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Abstract. Driven by the emerging requirements of High Performance
Computing (HPC) architectures, the main focus of this work is the in-
terplay of computational and energetic aspects of a Four Dimensional
Variational (4DVAR) Data Assimilation algorithm, based on Domain
Decomposition (named DD-4DVAR). We report first results on the en-
ergy consumption of the DD-4DVAR algorithm on embedded processor
and a mathematical analysis of the energy behaviour of the algorithm by
assuming the architectures characteristics as variable of the model. The
main objective is to capture the essential operations of the algorithm
exhibiting a direct relationship with the measured energy. The experi-
mental evaluation is carried out on a set of mini-clusters made available
by the Barcelona Supercomputing Center.
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1 Introduction and Motivations

Data assimilation (DA) is an uncertainty quantification technique by which mea-
surements and model predictions are combined to obtain an accurate representa-
tion of the state of the modeled system [5, 7]. Due to the scale of the forecasting
area and the number of state variables used to describe ocean or atmosphere
for climate or weather predictions, DA applications are large scale problems
that should be solved in near real-time. This mandates to design and develop
DA algorithms to be run by exploiting High Performance Computing (HPC)
environments. During the last 20 years, parallel algorithms for DA have been in-
vestigated by a number of federal research institutes and universities. Up to now,
the main efforts towards the development of parallel 4DVAR DA systems were
achieved in numerical weather prediction applications, namely by the ECMWF
(European Centre for Medium-Range Weather Forecasts), in Reading (UK) and
by the NCAR (National Center for Atmospheric Research), in Colorado (USA).
In this paper, we employ a 4DVAR algorithm described in [1, 6], named DD-
4DVAR, based on a Domain Decomposition approach. In [3, 9–11] are described
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some different approaches to take full advantage of emerging HPC architectures.
In the model we employ, the parallelism is achieved by dividing the global prob-
lem into multiple local 4DVAR DA sub-problems solved across processors. The
global solution is obtained by collecting the local minimums. The sub-problems
are handled by a slightly modified 4DVAR algorithm, custom implemented on
an ARM-based low-energy node with the aim of minimizing the overall energy-
to-solution experienced by the application.
The performance and energy cost of a parallel algorithm executing on HPC
systems have different trade-offs, depending on how many processors the algo-
rithm uses, at what characteristics these processors have, and the structure of
the algorithm. Due to the interest of the HPC community towards low-power
architectures such as the ones used in smartphone and tablets [12], we report
in this paper the first results on the energy consumption of the DD-4DVAR
algorithm on embedded processor. Note that our approach addresses the prob-
lem in the spirit of scalability analysis of parallel algorithms as distinct from
practical performance analysis on specific architecture. We provide a mathemat-
ical analysis of the energy behaviour of the DD-4DVAR algorithm as function
of the architectures characteristics of the platforms where are executed. The
main objective is to capture the essential operations in the algorithm exhibiting
a direct relationship with the measured energy. Such analysis will enable pre-
dicting the energy requirements of the DD-4DVAR code, provided that a set of
architecture-dependent parameters are available, as well as understanding its en-
ergy breakdown, which may in turn underpin a systematic approach to combined
performance/energy optimization. The experimental evaluation is carried out on
a set of AMR based platforms made available by the Barcelona Supercomputing
Center in the context of the Mont-Blanc European project [13]. The evaluation,
aimed at understanding the energy breakdown and the related scalability issues,
pointing out the importance of the underplay between parallel performance and
energy optimization.

2 The DD-4DVAR Computational Kernel

Hereafter we provide a concise formalization of the DD-4DVAR model we im-
plemented in Algoritm 1 [1].
Let tk, k = 0, 1, . . . , n be a sequence of observation times and, for each k, let be

xk ≡ x(tk) ∈ <N (1)

the vector denoting the state of a sea system such that xk = Mk (xk−1) with
Mk : <N 7→ <N forecasting model.
At each time step tk, let be

yk = Hk(xk) ∈ <p (2)

the observations vector where Hk : <N 7→ <p is a non-linear interpolation oper-
ator collecting the observations at time tk.



The aim of DA problem is to find an optimal tradeoff between the current
estimate of the system state (background) defined in (1) and the available ob-
servations yk defined in (2).
Let (3) be an overlapping decomposition of the physical domain Ω such that
Ωi ∩ Ωj = Ωij 6= 0 if Ωi and Ωj are adjacent and Ωij is called overlapping
region [1].

Ω =

Nsub⋃
i=1

Ωi (3)

For a fixed time tk = t0, according to this decomposition, the DD-4DVAR com-
putational model is a system of Nsub non-linear least square problems described
in (4)-(5) where Ji in (5) is called cost-function.

xDA
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(5)
where Gk =Mk ◦ Hk.
xDA
0 in (4) is the analysis (i.e. the estimation of the vector xDA

0i at time t0).
The variables x0i and yki are the same vectors x0 and yk in (1) and (2) defined
on the subdomain Ωi, Ri and Bi are the covariance matrices whose elements
provide the estimate of the errors on yki

and on x0i , respectively.
Let d = [yk − H(xk)] be the misfit, by using the linearization of H such that
H(x) = H(x + δx) + H δx, where H is the matrix obtained by the first order
approximation of the Jacobian of H and, by setting vi = V T

i δxi, with Vi such
that Bi = ViV

T
i , the cost function in (5) is written as:
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The minimum of the cost function Ji in (6) is computed by the L-BFGS method
[14] which implements a quasi Newton method. Then we need to compute
∇Ji(vi) such that:

∇Ji(vi) = vi +

N∑
k=0

V T
ki
GT

ki
R−1

ki
(Gki

Vivi − dki
) (7)

where GT
ki

is the adjoint operator of Gki
.



Algorithm 1 The DD-4DVAR algorithm on each subdomain Ωi × [t0, tn]

1: Input: {yki}k=0,...,m and xM0i
2: Define Hki

3: Compute dki ← yki −HkiMki . . .M1ix
M
0i % compute the misfit

4: Define Rki starting from the observed data yki

5: Define Vi starting from a temporal sequence of hystorical data {xMki
}k=0,...,M

6: Define the initial value of δxDA
i

7: Compute vi ← V T
i δx

DA
i

8: repeat % start of the L-BFGS steps
9: Send and Receive the boundary conditions from the adjacent domains

10: Compute Ji ← Ji(vi) % Defined in (6)
11: Compute gradJi ← ∇Ji(vi) % Defined in (7)
12: Compute new values for vi
13: until (Convergence on vi is obtained) % end of the L-BFGS steps
14: Compute xDA

i ← xM0i + Vivi

3 Energy analysis of the algorithm

In this section we set a DD-4DVAR algorithm configuration and we perform a
mathematical analysis of the energy behaviour of the algorithm.
For the DD-4DVAR algorithm configuration we assume:

– N defined in (1), which is the dimension of the problem, such that

N = nx × ny × nz = n× n× 3

as this does not affect the generality, where n ∈ N , n > 1;
– a 2D decomposition along the x-axes and the y-axes such that each subdo-

main has dimension:
Ni =

n

p
× n

p
× 3; (8)

where p ∈ N , p > 1. Then, Nsub the number of subdomain in (3) (which
constitutes the domain decomposition) is

Nsub = p2. (9)

– the algorithm be implemented on a parallel architecture by employing nproc
processors such that nproc = Nsub, i.e. from (9), we are assuming

nproc = p2.

Concerning the energy model, we assume that [8]:

– the energy consumption is additive and it is essentially proportional to the re-
spective activity intensity in each component of the computing architecture,
in terms of compute operation count, exchanged messages, memory accesses,
plus a static energy contribution which is not affected by the activity and
only depends on the considered time interval.



Based on the above assumption, we can write the energy breakdown as:

EHC(p, n) = Ecomp(p, n) + Emem(p, n) + Emes(p, n) + Estatic(p, n) (10)

where the superscript HC denotes the dependency on the computing architec-
ture, and

– Ecomp(p, n) is the energy for computation:

Ecomp(p, n) = Ed · f2 · µcomp(p, n), (11)

where Ed is a hardware constant [4], µcomp(p, n) is the number of computa-
tions and f is the frequency;

– Emem(p, n) is the energy for memory accesses:

Emem(p, n) = Em · µmem(p, n), (12)

where Em is the energy consumed for a single memory access (both read and
write) and and µmem(p, n) is the number of memory accesses;

– Emes(p, n) is the energy for message transfers:

Emes(p, n) = Et · µmes(p, n), (13)

where Et is the energy consumed for a single message transfer between the
processors and µmes(p, n) is the number of message transfers at all proces-
sors;

– Estatic(p, n) is the static energy:

Estatic(p, n) = El · f · Tactive(p, n). (14)

where El is a hardware constant [4] and Tactive(p, n) is the execution time
for performing the whole algorithm.

Let

– NL−BFGS,p be the number of L-BFGS steps (see Steps 8 - 13 of Algorithm 1)
which depends on the sub domains dimension (i.e., from (8), it depends on
p) [2];

– nHC
C be the maximum size of the allocable problem in the memory cache of

the architecture HC.
– pHC

max be the maximum number of cores of the architecture HC.

By assuming

n ≤ nHC
C , p < pHC

max (15)

and by analyzing the time complexity of Algorithm 1, we can estimate the order
of magnitude of the energy consumption by the following result.



Theorem 1. By assuming (10), (11)-(14) and (15), it holds:

EHC(p, n) = O
(
CHC(p) · 9n

4

p2

)
(16)

where EHC(p, n) denotes the energy consumption defined in (10) and where
CHC(p):

CHC(p) = Ed ·NL−BFGS,p + El · tflop (17)

with tflop denotes the unitary time required for the execution in each processor
of one floating point operation.

Proof: Let Si(p, n) and Vi(p, n) denote the number of floating point exchanges
at each algorithm iteration and the floating point computations at each iteration
respectively, proportional to surface area and the volume of each subdomain in
Algorithm 1:

Si(p, n) = 12
n

p
(18)

Vi(p, n) = 3
n2

p2
(19)

then µcomp(p, n), µmem(n, p) and µmes(p, n) are such that:

µcomp(p, n) = NL−BFGS,p · p2 · V 2
i (p, n), (20)

µmem(p, n) = 2NL−BFGS,p · p2 · Vi(p, n), (21)

µmes(p, n) = NL−BFGS,p · p2 · Si(p, n), (22)

Also we assume Tactive(p, n) be the execution time for performing V 2
i (p, n) float-

ing point operations:

Tactive(p, n) = tflop · V 2
i (p, n) (23)

Then, from (10), (18)-(19) and (20)-(22), it holds

EHC(p, n) = Ed ·NL−BFGS,p (p2)

(
3
n2

p2

)2

· f2 +Em ·2NL−BFGS (p2)

(
3
n2

p2

)
+

+Et ·NL−BFGS,p (p2)

(
6
n

p
+ 6

n

p

)
+ El · tflop(p2)

(
3
n2

p2

)2

· f (24)

As we run in a single computational node (i.e. p < pmax as expressed in (15))
this means that we are not implying communications, so the third term can be
neglected. From qualitative observations, we can assume that the second term



can be neglected because we fit the whole data in cache (as expressed in (15)),
therefore a negligible number of access to the main memory are performed. Then
the (16) follows.

Definition 1 (Energy Variation parameter) We denote with Energy Variation
parameter the ratio

V Ep1,p2 =
EHC(p1, n)

EHC(p2, n)
(25)

The following result holds:

Proposition 1 For a fixed architecture and, under the hypothesis of Theorem 1,
it is

V Ep1,p2 >
p22
p21

(26)

for p2 ≥ p1.

Proof: From (24) and (16) for a fixed value of n, it is

V Ep1,p2 =
CHC(p1)

CHC(p2)

p22
p21

(27)

We observe that, from (27), it is

CHC(p1)

CHC(p2)
> 1 =⇒ V Ep1,p2 ≥

p22
p21

which gives:

CHC(p1) > CHC(p2) =⇒ V Ep1,p2 >
p22
p21

(28)

From (28) and (17) it is

CHC(p1) > CHC(p2)⇐⇒ Ed·NL−BFGS,p1
+El ·tflop > Ed·NL−BFGS,p2

+El ·tflop

As for a fixed architecture, the values of Ed, El and tflop are also fixed, it is

CHC(p1) > CHC(p2)⇐⇒ NL−BFGS,p1
> NL−BFGS,p2

Due the better conditioning of the smaller problems, it is NL−BFGS,p1 > NL−BFGS,p2

[2]. Then the (26) holds.

Remark 1 We observe that, if the (15) is not satisfied, then CHC(p) includes
also Emes which increases as the number of processors increases. In that case,
for p2 > p1, it is:

CHC(p2) ≥ CHC(p1) (29)



which gives

V Ep1,p2 ≤
p22
p21

(30)

4 Experimental results

The proposed approach is validated on a case study based on the linear Shallow
Water Equation (SWE) for n = 64, i.e. we consider a fixed size configuration of
the DD-4DVAR algorithm and we discuss results obtained by varying p.
The experiments are been conducted on architectures available at the Barcelona
Supercomputing Center (BSC) and the power measurements have been enabled
by the Mont-Blanc computing environment [13].

In table 1 are summarized the reference architectures. HC = CT refers to a
single Cavium ThunderX server [15], HC = JT refers to a cluster of 16 nodes
of Nvidia JetsonTx1, while HC = MB refers to a partition of 5 nodes of the
Mont-Blanc prototype cluster [13] used for this work.

Cavium Nvidia Samsung
Specifications ThunderX JetsonTx1 Exynos

Instruction Set ARMv8 ARMv8 ARMv7

Num. of cores / node 2 · 48 4 2

Num. of cluster nodes 1 16 16

Clock freq. [GHz] 2.5 1.73 1.7

L2 cache size [MB] 16 2 1

Table 1. Reference architectures details

Relying on the potential of the Mont-Blanc computing environment, we were
particularly interested in the results in terms of power efficiency and energy-
to-solution. Here we provide results in terms of (measured) Energy Variation
Parameter defined in (25) and computed using the values of energy consumptions
given by EHC(p, 64) = PHC

p · THC
p , where PHC

p and THC
p are the power and

the execution time respectively. We compare the obtained results with the upper
and lower bounds provided in (26) and (30).
We observe that, in Table 1, the Cavium ThunderX has 16 Megabyte of memory
cache which allows to satisfy condition in (15). In fact3,

nCT
C = 16 · nC,1 = 96 > 64 = n, p < pCT

max = 2 · 48 = 96.

Under condition (15), the (26) holds as confirmed by the results in Table 2.

3 Due the time complexity of the computation, for each Megabyte, the values on
nC which is independent from the computing architecture, is such that: nC,1 =⌈(

1048576
8∗3

) 1
6

⌉
= 6, where d·e denotes the integer part.



p2 PCT
p TCT

p ECT (p, 64) V E1,p p
2/1

1 125.0 W 906 secs 113250.0 J 1.0 1

4 125.5 W 211 secs 26480.5 J 4.3 4

16 126.5 W 42 secs 5313.0 J 21.3 16

Table 2. Cavium ThunderX

The JetsonTx1 and Mont-Blanc, with 2 Megabyte and 1 Megabyte of cache
instead (see Table 1) do not satisfy (15). In fact, nJTC = 2 · nC,1 = 12 and
nMB
C = 1 · nC,1 = 6 for the JT and MB respectively, both smaller than n = 64.

In these cases, the upper bound in (30) holds as confirmed by the results in
Table 3 and Table 4.

f = 800000

p2 P JT
p T JT

p EJT (p, 64) V E1,p p
2/1

1 5.3 W 429 secs 2273.7 J 1.0 1

4 6.6 W 115 secs 759.0 J 3.0 4

16 6.6 W 45 secs 297.0 J 7.7 16

f = 1700000

p2 P JT
p T JT

p EJT (p, 64) V E1,p p
2/1

1 6.5 W 210 secs 1365.4 J 1.0 1

4 10.0 W 86 secs 860.6 J 3.1 4

16 10.0 W 21 secs 210.0 J 6.5 16

Table 3. JetsonTx1

f = 800000

p2 PMB
p TMB

p EMB(p, 64) V E1,p p
2/1

1 5.4 W 375 secs 2025.0 J 1.0 1

4 5.5 W 86 secs 473.0 J 4.2 4

16 5.5 W 23 secs 126.5 J 16.0 16

f = 1700000

p2 PMB
p TMB

p EMB(p, 64) V E1,p p
2/1

1 5.4 W 181 secs 977.4 J 1.0 1

4 5.5 W 48 secs 264 J 3.7 4

16 5.5 W 13 secs 71.5 J 13.7 16

Table 4. Mont-Blanc



5 Conclusion

We introduced an energy analysis of the DD-4DVAR algorithm for data assim-
ilation problems. An implementation of the algorithm was evaluated on some
prototype ARM-based platforms made available by the Barcelona Supercomput-
ing Center. We performed the analysis of the energy behaviour of the algorithm
depending on several architectures characteristics. A preliminary experimental
evaluation confirmed the estimations provided by our analysis on a fixed size
problem varying the number of processors. As a future development, we aim
at scaling up the methodology by demonstrating energy-driven parallelization
approaches on production-grade ARM-based HPC clusters.
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