Skip to main content

Optimal ZF Precoder Under per Antenna Power with Conjugate Beamforming for MU Massive MIMO Systems

  • Conference paper
  • First Online:
Book cover Communications and Networking (ChinaCom 2017)

Abstract

In this paper, we deliberate on multiuser massive multiple-input multiple-output (MU-MIMO) system in designing optimal zero forcing (ZF) precoder under per antenna power constraint. MU massive MIMO with non-square matrix is restrained by the large channel matrix dimension, conjugate beamforming maximization approach is developed to align the channel matrix for the optimal ZF precoder. We further introduced complex lattice reduction (CLR) to transform the lattice bases of the channel matrix and shorten the basis vector, thus meliorates the orthogonality of the conjugate beamforming. Simulation results show LR-based optimal ZF precoder outperforms other precoding schemas. The LR-based optimal ZF precoder improved the beamforming for the base station (BS) to focus on the users, thus improving spatial multiplexing gain and diversity order. As BS antennas and users turn large, the sum rate over the subchannels depends on the dominance of users (that is BS antennas to user antennas ratio) for the channel gain. Thus performance of the LR-based precoder schema under per antenna power can help save power in practical massive MIMO implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For \(\mathbf {T}_{n}=\left[ \mathbf {\bar{V}_{1}\hat{V}}_{1},\mathbf {\bar{V} _{2}\hat{V}}_{2},\ldots \mathbf {\bar{V}_{N}\hat{V}}_{N}\right] \)as the transmit power constraint (2) is formulated in \(\mathbf {tr} \left( \mathbf {\bar{V}_{n}\hat{V}}_{n}\mathbf {\hat{V}}_{n}^{\mathrm {H} }\mathbf {\bar{V}}_{n}^{\mathrm {H}}\right) \) for the power constraint.

  2. 2.

    The basis vectors are multiplied by square vector and determinant of \(\pm 1\), the elements are complex integer entries \(\kappa _{n}^{u}\).

  3. 3.

    The orthogonality defect is used to measure the orthogonality basis vectors, formed by all the inner products as \(\frac{\prod \nolimits _{i=1} ^{n}\left\| \mathbf {\breve{x}}_{i}\right\| }{\left\| \mathbf {\breve{X}}_{n}^{\mathrm {\dag }}\right\| ^{2}}\).

References

  1. Rusek, F., Person, D., Lau, B.K., Larsson, E.G., Marzetta, T.L.: Scaling up MIMO: opportunities and challenges with very large arrays. IEEE Sig. Proc. Mag. 30, 40–60 (2013)

    Article  Google Scholar 

  2. Ngo, H.Q., Larsson, E.G., Marzetta, T.L.: Energy and spectral efficiency of very large MU MIMO systems. IEEE Trans. Commun 61(4), 1436–1449 (2013)

    Article  Google Scholar 

  3. Zu, K., Lamare, R.C.: Low - complexity lattice reduction-aided regularized block diagonalization for MU-MIMO system. IEEE Commun. Lett. 16(6), 925–928 (2012)

    Article  Google Scholar 

  4. Serbetli, S., Yener, A.: Transceiver optimization for multiuser MIMO systems. IEEE Trans. Sig. Process. 52(1), 214–226 (2004)

    Article  MathSciNet  Google Scholar 

  5. Yao, R., Nan, H., Xu, J., Li, G.: Optimal BD-ZF precoder for multi-user MIMO downlink transmission. Electron. Lett. 51(14), 1121–1123 (2015)

    Article  Google Scholar 

  6. Luo, Z.Q., Yu, W.: An introduction to convex optimization for communications and signal processing. IEEE J. Sel. Areas Commun. 24(8), 1426–1438 (2006)

    Article  Google Scholar 

  7. Boyed, S., Vandenerghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  8. Perez-Cruz, F., Rodrigues, M.R.D., Verdu, S.: MIMO Guassian channel with arbitrary inputs: optimal precoding and power allocation. IEEE Trans. Inf. Theory 56(3), 1070–1083 (2010)

    Article  Google Scholar 

  9. Kaviani, S., Krzymien, W.A.: On the optimality of multiuser ZF precoding in MIMO broadcast channels. In: IEEE VTC Spring (2009)

    Google Scholar 

  10. Vu, M.: MISO capacity with per-antenna power constraint. IEEE Trans. Commun. 59(5), 1268–1274 (2011)

    Article  Google Scholar 

  11. Zu, K., Song, B., Haardt, M., Lamare R.C.: Flexible coordinated beamforming with lattice reduction for MU massive MIMO systems. In: IEEE EUSIPCO (2014)

    Google Scholar 

  12. Lutkepohl, H.: Handbook of Matrices. Wiley, Hoboken (1996)

    MATH  Google Scholar 

  13. Bremner, M.R.: Lattice Basis Reduction: An Introduction to the LLL Algorithm and Its Applications. Taylor & Francis Group, London (2012)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Kweku Nkrumah Nyarko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nyarko, J.K.N., Mbom, C.A. (2018). Optimal ZF Precoder Under per Antenna Power with Conjugate Beamforming for MU Massive MIMO Systems. In: Li, B., Shu, L., Zeng, D. (eds) Communications and Networking. ChinaCom 2017. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 237. Springer, Cham. https://doi.org/10.1007/978-3-319-78139-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78139-6_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78138-9

  • Online ISBN: 978-3-319-78139-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics