Skip to main content

Relational Restricted Boltzmann Machines: A Probabilistic Logic Learning Approach

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10759))

Abstract

We consider the problem of learning Boltzmann machine classifiers from relational data. Our goal is to extend the deep belief framework of RBMs to statistical relational models. This allows one to exploit the feature hierarchies and the non-linearity inherent in RBMs over the rich representations used in statistical relational learning (SRL). Specifically, we use lifted random walks to generate features for predicates that are then used to construct the observed features in the RBM in a manner similar to Markov Logic Networks. We show empirically that this method of constructing an RBM is comparable or better than the state-of-the-art probabilistic relational learning algorithms on six relational domains.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    wiki.freebase.com/wiki/Compound_Value_Type.

  2. 2.

    cs.sfu.ca/ oschulte/BayesBase/input.

  3. 3.

    rtw.ml.cmu.edu/rtw/.

References

  1. Ackley, D.H., Hinton, G.E., Sejnowski, T.J.: A learning algorithm for Boltzmann machines. Cogn. Sci. 9(1), 147–169 (1985)

    Article  Google Scholar 

  2. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. JMLR 13, 281–305 (2012)

    MathSciNet  MATH  Google Scholar 

  3. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. JMLR 3, 993–1022 (2003)

    MATH  Google Scholar 

  4. Blockeel, H., Uwents, W.: Using neural networks for relational learning. In: ICML 2004 Workshop on SRL, pp. 23–28 (2004)

    Google Scholar 

  5. Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka Jr., E.R., Mitchell, T.M.: Toward an architecture for never-ending language learning. In: AAAI, pp. 1306–1313 (2010)

    Google Scholar 

  6. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge University Press, New York (2000)

    Book  MATH  Google Scholar 

  7. Das, M., Wu, Y., Khot, T., Kersting, K., Natarajan, S.: Scaling lifted probabilistic inference and learning via graph databases. In: SDM (2016)

    Google Scholar 

  8. Davis, J., Goadrich, M.: The relationship between Precision-Recall and ROC curves. In: ICML (2006)

    Google Scholar 

  9. De Raedt, L., Kersting, K., Natarajan, S., Poole, D. (eds.): Statistical Relational Artificial Intelligence: Logic, Probability, and Computation. Morgan and Claypool Publishers, San Rafael (2016)

    Google Scholar 

  10. Deng, L.: Connecting deep learning features to log-linear models. In: Log-Linear Models, Extensions and Applications. MIT Press (2015)

    Google Scholar 

  11. Desjardins, G., Courville, A., Bengio, Y., Vincent, P., Dellaleau, O.: Parallel tempering for training of restricted Boltzmann machines. AISTATS 9, 145–152 (2010)

    Google Scholar 

  12. Domingos, P., Lowd, D.: Markov Logic: An Interface Layer for AI. Morgan & Claypool Publishers, San Rafael (2009)

    MATH  Google Scholar 

  13. França, M.V.M., Zaverucha, G., d’Avila Garcez, A.S.: Fast relational learning using bottom clause propositionalization with artificial neural networks. Mach. Learn. 94(1), 81–104 (2014)

    Article  MathSciNet  Google Scholar 

  14. Gehler, P.V., Holub, A.D., Welling, M.: The rate adapting Poisson model for information retrieval and object recognition. In: ICML, pp. 337–344 (2006)

    Google Scholar 

  15. Getoor, L., Taskar, B.: Introduction to Statistical Relational Learning. MIT Press, Cambridge (2007)

    MATH  Google Scholar 

  16. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  17. Hinton, G.E.: Training products of experts by minimizing contrastive divergence. Neural Comput. 14, 1771–1800 (2002)

    Article  MATH  Google Scholar 

  18. Hinton, G.E., Osindero, S.: A fast learning algorithm for deep belief nets. Neural Comput. 18, 1527–1554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hinton, G.E.: To recognize shapes first learn to generate images. In: Computational Neuroscience: Theoretical Insights into Brain Function. Elsevier (2007)

    Google Scholar 

  20. Hu, Z., Ma, X., Liu, Z., Hovy, E.H., Xing, E.P.: Harnessing deep neural networks with logic rules. In: ACL (2016)

    Google Scholar 

  21. Kazemi, S., Buchman, D., Kersting, K., Natarajan, S., Poole, D.: Relational logistic regression. In: KR (2014)

    Google Scholar 

  22. Khot, T., Natarajan, S., Kersting, K., Shavlik, J.: Learning Markov logic networks via functional gradient boosting. In: ICDM (2011)

