Skip to main content

MEMSA: A Robust Parisian EA for Multidimensional Multiple Sequence Alignment

  • Conference paper
  • First Online:
  • 626 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10764))

Abstract

This paper describes a new approach for the multiple alignment of biological sequences (DNA or proteins) using a Parisian Evolution approach called MEMSA, for Multidimensional Evolutionary Multiple Sequence Alignment, coded using the EASEA platform. This approach evolves individual sub-alignments called “patches” that are used to create a new kind of Multiple Sequence Alignment where alternative solutions are computed simultaneously using different fitness functions. Solutions are generated by combining coherent sets of high-scoring individuals that are used to reconstruct multi-dimensional multiple sequence alignments. The alignments of this prototype version show a quality comparable to ClustalW (one of the most widely used existing methods) on the 218 samples of the BAliBASE benchmark in reasonable time.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Blackburne, B.P., Whelan, S.: Measuring the distance between multiple sequence alignments. Bioinformatics 28(4), 495–502 (2012)

    Article  Google Scholar 

  2. Collet, P., Lutton, E., Raynal, F., Schoenauer, M.: Polar IFS+Parisian genetic programming=efficient IFS inverse problem solving. Genetic Program. Evolvable Mach. 1(4), 339–361 (2000). http://dx.doi.org/10.1023/A:1010065123132

    Article  MATH  Google Scholar 

  3. Collet, P., Lutton, E., Schoenauer, M., Louchet, J.: Take it EASEA. In: Schoenauer, M., Deb, K., Rudolph, G., Yao, X., Lutton, E., Merelo, J.J., Schwefel, H.-P. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 891–901. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45356-3_87

    Chapter  Google Scholar 

  4. Do, C.B., Mahabhashyam, M.S., Brudno, M., Batzoglou, S.: Probcons: probabilistic consistency-based multiple sequence alignment. Genome Res. 15(2), 330–340 (2005)

    Article  Google Scholar 

  5. Edgar, R.C.: Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32(5), 1792–1797 (2004)

    Article  Google Scholar 

  6. Zhu, H., He, Z., Jia, Y.: A novel approach to multiple sequence alignment using multiobjective evolutionary algorithm based on decomposition. IEEE J. Biomed. Health Inform. 20, 717–727 (2016)

    Article  Google Scholar 

  7. Hayes-Roth, F.: Review of “adaptation in natural and artificial systems by John H. Holland”. The University of Michigan Press (1975). SIGART Bull. 53, 15 (1975). http://doi.acm.org/10.1145/1216504.1216510

  8. Henikoff, S., Henikoff, J.G.: Amino acid substitution matrices from protein blocks. Proc. Nat. Acad. Sci. 89(22), 10915–10919 (1992). http://www.pnas.org/content/89/22/10915.abstract

    Article  Google Scholar 

  9. Holland, J.H.: Escaping brittleness: the possibilities of general-purpose learning algorithms applied to parallel rule-based systems. In: Computation & Intelligence, pp. 275–304. American Association for Artificial Intelligence, Menlo Park (1995). http://dl.acm.org/citation.cfm?id=216000.216016

  10. Katoh, K., Standley, D.M.: MAFFT: iterative refinement and additional methods. In: Multiple Sequence Alignment Methods, pp. 131–146. Humana Press, Totowa (2014)

    Google Scholar 

  11. Kaya, M., Sarhan, A., Alhajj, R.: Multiple sequence alignment with affine gap by using multi-objective genetic algorithm. Comput. Methods Prog. Biomed. 114, 38–49 (2014)

    Article  Google Scholar 

  12. Cai, L., Juedes, D., Liaknovitch, E.: Evolutionary computation techniques for multiple sequence alignment. In: Proceedings of the IEEE Congress on Evolutionary Computation (2000)

    Google Scholar 

  13. Larkin, M., Blackshields, G., Brown, N., Chenna, R., McGettigan, P., McWilliam, H., Valentin, F., Wallace, I., Wilm, A., Lopez, R., Thompson, J., Gibson, T., Higgins, D.: Clustal w and clustal x version 2.0. Bioinformatics 23, 2947–2948 (2007)

    Article  Google Scholar 

  14. Lassmann, T., Sonnhammer, E.L.: Kalign - an accurate and fast multiple sequence alignment algorithm. BMC Bioinf. 6(1), 298 (2005)

    Article  Google Scholar 

  15. Maitre, O., Krüger, F., Querry, S., Lachiche, N., Collet, P.: EASEA: specification and execution of evolutionary algorithms on GPGPU. Soft Comput. 16(2), 261–279 (2011)

    Article  Google Scholar 

  16. Nguyen, H.D., Yoshihara, I., Yamamori, K., Yasunaga, M.: Aligning multiple protein sequences by parallel hybrid genetic algorithm. Genome Inform. 13, 123–132 (2002)

    Google Scholar 

  17. Notredame, C., Higgins, D.G.: Saga: sequence alignment by genetic algorithm. Nucleic Acids Res. 24(8), 1515–1524 (1996)

    Article  Google Scholar 

  18. Thompson, J.D., Koehl, P., Ripp, R., Poch, O.: BAliBASE 3.0: latest developments of the multiple sequence alignment benchmark. Proteins 61(1), 127–136 (2005). Structure, Function and BioInformatics

    Article  Google Scholar 

  19. Thompson, J.D., Linard, B., Lecompte, O., Poch, O.: A comprehensive benchmark study of multiple sequence alignment methods: current challenges and future perspectives. PLoS One 6(3), e18093 (2011)

    Article  Google Scholar 

  20. Thompson, J.D., Plewniak, F., Ripp, R., Thierry, J.C., Poch, O.: Towards a reliable objective function for multiple sequence alignments. J. Mol. Biol. 314(4), 937–951 (2001). http://www.sciencedirect.com/science/article/pii/S0022283601951873

    Article  Google Scholar 

  21. Wilson, S.W., Goldberg, D.E.: A critical review of classifier systems. In: Proceedings of the 3rd International Conference on Genetic Algorithms, pp. 244–255. Morgan Kaufmann Publishers Inc., San Francisco (1989). http://dl.acm.org/citation.cfm?id=645512.657260

  22. Zhang, C., Wong, A.: A genetic algorithm for multiple molecular sequence alignment. Comput. Appl. Biosci. 13, 565–581 (1997)

    Google Scholar 

Download references

Acknowledgement

We would like to thank the members of the BISTRO Bioinformatics Platform in Strasbourg for their support. This work was supported by the Agence Nationale de la Recherche (BIPBIP: ANR-10-BINF-03-02), the Région Alsace and Institute funds from the CNRS, the Université de Strasbourg and the Faculté de Médecine de Strasbourg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Collet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Thompson, J.D., Vanhoutrève, R., Collet, P. (2018). MEMSA: A Robust Parisian EA for Multidimensional Multiple Sequence Alignment. In: Lutton, E., Legrand, P., Parrend, P., Monmarché, N., Schoenauer, M. (eds) Artificial Evolution. EA 2017. Lecture Notes in Computer Science(), vol 10764. Springer, Cham. https://doi.org/10.1007/978-3-319-78133-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78133-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78132-7

  • Online ISBN: 978-3-319-78133-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics