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Abstract. Molecular Dynamics (MD) is a widely used tool for simu-
lations of particle systems with pair-wise interactions. Since large scale
MD simulations are very demanding in computation time, parallelisa-
tion is an important factor. As in the current HPC environment different
heterogeneous computing architectures are emerging, a benchmark tool
for a representative number of these architectures is desirable. OpenCL
as a platform-overarching standard provides the capabilities for such a
benchmark. This paper describes the implementation of an OpenCL MD
benchmark code and discusses the results achieved on different types of
computing hardware.
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1 Introduction

Molecular Dynamics (MD) is widely used in various scientific domains, e.g. ma-
terials science or biophysics, where the evolution of specific systems can be de-
scribed by point-like or extended particles, obeying the classical equations of
motion [5,8]. Parametrised potentials describe pair-wise interactions between
particles that may have either short-ranged (e.g. Lennard Jones interactions [5])
or long-ranged (e.g. electrostatics [7]) influences. The essential difference between
long- and short-range interactions is the number of interaction partners, which
strongly determines the performance of the method and also determines different
types of, e.g., parallelisation schemes. While long range interactions require es-
sentially all atoms in the system as interaction partners, short range interactions
can be restricted to a narrow range, defined by a spherical region of radius Rc
(the cutoff radius), in which interactions decrease to a sufficiently small value
which can be tolerated as error.

In the present paper we will focus on short-range interactions, for which
also neighbour list techniques will be considered which allow for a linear com-
putational complexity with increasing number of particles in the system (cmp.
Fig. 1).



For a shared-memory parallelisation the construction of these neighbour lists
must avoid race conditions which would occur, when multiple threads try to
update the list of a single cell at the same time, which can be expected for the case

Rc

Fig. 1: Schematic of a particle sys-
tem in 2D with overlayed cell struc-
ture for sorting. The circle with ra-
dius Rc illustrates the interaction
range of a tagged particle.

of a thread-parallel implementation where
particles are divided between threads and
are sorted into the cell structure simulta-
neously. To avoid possible race-conditions
there exist basically three options: (i) ex-
plicit synchronisation; (ii) list copies; or
(iii) atomic memory access implemented
via compare-and-swap (CAS) operations.
In order to implement a function portable
benchmark that can be run on a variety
of different architectures, it is required to
use a programming language that supports
a large variety of architectures. OpenCL is
one possible choice as it supports code exe-
cution on CPUs, GPUs, FPGAs as well as
Intels Xeon Phi architecture.[1] Although
other languages or language extensions,
such as Intel TBB or OpenACC exist,
which provide the possibility to run code
on a set of different architectures, for this

work OpenCL was chosen, because it supports all of the platforms available
at the Jülich Supercomputing Centre (JSC). The set of features of OpenCL
that can be used for a platform-overarching benchmark is limited by the lowest
commonly supported OpenCL standard as well as by the set of extensions com-
monly available on these platforms. While the standard level defines the syntax
and general features that can be used, some functionality is kept in extensions,
e.g. the use of double-precision calculations or CAS functionality. To execute
the same program version on all considered architectures we had to comply with
OpenCL 1.2, which was found as common standard level on all machines.

2 Benchmark

In the present article we focus on short range interacting particle systems, where
the range of influence is defined by the cutoff radius RC . When introducing
the concept of linked-cell lists, the computational complexity is O(NM), where
N is the number of particles in the system and M the maximum number of
particles in a cell [8,10]. As benchmark system we consider particles in a cuboid
3-dimensional box of lengths Lα (α = x, y, z) with periodic boundary conditions,
interacting via the repelling part of the Lennard-Jones potential [5], which is a
typical representative for a short range potential
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with cut-off radius r∗ = 21/6σ and U(r > r∗) = 0 from where forces F = −∇U(r)
onto particles are computed; r is the distance between two particles, ε the depth
of the potential well and σ the characteristic size of a particle. To propagate
particles continuously in space the classical equations of motion are integrated
via the standard Verlet algorithm [5].

In the present article we consider a constant average number of particles
per cell 〈M〉, which leads to a total number of particles in the system N =
nxnynz〈M〉, with nx, ny, nz being the number of cells in each cartesian direction.
The relation of cell size lc to the cutoff radius Rc is simply given by Rc = lc =
21/6σ or σ = lc/2

1/6 and therefore the boxsize is Lα = nαRc.

In the next section different techniques are described, which improve the
performance of the simulation before presenting the results of the benchmarks
in the final section.

3 Implementation of the Algorithm and Data Structures

3.1 Algorithmic Implementation Details

While a multi-node parallelization of MD simulations, e.g. based on a domain
decomposition [9], is standard, the shared-memory parallelization of neighbor
cell construction within each of the decomposed domains is not trivial. Since
the most efficient way to sort particles into spatial cells is to distribute particles
onto different threads. This might lead to possible concurrent memory accesses,
if more than one thread attempts to sort particles into the same cell. As the
memory access is not synchronized by default, race conditions can occur due to
simultaneous write operations into single memory locations, leading to erroneous
accounting of particles and list constructions.
Three different approaches will be described to avoid such race conditions: (i)
list copying, (ii) explicit synchronization and (iii) atomic memory access. Each
of these approaches has its specific advantages and disadvantages.

Of the three different approaches the synchronization-based approach is the
one that requires the fewest changes to the sequential implementation (ref.
Alg 1). The array containing the cell entries needs to be initialized with a ter-
minating value indicating the end of the list, the array containing the particle
lists needs to be initialized similarily.

Algorithm 1: Sequential implementation of neighbor cell sorting
entry← EOA; list← EOA // initialize to end-of-array (EOA)
for all particles pidx ∈ {i}N do

cidx← f (x[pidx], y[pidx], z[pidx]) // calculate cell index from particle coordinates
list[pidx]← entry[cidx] // update list element to current cell entry
entry[cidx]← pidx // update cell entry ;

end

As is seen in Alg. 1 a problem might occur if two threads try to simulta-
neously update the cell information. If these threads execute the first step, i.e.



updating list[pidx], before any of them completes the second step, i.e. updat-
ing entry[cidx], it follows that their particles are pointing in list to the same
former entry particle, entry[cidx], ignorant of each other. Then, after updating
entry[cidx] in the second step, entry[cidx] will contain only one of those par-
ticle indices, the linked list is broken and excludes the other particle from being
accessible through the list.

In order to combine the two statements into one ’atomic’ statement, one can
either use critical sections or locks. Both of these techniques introduce overhead
cost due to the implicit synchronization. Of the two the latter shows a much
better scaling behavior than the first, since the creation of a critical section will
serialize that section [6]. For this benchmark all of these synchronization-based
approaches are not feasible, since the asynchronous execution of work groups
excludes global synchronization. Therefore race-conditions happening between
two different work groups cannot be avoided by these techniques.
In contrast to the synchronization-based approaches the copy-based approach
utilizes thread-local partial copies of the final result in order to avoid race-
conditions. Each thread independently works on its local copy and sorts all of
its particles into this copy. After each thread has finished the local copies are
merged. While this variant can be very efficient for a small number of threads,
it becomes less effective once the number of threads reaches a threshold value,
which depends on memory size and bandwidth [6]. This is due to the increased
number of copies, which have to be filled simultaneously, leading to random
access to (main) memory. For massively parallel systems, this approach is not
feasible since the memory size requirements grow linearly with the number of
threads, particularly on GPUs or Intel MICs, where hundreds and thousands of
threads work concurrently. As a consequence, this approach has been discarded
for the present benchmark.

Listing 1: Creation of a neighbor list using CAS operations in OpenCL

1: int old , cmp;
2: // arrays of particle positions (x,y,z), NC = no. of cells per dim
3: int cidx = (int)(x[pidx]/l_c) +
4: (int)(y[pidx]/l_c) * NC +
5: (int)(z[pidx]/l_c) * NC * NC;
6: // application of CAS operation to update list/entry
7: do
8: {
9: // store old entry particle index

10: old = entry[cidx];
11: // update next particle in list for particle pidx
12: list[pidx] = old;
13: // try to update entry particle of target cell cidx
14: cmp = atomic_cmpxchg(entry+idx ,old ,gid);
15: }
16: // if update failed , repeat the process
17: while(old != cmp);

Therefore, an approach is required which ensures the correctness of a parallel
list construction without exacerbating the memory demand. Atomic memory ac-
cess is a possible solution utilizing the compare and swap (CAS) operation. This
hardware operation compares the value stored at a memory address to a test
value before updating the memory address. Listing 1 shows as an example for



the parallel list construction implemented with a CAS operation in OpenCL:
First, the cell index cidx is calculated for the local particle pidx. Within a loop
the first entry of the particle list of this cell entry[cidx] is stored in a tem-
porary test value old. Then, the particle list at index pidx is updated to the
value of old. This operation can be performed safely, since no other work item
processes particle pidx. Next, the CAS operation is used to attempt an update
of entry[cidx]. Now two different outcomes might occur: (i) entry[cidx] was
changed in the mean time by another work item. In this case the value of old is
not equal to the current value of entry[cidx], the update is omitted and the
loop is repeated. (ii) the value of entry[cidx] was not changed and its value
is identical to that of old. In this case entry[cidx] is updated. The CAS op-
eration returns the current value of entry[cidx], for (i) a value different from
old, for (ii) the same value as old. In order to check the success of the update,
the return value of the CAS operation is stored to cmp and compared with old

at the end of the loop.
Compared to an update of a memory location by an assignment, hardware sup-
ported CAS operations slightly increase the runtime due to the performed com-
pare operation. The essential advantage of the CAS operation is that it can be
applied to work items of different work groups in an OpenCL implementation.
Therefore the implementation using the CAS operation was the method of choice
for this benchmark.

3.2 Organization and Distribution of Data Structures

An important aspect aspect concerns data locality, i.e. both the important differ-
ence between sorted and unsorted particle data and their access as well as the lay-
out of the data structures containing this data. To this end,

kernel function distrib.
creation of particles p

initial. of cells c
initial. of particle lists p

creation of neighbor lists p
counting of cell contents c

prefix sums calc. (sorting) c
resort of particle array c

calculation of interactions c
integration of particles p

Table 1: List of implemented OpenCL
kernels: distribution of (p) particles or
(c) cells onto work items.

two different memory layouts were im-
plemented for the arrays used to store
the particle data. The first is an array of
structures (AoS), where each structure
contains the data of a single particle, the
second is a structure of arrays (SoA),
where a single structure contains a col-
lection of arrays, each representing a pa-
rameter of a particle. In a SoA the data
of a single particle has the same index in
each of the arrays. For both implementa-
tions (AoS and SoA) a sorting algorithm
was implemented, that sorts the particle
data array with regard to the neighbor
list, i.e. particles in the same neighbor
cell are grouped together in the particle

data array to have higher data locality. In the result section differences between
these four possible implementations will be shown.



In order to compare a representative set of multi- and many-core architectures,
while avoiding a rewrite of the code for each individual type, OpenCL was se-
lected as a portable programming language. Basic parts of the MD algorithm
were implemented into different OpenCL kernels (see Table 1), in order to bench-
mark the functional units of the program independently. The table shows the
different ways of distributing data to the work items and related kernel functions
which either act on a single particle or on a complete cell. Some of the kernel
functions require data of all particles in a cell to compute properties resulting
from the whole environment of a particle, e.g. the calculation of total forces on
a particle. Others can update the individual particle state information indepen-
dently from other particles, e.g. the propagation of position or velocities.
If not mentioned otherwise, the number of work items (wi) within a work group
(wg) is kept constant, so that the number of required work groups for a given
system is calculated by nwg = n/nwi, where n = N (number of particles) or
n = Nc (number of cells), depending on the kernel (Table 1).

4 Architectures

The benchmarks were conducted on three different machines: JURECA [2],
JUROPA3 [3] (two of the supercomputer systems at JSC) as well as on a

Architecture Relevant Components Peak Performance
GPU (K20) NVIDIA K20X 3.95 TF (sp), 1.31 TF (dp)
GPU (K80) NVIDIA K80 5.6 TF (sp), 1.87 TF (dp)

GPU (S10000) AMD S10000 5.91 TF (sp), 1.48 TF (dp)
Xeon Phi (5110P) Intel Xeon Phi 5110P 1.011 TF (sp)

CPU (SandyBridge) Intel Xeon E5 2650 128 GF

Table 2: Specifications of the systems used for
the different architectures: (sp) single precision
(dp) double precision

testing system for GPUs. Ta-
ble 2 shows the specifications
for the different architectures
used for benchmarking. JU-
ROPA3 has different parti-
tions, that employ the same
CPUs (Intel E5 2650), but
contain different accelerators.
For the scope of this paper the
benchmarks were run on the
GPU and the Intel Xeon Phi partitions. Due to the availability of the Intel
OpenCL driver on the Intel Xeon Phi partition, the CPU comparison was con-
ducted on JUROPA3 instead of running them on the faster E5-2680 Haswell
processors on JURECA, where no OpenCL support is available for the CPU.
Since the AMD GPU has less memory available than its NVIDIA counterparts,
larger benchmarks could not be performed on the card. For all the tests the
code was compiled with the GNU compiler version 4.9.3., with operating system
CentOS 7.

5 Results

To compare the performance on the different architectures, several benchmark
runs were conducted. The most basic one was the comparison of the normalised
runtime of the interaction kernel on each architecture (see Figs. 2a - 2f). Here,
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Fig. 2: Runtime comparison on all architectures, using single-precision calcula-
tions. Note the shift in scale in (d) and (f) in order to show the full range.



normalisation is defined as the measured runtime divided by the number of par-
ticles and the number of timesteps. No data transfer times were included, since
the data is kept resident in the device memory for the complete benchmark and
no additional data transfer is required. For the case of resorting the time required
to resort the data is included into the presented times, i.e. the runtime is the
sum of the time spent in the interaction kernel and the time spent to resort the
data. All results were obtained with single precision calculations. For the AMD
GPU (Fig. 2c) the AoS variant of the benchmark failed to execute for unknown
reasons and therefore only the SoA results are presented. When comparing the
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Fig. 3: all architecture comparison
(double precision)

benchmark results, it can be seen that the
different architectures show a specific be-
havior; since the K20X (Fig. 2a) and the
K80 GPUs (Fig. 2b) are different versions
of the same production line, their results
look fairly similar. With the exception of
the Xeon E5-2650 CPU (Fig. 2e) all bench-
marks suggest an architecture-dependent
minimum problem size that must be reached
before a stable performance is achieved. I.e.
for small system sizes the specific runtime is
exceedingly large compared with large sys-
tem sizes. Exemplary this is shown in Fig. 2a
and is due to the latency of high frequency
accesses to small chunks of memory. Since
transfer times are excluded in the results, an additional contribution to this be-
haviour is expected to result from a device-dependent overhead induced by the
scheduling of the work-groups on the device. On the CPU this behaviour can
only be observed to a smaller extent than on the other devices. For nearly all
architectures, except the Xeon Phi (Fig. 2d) it can be observed that in the case
of non-sorted data the runtime for larger problem sizes increases again. This
can be understood by the fact that non-sorted data are scattered over memory
and will have an unfavourable access pattern compared to the case of sorted
data, where all particles belonging to a single cell are stored consecutively in
memory. A possible explanation, why this behaviour cannot be observed on the
Xeon Phi is the much lower overall performance of the Xeon Phi which hides the
data access time behind a large computation time. For all other architectures
the compute time is already so small that data access time is a crucial measure
for the overall performance.
The choice of the data structure has a strong impact on the GPU performance
and to a smaller extent also on the Xeon and Xeon Phi architectures. Since
for the calculation of the forces within the interaction kernel only parts of the
particle data is required (position and forces), it is very inefficient to store the
whole set of data (velocities, masses, indices) within a single structure. In this
case all the particle data within the complete structure would be loaded into the
cache, filling it with nonessential data, i.e. leading to unnecessary data transfer



and inefficient cache usage. However, if data is stored in individual arrays, data
of consecutive particles is loaded into cache, and can be reused more efficiently.
The difference between GPU and CPU performance comes into play when con-
sidering the size of data loaded into the registers. CPUs have a smaller capacity of
data size loaded into registers, i.e. the load-operations need to be performed with
a higher frequency than on a GPU. Therefore, the ratio between performance
and load-operations is less favourable on a CPU and data layout patterns have
less impact on the overall performance. On the other hand a GPU can operate
most efficiently on large streams of data which can be consecutively processed.
If the overall number of data loading operations is increased due to nonessen-
tial items in the data structures, performance degradation becomes more severe.
This might explain the differences in the performance between GPU architec-
tures (NVIDIA GPUs in Figs. 2a, 2b) and CPUs (Fig. 2e).
One peculiar detail that was observed on the AMD S10000 is the low single-
precision performance compared to the NVIDIA cards. From the specification
of the peak performance characteristics (cmp. Table 2), the AMD card should
perform on the same level as the K80. However, the memory bandwidth of the
S10000 is lower when compared to the NVIDIA GPUs leading to a reduced
overall performance of the single-precision benchmark. For the case of double
precision calculations, the frequency of load operations gets lower and therefore
the effect of memory bandwidth limitations gets less pronounced (cmp. Fig. 3).
Therefore, measuring double-precision performance on the AMD GPU shows
comparable results to the NVIDIA K80, as could be expected.
Overall the benchmark shows a better performance for GPUs in comparison to
the Xeon E5-2650 when test systems have a sufficient size, i.e. beyond showing
memory latencies (Fig. 2f). Only for double-precision calculations it is observed
that the K20X is only as fast as the CPU (cmp. Fig. 3). We only note here that
the performance on the Xeon Phi is lacking behind all other architectures, since
it is roughly a magnitude slower than other machines (Fig. 2f). A main reason
for this behaviour is the missing vectorisation optimisation of the code, which
was out of focus for this paper. Furthermore, the OpenCL drivers might lack
best optimisation for the Intel Xeon Phi KNC, since the OpenCL support for
for KNC is deprecated [1].

6 Conclusion

One of the main goals of the present investigation was to investigate the perfor-
mance characteristics of a function portable cell based MD program on various
architectures. OpenCL has been selected as a programming language which al-
lows for interoperability on different types of architectures, e.g. CPU and GPU
based systems. Without any changes of the code it was possible to execute the
code on several multi- and many-core systems available at JSC. As a downside of
that approach the benchmark was not optimised for either of the architectures
and therefore did not present optimal performance achievable. This especially
accounts for the Xeon Phi system, where vectorisation is an essential issue to



outperform a simple porting of a given program in comparison to running (even
not optimised) on other architectures. On the other side this approach offers the
possibility to have a comparison between basic features on the different archi-
tectures, e.g. memory bandwidth and core speed. To account for different data
access patterns, we included the comparison of AoS and SoA, which is an im-
portant issue for the GPU architectures. It could be shown, that the SoA layout
even improves the performance on the CPU for the non-sorted case and does
not degrade performance in the sorted case. In this respect it can be concluded
that further optimisation for GPU architectures will lead most probable to a
significant performance gain compared to CPUs. Since the OpenCL support for
Xeon Phi is already deprecated, it remains to be seen, if OpenCL will remain
to be a valid option supporting newer Intel Xeon Phi architectures, e.g., KNL.
Nevertheless, the choice of OpenCL provides the option to design MD simulation
packages that can run on a variety of different architectures, without the need
to provide specialised kernels or programs for each individual machine. In the
present article we focused the work on function portability. At least as impor-
tant as this is the request for performance portability, which we excluded from
the present investigation, but which is of high importance in view of the devel-
opments towards more complex and heterogeneous architectures. International
consortia are considering this aspect and it has to be awaited whether this leads
to simplified porting and improved accessibility of future architectures (for a
collection of contributions, see e.g. [4]).
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