    Google Scholar 

  23. Kok, S., Domingos, P.: Learning Markov logic network structure via hypergraph lifting. In: ICML (2009)

    Google Scholar 

  24. Kok, S., Domingos, P.: Learning Markov logic networks using structural motifs. In: ICML (2010)

    Google Scholar 

  25. Kok, S., Sumner, M., Richardson, M., et al.: The Alchemy system for statistical relational AI. University of Washington, Technical report (2010)

    Google Scholar 

  26. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques - Adaptive Computation and Machine Learning. The MIT Press, Cambridge (2009)

    Google Scholar 

  27. Landwehr, N., Passerini, A., De Raedt, L., Frasconi, P.: Fast learning of relational Kernels. Mach. Learn. 78, 305–342 (2010)

    Article  MathSciNet  Google Scholar 

  28. Lao, N., Cohen, W.: Relational retrieval using a combination of path-constrained random walks. J. Mach. Learn. 81(1), 53–67 (2010)

    Article  MathSciNet  Google Scholar 

  29. Larochelle, H., Bengio, Y.: Classification using discriminative restricted Boltzmann machines. In: ICML, pp. 536–543 (2008)

    Google Scholar 

  30. Lecun, Y., Chopra, S., Hadsell, R., Marc’Aurelio, R., Huang, F.: A tutorial on energy-based learning. In: Predicting Structured Data. MIT Press (2006)

    Google Scholar 

  31. Mihalkova, L., Mooney, R.: Bottom-up learning of Markov logic network structure. In: ICML (2007)

    Google Scholar 

  32. Natarajan, S., Khot, T., Kersting, K., Guttmann, B., Shavlik, J.: Gradient-based boosting for statistical relational learning: the relational dependency network case. MLJ 86(1), 25–56 (2012)

    MathSciNet  MATH  Google Scholar 

  33. Natarajan, S., Khot, T., Kersting, K., Shavlik, J. (eds.): Boosted Statistical Relational Learners. From Benchmarks to Data-Driven Medicine. SpringerBriefs in Computer Science. Springer, New York (2016)

    MATH  Google Scholar 

  34. Natarajan, S., Tadepalli, P., Dietterich, T., Fern, A.: Learning first-order probabilistic models with combining rules. AMAI 54(1–3), 223–256 (2008)

    MathSciNet  MATH  Google Scholar 

  35. Poon, H., Domingos, P.: Joint inference in information extraction. In: AAAI (2007)

    Google Scholar 

  36. Quinlan, J.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers Inc., San Mateo (1993)

    Google Scholar 

  37. Richardson, M., Domingos, P.: Markov logic networks. Mach. Learn. 62, 107–136 (2006)

    Article  Google Scholar 

  38. Muggleton, S.: Inverse entailment and Progol. New Gener. Comput. 13(3–4), 245–286 (1995)

    Article  Google Scholar 

  39. Salakhutdinov, R., Mnih, A., Hinton, G.: Restricted Boltzmann machines for collaborative filtering. In: ICML, pp. 791–798 (2007)

    Google Scholar 

  40. Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine learning algorithms. In: NIPS, pp. 2951–2959 (2012)

    Google Scholar 

  41. Taylor, G.W., Hinton, G.E., Roweis, S.T.: Modeling human motion using binary latent variables. In: NIPS (2007)

    Google Scholar 

  42. Tieleman, T.: Training restricted Boltzmann machines using approximations to the likelihood gradient. In: ICML, pp. 1064–1071 (2008)

    Google Scholar 

  43. Wang, W., Cohen, W.: Learning first-order logic embeddings via matrix factorization. In: IJCAI (2016)

    Google Scholar 

Download references

Acknowledgements

Kristian Kersting gratefully acknowledges the support by the DFG Collaborative Research Center SFB 876 projects A6 and B4. Sriraam Natarajan gratefully acknowledges the support of the DARPA DEFT Program under the Air Force Research Laboratory (AFRL) prime contract no. FA8750-13-2-0039. Any opinions, findings, and conclusion or recommendations expressed in this material are those of the authors and do not necessarily reflect the view of the DARPA, ARO, AFRL, or the US government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gautam Kunapuli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kaur, N., Kunapuli, G., Khot, T., Kersting, K., Cohen, W., Natarajan, S. (2018). Relational Restricted Boltzmann Machines: A Probabilistic Logic Learning Approach. In: Lachiche, N., Vrain, C. (eds) Inductive Logic Programming. ILP 2017. Lecture Notes in Computer Science(), vol 10759. Springer, Cham. https://doi.org/10.1007/978-3-319-78090-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78090-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78089-4

  • Online ISBN: 978-3-319-78090-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics