Skip to main content

A GPU Implementation of Bulk Execution of the Dynamic Programming for the Optimal Polygon Triangulation

  • Conference paper
  • First Online:
Parallel Processing and Applied Mathematics (PPAM 2017)

Abstract

The optimal polygon triangulation problem for a convex polygon is an optimization problem to find a triangulation with minimum total weight. It is known that this problem can be solved using the dynamic programming technique in \(O(n^3)\) time. The main contribution of this paper is to present an efficient parallel implementation of this \(O(n^3)\)-time algorithm for a lot of instances on the GPU (Graphics Processing Unit). In our proposed GPU implementation, we focused on the computation for a lot of instances and considered programming issues of the GPU architecture such as coalesced access of the global memory, warp divergence. Our implementation solves the optimal polygon triangulation problem for 1024 convex 1024-gons in 4.77 s on the NVIDIA TITAN X, while a conventional CPU implementation runs in 241.53 s. Thus, our GPU implementation attains a speedup factor of 50.6.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms, 1st edn. MIT Press, Cambridge (1990)

    MATH  Google Scholar 

  2. Gilbert, P.D.: New results on planar triangulations. M.Sc. thesis, pp. Report R-850, July 1979

    Google Scholar 

  3. Huang, S.H.S., Liu, H., Viswanathan, V.: Parallel dynamic programming. IEEE Trans. Parallel Distrib. Syst. 5(3), 326–328 (1994)

    Article  Google Scholar 

  4. Hwu, W.W.: GPU Computing Gems Emerald Edition. Morgan Kaufmann, Burlington (2011)

    Google Scholar 

  5. Ito, Y., Nakano, K.: A GPU implementation of dynamic programming for the optimal polygon triangulation. IEICE Trans. Inf. Syst. E96–D(12), 2596–2603 (2013)

    Article  Google Scholar 

  6. Ito, Y., Ogawa, K., Nakano, K.: Fast ellipse detection algorithm using Hough transform on the GPU. In: Proceedings of International Conference on Networking and Computing, pp. 313–319, December 2011

    Google Scholar 

  7. Klincsek, G.T.: Minimal triangulations of polygonal domains. Ann. Disc. Math. 9, 121–123 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  8. Luebke, D., Reddy, M., Cohen, J.D., Varshney, A., Watson, B., Huebner, R.: Level of Detail for 3D Graphics. Morgan Kaufmann, Burlington (2003)

    Google Scholar 

  9. Man, D., Uda, K., Ito, Y., Nakano, K.: A GPU implementation of computing Euclidean distance map with efficient memory access. In: Proceedings of International Conference on Networking and Computing, pp. 68–76, December 2011

    Google Scholar 

  10. Man, D., Uda, K., Ueyama, H., Ito, Y., Nakano, K.: Implementations of a parallel algorithm for computing Euclidean distance map in multicore processors and GPUs. Int. J. Netw. Comput. 1(2), 260–276 (2011)

    Article  Google Scholar 

  11. Nishida, K., Ito, Y., Nakano, K.: Accelerating the dynamic programming for the matrix chain product on the GPU. In: Proceedings of International Conference on Networking and Computing, pp. 320–326, December 2011

    Google Scholar 

  12. NVIDIA Corp.: CUDA C Best Practice Guide Version 8.0 (2017)

    Google Scholar 

  13. NVIDIA Corp.: NVIDIA CUDA C Programming Guide Version 8.0 (2017)

    Google Scholar 

  14. Pólya, G.: On picture-writing. Amer. Math. Monthly 63, 689–697 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  15. Tani, K., Takafuji, D., Nakano, K., Ito, Y.: Bulk execution of oblivious algorithms on the unified memory machine, with GPU implementation. In: Proceedings of International Parallel and Distributed Processing Symposium Workshops, pp. 586–595 (2014)

    Google Scholar 

  16. Uchida, A., Ito, Y., Nakano, K.: Fast and accurate template matching using pixel rearrangement on the GPU. In: Proceedings of International Conference on Networking and Computing, pp. 153–159, December 2011

    Google Scholar 

  17. Vaidyanathan, R., Trahan, J.L.: Dynamic Reconfiguration: Architectures and Algorithms. Kluwer Academic/Plenum Publishers, London (2004)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuaki Ito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yamashita, K., Ito, Y., Nakano, K. (2018). A GPU Implementation of Bulk Execution of the Dynamic Programming for the Optimal Polygon Triangulation. In: Wyrzykowski, R., Dongarra, J., Deelman, E., Karczewski, K. (eds) Parallel Processing and Applied Mathematics. PPAM 2017. Lecture Notes in Computer Science(), vol 10777. Springer, Cham. https://doi.org/10.1007/978-3-319-78024-5_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78024-5_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78023-8

  • Online ISBN: 978-3-319-78024-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics