Particle Sorting on Particle-In-Cell Simulation Performance. In: Wyrzykowski, R., Dongarra, J., Deelman, E., Karczewski, K. (eds) Parallel Processing and Applied Mathematics. PPAM 2017. Lecture Notes in Computer Science(), vol 10777. Springer, Cham. https://doi.org/10.1007/978-3-319-78024-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78024-5_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78023-8

  • Online ISBN: 978-3-319-78024-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics