Skip to main content

Unified Functional Framework for Restoration of Image Sequences Degraded by Atmospheric Turbulence

  • Conference paper
  • First Online:
Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2017)

Abstract

We propose a unified functional to address the restoration of turbulence-degraded images. This functional quantifies the association between a given image sequence and a candidate latent image restoration. Minimizing the functional using the alternating direction method of multipliers (ADMM) and Moreau proximity mapping leads to a general algorithmic flow. We show that various known algorithms can be derived as special cases of the general approach. Furthermore, we show that building-blocks used in turbulence recovery algorithms, such as optical flow estimation and blind deblurring, are called for by the general model. The main contribution of this work is the establishment of a unified theoretical framework for the restoration of turbulence-degraded images. It leads to novel turbulence recovery algorithms as well as to better understanding of known ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Observation of dynamic scenes through turbulence is considered, e.g., in [4, 8, 23].

References

  1. Afonso, M.V., Bioucas-Dias, J.M., Figueiredo, M.A.T.: Fast image recovery using variable splitting and constrained optimization. IEEE Trans. Image Process. 19, 2345–2356 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aubailly, M., Vorontsov, M.A., Carhart, G.W., Valley, M.T.: Automated video enhancement from a stream of atmospherically-distorted images: the lucky-region fusion approach. In: Proceedings of the SPIE, vol. 7463 (2009)

    Google Scholar 

  3. Carhart, G.W., Vorontsov, M.A.: Synthetic imaging: nonadaptive anisoplanatic image correction in atmospheric turbulence. Opt. Lett. 23, 745–747 (1998)

    Article  Google Scholar 

  4. Chen, E., Haik, O., Yitzhaki, Y.: Detecting and tracking moving objects in long-distance imaging through turbulent medium. Appl. Opt. 53, 1181–1190 (2014)

    Article  Google Scholar 

  5. Cohen, B., Avrin, V., Belitsky, M., Dinstein, I.: Generation of a restored image from a video sequence recorded under turbulence effects. Opt. Eng. 36, 3312–3317 (1997)

    Article  Google Scholar 

  6. Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul. 4, 1168–1200 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Eckstein, J., Bertsekas, D.P.: On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55, 293–318 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Elkabetz, A., Yitzhaki, Y.: Background modeling for moving object detection in long-distance imaging through turbulent medium. Appl. Opt. 53, 1132–1141 (2014)

    Article  Google Scholar 

  9. Feller, W.: An Introduction to Probability Theory and Its Applications. Wiley, Hoboken (1968)

    MATH  Google Scholar 

  10. Fried, D.L.: Probability of getting a lucky short-exposure image through turbulence. J. Opt. Soc. Am. 68, 1651–1658 (1978)

    Article  Google Scholar 

  11. Gadot, D., Wolf, L.: Patchbatch: a batch augmented loss for optical flow. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  12. Gal, R., Kiryati, N., Sochen, N.A.: Progress in the restoration of image sequences degraded by atmospheric turbulence. Pattern Recogn. Lett. 48, 8–14 (2014)

    Article  Google Scholar 

  13. Hirsch, M., Sra, S., Scholkopf, B., Harmeling, S.: Efficient filter flow for space-variant multiframe blind deconvolution. In: Computer Vision and Pattern Recognition (CVPR), pp. 607–614, June 2010

    Google Scholar 

  14. John, S., Vorontsov, M.A.: Multiframe selective information fusion from robust error estimation theory. IEEE Trans. Image Process. 14, 577–584 (2005)

    Article  Google Scholar 

  15. Joshi, N., Cohen, M.: Seeing Mt. Rainier: lucky imaging for multi-image denoising, sharpening, and haze removal. In: Proceedings of the IEEE ICCP (2010)

    Google Scholar 

  16. Kopeika, N.S.: A System Engineering Approach to Imaging. SPIE Optical Engineering Press, Bellingham (1998)

    Book  Google Scholar 

  17. Mao, Y., Gilles, J.: Turbulence stabilization. Proc. SPIE 8355, 83550H–83550H-7 (2012)

    Google Scholar 

  18. Roggemann, M.C., Stoudt, C.A., Welsh, B.M.: Image-spectrum signal-to-noise-ratio improvements by statistical frame selection for adaptive-optics imaging through atmospheric turbulence. Opt. Eng. 33, 3254–3264 (1994)

    Article  Google Scholar 

  19. Shacham, O., Haik, O., Yitzhaky, Y.: Blind restoration of atmospherically degraded images by automatic best step-edge detection. Pattern Recogn. Lett. 28, 2094–2103 (2007)

    Article  Google Scholar 

  20. Sun, D., Roth, S., Black, M.: A quantitative analysis of current practices in optical flow estimation and the principles behind them. Int. J. Comput. Vis. 106, 115–137 (2014)

    Article  Google Scholar 

  21. Vorontsov, M.A., Carhart, G.W.: Anisoplanatic imaging through turbulent media: image recovery by local information fusion from a set of short-exposure images. J. Opt. Soc. Am. A 18, 1312–1324 (2001)

    Article  Google Scholar 

  22. Yin, W., Osher, S., Goldfarb, D., Darbon, J.: Bregman iterative algorithms for \(l_1\)-minimization with applications to compressed sensing. SIAM J. Imaging Sci. 1, 143–168 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zak, N.: Restoring an image of a moving object from a turbulence-distorted video. Master’s thesis, School of Electrical Engineering, Tel Aviv University, Israel (2015)

    Google Scholar 

  24. Zhu, X., Milanfar, P.: Removing atmospheric turbulence via space-invariant deconvolution. IEEE Trans. Pattern Anal. Mach. Intell. 35, 157–170 (2013)

    Article  Google Scholar 

Download references

Acknowledgment

This research was supported in part by the Blavatnik Interdisciplinary Cyber Research Center, Tel Aviv University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nahum Kiryati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zon, N., Kiryati, N. (2018). Unified Functional Framework for Restoration of Image Sequences Degraded by Atmospheric Turbulence. In: Pelillo, M., Hancock, E. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2017. Lecture Notes in Computer Science(), vol 10746. Springer, Cham. https://doi.org/10.1007/978-3-319-78199-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78199-0_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78198-3

  • Online ISBN: 978-3-319-78199-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics