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Abstract

We consider the task of learning a classifier for se-
mantic segmentation using weak supervision in the form
of image labels which specify the object classes present
in the image. Our method uses deep convolutional neural
networks (CNNs) and adopts an Expectation-Maximization
(EM) based approach. We focus on the following three as-
pects of EM: (i) initialization; (ii) latent posterior estima-
tion (E-step) and (iii) the parameter update (M-step). We
show that saliency and attention maps, our bottom-up and
top-down cues respectively, of simple images provide very
good cues to learn an initialization for the EM-based al-
gorithm. Intuitively, we show that before trying to learn to
segment complex images, it is much easier and highly ef-
fective to first learn to segment a set of simple images and
then move towards the complex ones. Next, in order to up-
date the parameters, we propose minimizing the combina-
tion of the standard softmax loss and the KL divergence
between the true latent posterior and the likelihood given
by the CNN. We argue that this combination is more ro-
bust to wrong predictions made by the expectation step of
the EM method. We support this argument with empirical
and visual results. Extensive experiments and discussions
show that: (i) our method is very simple and intuitive; (ii)
requires only image-level labels; and (iii) consistently out-
performs other weakly-supervised state-of-the-art methods
with a very high margin on the PASCAL VOC 2012 dataset.

1. Introduction

The semantic segmentation task has rapidly advanced
with the use of Convolutional Neural Networks (CNNs)
[5, 6,24, 37]. The performance of CNNs, however, is largely
dependent on the availability of a large corpus of anno-
tated training data, which is both cost- and time-intensive
to acquire. The pixel-level annotation of an image in PAS-
CAL VOC takes on average 4 minutes [4], which is likely
a conservative estimate given that it is based on the COCO
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dataset [23] in which ground-truths are obtained by anno-
tating polygon corners rather than pixels directly. In re-
sponse, recent works focus on weakly-supervised seman-
tic segmentation [4, 19, 27, 28, 30, 31, 35]. These differ
from fully-supervised cases in that rather than having pixel-
level ground-truth segmentations, the supervision available
is to some lesser degree (image-level labels [19, 27, 28, 30],
bounding boxes [27], or points and scribbles [4, 22, 34]).

In this work, we address the semantic segmentation task
using only image labels, which specify the object categories
present in the image. Our motivation for this is two-fold: (i)
the annotation of an image with 20 object classes in PAS-
CAL VOC is estimated to take 20 seconds, which is at least
12 times faster than a pixel-level annotation and is also scal-
able, and (ii) images with their image labels or tags can eas-
ily be downloaded from the Internet, providing a rich and
virtually infinite source of training data. The method we
adopt, similarly to the weakly-supervised semantic segmen-
tation of [27], takes the form of Expectation-Maximization
(EM) [10, 25]. An EM-based approach has three key steps:
(1) initialization; (ii) latent posterior estimation (E step); and
(i1) parameter update (M step). We focus on all of these as-
pects. In what follows we briefly talk about each of them.

We provide an informed initialization to the EM algo-
rithm by training an initial model for the semantic segmen-
tation task using an approximate ground-truth obtained us-
ing the combination of class-agnostic saliency map [15] and
class-specific attention maps [36] on a set of simple im-
ages with one object category (ImageNet [11] classifica-
tion dataset). This intuition comes from the obvious fact
that it is easier to learn to segment simple images and then
progress to more complex ones, similar to the work of [35].
Given an image, our saliency map finds the object (Fig-
ure 1b) - this is a class-agnotic ‘bottom-up’ cue. Added
to this, once provided with the class present in the image
(from the image label - ‘boat’ in this case), our attention
map (Figure 1c) gives the ‘top-down’ class-specific regions
in the image. Since both saliency and attention maps are
tasked to find the same object, their combination is more
powerful than if either one is used in isolation, as shown



(a) Input Image

(b) Saliency Map
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(c) Attention Map

(d) Combined Map

Figure 1: An example of combining bottom-up and top-down cues for simple images. (a) Input image with ‘boat’. (b)

Saliency map [15] (‘bottom-up’ cue). (c) Attention map [

] (‘top-down’ cue). (d) Combined map - notice that the saliency

map puts high probability mass on regions missed by the attention map, and vice versa.

in Figure 1d. The combined probability map is then used
as the ground-truth for training an initial model for the se-
mantic segmentation task. The trained initial model pro-
vides the initialization parameters for the follow-up EM al-
gorithm. Notice that this initialization is in contrast to [27]
where the initial model is trained for the image classifica-
tion task on the same ImageNet dataset. Experimentally
we have found that this simple way of combining bottom-
up with top-down cues on the ImageNet dataset (with no
images from PASCAL VOC 2012) allows us to obtain an
initial model capable of outperforming all current state-of-
the-art algorithms for the weakly-supervised semantic seg-
mentation task on the PASCAL VOC 2012 dataset. This
is surprising since these algorithms are significantly more
complex and they rely on higher degrees of supervision such
as bounding boxes, points/squiggles and superpixels. This
clearly indicates the importance of learning from simple
images before delving into more complex ones. With the
trained initial model, we then incorporate PASCAL VOC
images (with multiple objects) for the E and M Steps of our
EM-based algorithm.

In the E-step, we obtain the latent posterior probability
distribution by constraining (or regularizing) the CNN like-
lihood using image labels based prior. This reduces many
false positives by redistributing the probability masses
(which were initially over the 20 object categories) among
only the labels present in the image and the backgroud.
In the M-step, the parameter update step, we then mini-
mize a combination of the standard softmax loss (where the
ground-truth is assumed to be a Dirac delta distribution) and
the KL divergence [21] between the latent posterior distri-
bution (obtained using the E-step) and the likelihood given
by the CNN. In the weakly-supervised setting this makes
the approach more robust than using the softmax loss alone
since in the case of confusing classes, the latent posterior
(from the E-step) can sometimes be completely wrong. In
addition to this, to obtain better CNN parameters, we add a
probabilistic approximation of the Intersection-over-Union
(IoU) [1, 9, 26] to the above loss function.

With this intuitive approach we obtain state-of-the-art re-

sults in the weakly-supervised semantic segmentation task
on the PASCAL VOC 2012 benchmark [12]. We beat the
best method which uses image label supervision by 10%.

2. Related Work

Work in weakly-supervised semantic segmentation has
explored varying levels of supervision including combina-
tions of image labels [19, 27, 28, 35], annotated points [4],
squiggles [22, 34], and bounding boxes [27]. Papandreou
et al. [27] employ an EM-based approach with supervision
from image labels and bounding boxes. Their method it-
erates between inferring a latent segmentation (E-step) and
optimizing the parameters of a segmentation network (M-
step) by treating the inferred latents as the ground-truth
segmentation. Similarly, [35] train an initial network us-
ing saliency maps, following which a more powerful net-
work is trained using the output of the initial network. The
MIL frameworks of [30] and [29] use fully convolutional
networks to learn pixel-level semantic segmentations from
only image labels. The image labels, however, provide no
information about the position of the objects in an image.
To address this, localization cues can be used [30, 31], ob-
tained through indirect methods like bottom-up proposal
generation (for example, MCG [3]), and saliency- [35] and
attention-based [36] mechanisms. Localization cues can
also be obtained directly through point- and squiggle-level
annotations [4, 22, 34].

Our method is most similar to the EM-based approach
of [27]. We use saliency and attention maps to learn a
network for a simplified semantic segmentation task which
provides better initialization of the EM algorithm. This is
in contrast to [27] where a network trained for a classifica-
tion task is used as initialization. Also different from [27]
where the latent posterior is approximated by a Dirac delta
function (which we argue is too harsh of a constraint in a
weakly-supervised setting), we instead propose to use the
combination of the true posterior distribution and the Dirac
delta function to learn the parameters.



3. The Semantic Segmentation Task

Consider an image I consisting of a set of pixels
{y1, "+ ,yn}. Each pixel can be thought of as a random
variable taking on a value from a discrete semantic label
set L = {lo,l1,---,l.}, where c is the number of classes
(ly for the background). Under this setting, a semantic seg-
mentation is defined as the assignment of all pixels to their
corresponding semantic labels, denoted as y.

CNNs are extensively used to model the class-conditional
likelihood for this task. Specifically, assuming each random
variable (or pixel) to be independent, a CNN models the like-
lihood function of the form P(y|I;6) = []" _, p(ym|I;0),
where p(y,, = l|I;0) is the softmax probability (or the
marginal) of assigning label [ to the m-th pixel, obtained
by applying the softmax' function to the CNN outputs
f(yml|I;0) such that p(y,, = [|I;0) o exp(f(ym =
I|T;0)). Given a training dataset S = {I;,y;}~ ,, where
I; and y; represent the ¢-th image and its corresponding
ground-truth semantic segmentation, respectively, the log-
likelihood is maximized by minimizing the cross-entropy
loss function using the back-propagation algorithm to ob-
tain the optimal 6. At test time, for a given image, the
learned 6 is used to obtain the softmax probabilities for each
pixel. These probabilities are either post-processed or used
directly to assign semantic labels to each pixel.

4. Weakly-Supervised Semantic Segmentation

As mentioned in Sec. 3, to find the optimal 6 for the se-
mantic segmentation task, we need a dataset with ground-
truth pixel-level semantic labels, obtaining which is highly
time-consuming and expensive: for a given image, annotat-
ing it with 20 object classes takes nearly 20 seconds, while
pixel-wise segmentation takes nearly 239.7 seconds [4].
This is highly non-scalable to higher numbers of images
and classes. Motivated by this, we use an Expectation-
Maximization (EM) [10, 25] based approach for weakly-
supervised semantic segmentation using only image labels.
Let us denote Z = L \ [y as the set of object labels we are
interested in, and a weak dataset as D = {I;,z;})Y., where
I; and z; C Z are the i-th image and the labels present in
the image. The task is to learn an optimal 6 using D.

4.1. The EM Algorithm

Similar to [27], we treat the unknown semantic segmen-
tation y as the latent variable. Our probabilistic graphical
model is of the following form (Fig. 2):

P(l,y,2;0) = P(I)P(y|I,2;0)P(2), (1

where we assume that P(y|I,z;0) = P(y|I;0)P(y|z).
Briefly, to learn # while maximizing the above joint proba-
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Figure 2: The graphical model. [ is the image and z is the
set of labels present in the image. y is the latent variable
(semantic segmentation) and 6 is the set of parameters.

bility distribution, the three major steps of an EM algorithm
are: (i) initialize the parameter 6,; (ii) E-step: compute the
expected complete-data log-likelihood F'(0;6;); and (iii)
M-step: update 6 by maximizing F'(6; 6;). In what follows,
we first talk about how to obtain a good initialization 6; in
order to avoid poor local maxima and then talk about opti-
mizing parameters (E and M steps) for a given 6;.

4.2. Initialization: Skipping Poor Local Maxima
Using Bottom-Up Top-Down Cues

It is well known that in case that the log-likelihood has
several maxima or saddle points, an EM-based approach is
highly susceptible to mediocre local maxima and a good ini-
tialization is crucial [16]. We argue that instead of initial-
izing the algorithm with parameters learned for the classi-
fication task using the ImageNet classification dataset [11],
as is done by most state-of-the-art methods irrespective of
their nature, it is much more effective and intuitive to ini-
tialize with parameters learned for solving the task at hand
- that is semantic segmentation - using the same dataset.
This would allow for the full power of the dataset to be
harnessed. For weakly-supervised semantic segmentation,
however, the challenge is that only image-level labels are
accessible during the training process. In the following we
address this issue to obtain a good initialization 6; by train-
ing an initial CNN model over simple ImageNet images for
the weakly-supervised semantic segmentation task.

Let us denote D(I) as a subset of images from the Ima-
geNet dataset containing objects of the categories in which
we are interested (for details of this dataset, see Section 5).
Dataset D(I) mostly contains images with centered and
clutter-free single objects, unlike the challenging PASCAL
VOC 2012 [12]. Given D(I), in order to train the ini-
tial model to obtain #;, we need pixel-level semantic labels
which are not available in the weakly-supervised setting. To
circumvent this, we use the combination of a class-agnostic
saliency map [8, 15] (bottom-up cue) and a class-specific
attention map [36] (top-down cue) to obtain an approxi-
mate ground-truth probability distribution of labels for each
pixel. Intuitively, a saliency map gives the probability of
each pixel belonging to any foreground class, and an at-
tention map provides the probability of it belonging to the
given object class. Combining these two maps allow us to



Algorithm 1 Approximate Ground Truth Distribution

input Image I with one object category; Image label z
1: M = zeros(n), n is the number of pixels.
2: s < SaliencyMap(I) [15]
3: a < AttentionMap(I, z) [36]
4: for each pixel m € I do
5. M(m) = h(s(m),a(m))
6: end for
output M

obtain a very accurate ground-truth probability distribution
of the labels for each pixel in the image (see Figure 1).

Precisely, as shown in Algorithm 1, for a given simple
image I € D(I) and its corresponding class label z € Z,
we combine the attention and the saliency values per pixel
to obtain M (m) € [0, 1] for all the pixels in the image. The
value of M (m) for the m-th pixel denotes the probability
of it being the z-th object category. Similarly, 1 — M (m) is
the probability of it being the background. The combination
function h(.,.) in Algorithm 1 is a user-defined function
that combines the saliency and the attention maps. In this
work we employ the max function which takes the union
of the attention and saliency maps (Figure 1), thus com-
plement each other. Let us define the approximate ground-
truth label distribution for the m-th pixel as 6%,. Thus,
§F € [0,1]141, where 6! () = M(m) at the z-th index
for the object category z, 81 (0) = 1 — M (m) at the 0-th
index for the background, and zero otherwise. Given 6751
for each pixel, we find 6, by using a CNN and optimizing
the per-pixel cross-entropy loss Y, . 0% (k) log p(k|I; 6)
between & and p(y,,.|I,6), where p(y,|I,0) is the CNN
likelihood. Notice that using this approach to obtain the
approximate ground-truth label distribution requires only
image-level labels. No human annotator involvement is re-
quired. By using the probability value M (m) directly in-
stead of using a standard Dirac delta distribution makes the
approach more robust to noisy attention and saliency maps.
This approach can be seen as a way of mining class-specific
noise-free pixels, and is motivated by the work of Bearman
et al. [4] where humans annotate points and squiggles in
complex images. Their work showed that instead of train-
ing a network with a fully-supervised dataset, the learning
process can be sufficiently guided using only a few super-
vised pixels which are easy to obtain. Their approach still
requires human intervention in order to obtain points and
squiggles, whereas, our approach requires only image-level
labels which makes it highly scalable.

4.3. Optimizing Parameters

Let us now talk about how to define and optimize
the expected complete-data log-likelihood F'(6;6;). By
definition, F'(6;6;) = >_  P(y|l,z;0:)log P(I,y,z;0),

where the expectation is taken over the posterior over
the latent variables at a given set of parameters 6;, de-
noted as P(y|I,z;0;). In the case of semantic segmen-
tation, the latent space is exponentially large
fore, computing F'(0;6,) is infeasible. However, as will
be shown, the independence assumption over the random
variables, namely P(y|I;0) = [ _, p(ym|I;0), allows
us to maximize F'(0;6,) efficiently by decomposition. By
using Eqn. (1), the independence assumption, the identity
>y P(y|I,z;6;) = 1, and ignoring the terms independent
of 0, F'(0;0,) can be written in a simplified form as:

F(0;0,) = > > Pyl z:6,)logp(ym|];0)  (2)

m=1 'y

Without loss of generality, we can write P(y|I,z;0;) =
P(y \ ym|IL, 2, ym; 0:)p(ym|I, z; 0¢), and using the identity

>\ PO\ YL, 2, Y3 01) = 1, we obtain:
F(0;6;) = Z > plymlT,2;00) log p(ym|1:60)  (3)
m=1y,, €L

Therefore, the M-step parameter update, which is maximiz-
ing F'(0;60;) w.r.t. 6, can be written as:

Oir1 = argmax Z Z

m=1y, L

(Yml 1, 2;0:) log p(ym |1;6) (4)

As mentioned in Sec. 4.1, the latent posterior distribution is
P(y|I,z;6:) = P(y|I;0;)P(y|z), where P(y|I;6;) is the
likelihood obtained using the CNN at a given ;. The distri-
bution P(y|z) can be used to regularize the CNN likelihood
P(y|I;0;) by imposing constraints based on the image la-
bel information given in the dataset. Note that, P(y|z) is
independent of 6 and is a task-specific user-defined dis-
tribution that depends on the image labels or object cate-
gories. For example, if we know that there are only two
classes in a given training image such as ‘cat’ and ‘per-
son’ out of many other possible classes, then we would
like to push the latent posterior probability P(y|l, z;6;) of
absent classes to zero and increase the probability of the
present classes. To impose this constraint, let us assume
that similar to the likelihood, P(y|z) also decomposes over
the pixels and belongs to the exponential family distribu-
tion p(ym|z) x exp(g(ym,z)), where g(.,.) is the user-
define function designed to impose the desired constraints.
Thus, the posterior can be written as p(ym|I,2;60:)
exp(f (Ym|L;0¢) + g(Ym,2z)). In order to impose the above
mentioned constraints, we use the following form of g(., .):

) =00, if ym ¢z Ul,
9(ym,2) = { 0, otherwise. )



Practically speaking, imposing the above constraint is
equivalent to obtaining softmax probabilities for only those
classes (including background) present in the image and
assigning a probability of zero to all other classes. In
other words, the above definition of g(.,.) inherently de-
fines p(ym|z) such that it is uniform for the classes present
in the image including the background (/) and zero for the
remaining ones. Other forms of g(.,.) can also be used to
impose different task-specific label-dependent constraints.

Cross entropy functions Consider the parameter update
(M-step) as defined in Eq. 4. Solving this is equivalent
to minimizing the cross entropy or the KL divergence be-
tween the latent posterior distribution and the CNN likeli-
hood. Notice that, as opposed to [27], which uses a Dirac
delta approximation p of the posterior distribution, where
13([7") —1latl, = argmax;c » p(Ym = l|1,2;0;) and oth-
erwise zero, we use the true posterior distribution (or the
regularized likelihood) itself. We argue that using a Dirac
delta distribution imposes a hard constraint that is suitable
only when we are very confident about the true label assign-
ment (for example, in the fully-supervised setting where the
label is provided by a human annotator). In the weakly-
supervised setting where the latent posterior, which decides
the label, can be noisy (mostly seen in the case of confusing
classes), it is more suitable to use the true posterior distri-
bution, obtained using the combination of the CNN likeli-
hood p(y,,|I,0;) and the class label-based prior p(y,,|z).
We propose to optimize § by combining this true posterior
distribution and its Dirac delta approximation:

Tn(1,2,0150) = Y P(yml|1,2:0:) log pym|156)  (6)
Ym€L

Where, p(ymuv z; '91‘) = (1 - E)p(ymuv z; 915) + Eﬁ(ym)' To
investigate the interplay between the two terms, we define
a criterion which we call the Relative Heuristic to compute
the value of ¢ given the pixel-wise latent posterior p(y,, =
I|I,2;0) and a user-defined hyper-parameter n € [0, 1]:

e:{ Loifr=n, -

r, otherwise.

where r = (p1 — p2)/p1, and p1 and po are the highest and
the second highest probability values in the latent posterior
distribution. Intuitively, n = 0.05 implies that the most
probable score should be at least 5% better compared to the
second most probable score.

The IoU gain function Along with minimizing the cross
entropy losses as shown in the Eq. 6, in order to obtain better
parameter estimate, we also maximize the probabilistic ap-
proximation of the intersection-over-union (IoU) between

Algorithm 2 Our Final Algorithm
input Datasets D(P) and D(I); 0p; n; K
1: Use D(I) and 6, to obtain initialization parameter 6;

using method explained in Section 4.2.
2: fork=1: K do

3: 0 <« 0,
4:  for each pixel m in D(P) U D(I) do
5: Obtain latent posterior:  pp,(ym|l,2z;0)

exp(fim (Ym|1;0) + 9(Ym, 2))
6: end for
7:  Optimize Eq. 9 using CNN to update 6;.
8: end for

the posterior distribution and the likelihood [1, 9, 26]:

Jrov(P(y|l,2z;0), P(y|I;0)) =~

1 Zm:l pin(l)pfn(l)
02 S0 ot

where, pt, (1) = p(ym = [|I,2;0;) and p? (1) = p(ym =
I|I; ). Refer to [9] for further details about Eq. 8.

Overall objective function and the algorithm Combin-
ing the cross entropy loss function (Eq. 6) and the IoU gain
function (Eq. 8), the M-step parameter update problem is:

i1 = argmax > I, 2,050) + Trou ©)

m=1

We use a CNN model along with the back-propagation algo-
rithm to optimize the above objective function. Recall that
our evaluation is based on the PASCAL VOC 2012 dataset,
therefore, during the M-step of the algorithm we use both
the ImageNet D(I) and the PASCAL trainval D(P) datasets
(see Section 5 for details). Our overall approach is summa-
rized in Algorithm 2.

5. Experimental Results and Comparisons

We show the efficacy of our method on the challenging
PASCAL VOC 2012 benchmark and outperform all existing
state-of-the-art methods by a large margin. Specifically, we
improve on the current state-of-the-art weakly-supervised
method using only image labels[31] by 10%.

5.1. Setup

Dataset D(I). To train our initial model (Section 4.2), we
download 80, 000 images from the /mageNet dataset which
contain objects in the 20 foreground object categories of
the PASCAL VOC 2012 segmentation task. We filter this
dataset using simple heuristics. First, we discard images
with width or height less than 200 or greater than 500 pix-
els. Using the attention model of [36] (which is trained with



Method Dataset Dependencies Supervision CRF [20] mloU mloU
(Val) (Test)
X — —
EM Adapt [27] D(I),D(P) No Image labels 7 387, 3967,
No X 33.3% 35.6%
CCNN [28] D(I),D(P) Image labels v/ 35.3% —
7 Class size X 40.5% 43.3%
v 42.4% 45.1%
Saliency [32] & X 44.3% —
SEC [19] D), D(P) Localization [38] Image labels v/ 50.7% 51.7%
Superpixels [13] 36.6% 35.8%
MIL [30] D(I) BBox BING [7] Image labels X 37.8% 37.0%
MCG [3] 42.0% 40.6%
Image labels 32.2% —
Image labels + 49.7% B
WTP [4] D(I),D(P) Objectness [2] 1 Point/Class ’
Image labels + o
1 Squiggle/Class 49.1% B
STC [35] D(I),D(P),D(F) Saliency [ Image labels v 49.8% 51.2%
. 0 . 0
AugFeed [31] D(I),D(P) o Image labels X 50,417 50.67%
v 54.34% 55.5%
. X 53.53%  54.34%
Ours nitial Model D) Saliency | mage labels 7 55.19%  56.24%
Final D(1), D(P) Attention [ X 56.91% 57.74%
’ v 58.71% 59.58%

Table 1: Comparison table. All dependencies, datasets, and degrees of supervision used by most of the existing methods for weakly-
supervised semantic segmentation. Table 3 complements this table by providing the degrees of supervision used by the dependencies
themselves. D([) is the simple filtered ImageNet dataset, D(P) is the complex filtered PASCAL VOC 2012 dataset (see Section 5)

and D(F') contains 41K images from Flickr [

]. Note that the cross validation of CRF hyper-parameters and the training of MCG are

performed using a fully-supervised pixel-level semantic segmentation dataset. To be fair, our method should only be compared with the

numbers shown in italic with underline.

only image-level labels), we generate an attention map for
each image and record the most probable class label with
its corresponding probability. We discard the image if (i)
its most probable label does not match the image label or
(ii) its most probable label matches the image label but its
corresponding probability is less than 0.2. We then gener-
ate saliency maps using the saliency model of [15] (which
is trained with only class-agnostic saliency masks). For
the remaining images, we combine attention and saliency
by finding the pixel-wise intersection between the saliency
and the attention binary masks. The saliency mask is ob-
tained by setting the pixel’s value to 1 if its corresponding
saliency probability is greater than 0.5. The same is done
to obtain the attention mask. For each object category, the
images are sorted by this intersection area (i.e. the num-
ber of overlapping pixels between the two masks) with the
intuition that larger intersections correspond to higher qual-
ity saliency and attention maps. The top 1500 images are
then selected for each category, with the exception of the
‘person’ category where the top 2500 images are kept, and

any category with fewer than 1500 images, in which case
all images are kept. This complete filtering process leaves
us with 24,000 simple images, which contain uncluttered
and mainly-centered single objects. We denote this dataset
as D(I) and will make this dataset publicly available. We
highlight that D(I) does not contain any additional images
relative to those used by other weakly supervised works (see
Dataset column in Table 1).

Datasets D(P) and D(I) for M-step. For the M-step, we
use a filtered subset of PASCAL VOC 2012 images, de-
noted D(P), and a subset of D(I). To obtain D(P), we
take complex PASCAL VOC 2012 images (10, 582 in to-
tal, made up of 1,464 training images [12] and the extra
images provided by [14]), and use the trained initial model
(i.e. 6;) to generate a (hard) ground-truth segmentation for
each. The hard segmentations are obtained by assigning
each pixel with the class label that has the highest probabil-
ity. The ratio of the foreground area to the whole image area
(where area is the sum of the number of pixels) is computed,



and if the ratio is below 0.05, the image is discarded. This
leaves 10,000 images. We also further filter D(I): using
the trained initial model, we generate (hard) segmentations
for all simple ImageNet images in D(I). We compute the
intersection area (as above) between the attention mask and
the predicted segmentation (rather than the saliency mask as
before) and select the top 10, 000 of 24,000 images based
on this metric. Together D(P) and this subset of D(I) con-
sist of 20, 000 images used for the M-step.

CNN architecture and parameter settings Similar
to [19, 27, 35], both our initial model and our EM model
are based on the largeFOV DeepLab architecture [6]. We
use simple bilinear interpolation to map the downsampled
feature maps to the original image size as suggested in [24].
We use the publicly available Caffe toolbox [17] for our im-
plementation. We use weight decay (0.0005), momentum
(0.9), and iteration size (10) for gradient accumulation. The
learning rate is 0.001 at the beginning and is divided by 10
every 10 epochs. We use a batch size of 1 and randomly
crop the input image to 321 x 321. Images with width or
height less than 321 are padded with the mean pixel values
and the corresponding places in the ground-truth are padded
with ignore labels to nullify the effect of padding. We flip
the images horizontally, resulting in an augmented set twice
the original one. We train our networks for 30K iterations
by optimizing Eq. 9 as per Algorithm 2 with n = 0.05 and
K = 2. Performance gains beyond two EM iterations were
not significant compared to the computational cost.

5.2. Results, Comparisons, and Analysis

We provide Table 1 and 3 for an extenstive comparison
between our and current methods, their dependencies, and
degrees of supervision. Regarding the dependencies of our
method, our saliency network [15] is trained using salient
region masks. These masks are class-agnostic, therefore,
once trained the network can be used for any semantic ob-
ject category, so there is no issue with scalability and no
need to train the saliency network again for new object cat-
egories. Our second dependency, the attention network [36]
is trained using solely image labels.

State-of-the-art. Our method outperforms all existing
state-of-the-art methods by a very high margin. The most
directly comparable method in terms of supervision and de-
pendencies is AugFeed [31] which uses super-pixels. Our
method obtains almost 10% better mIoU than AugFeed on
both the val and test sets. Even if we disregard ‘equiva-
lent’ supervision and dependencies, our method is still al-
most 2.6% and 2.2% better than the best method in the val
and test sets, respectively. Table 2 shows class-wise perfor-
mance of our method.

Simplicity vs sophistication. The initial model is essen-
tial to the success of our method. We train this model in a
very simple and intuitive way by employing a filtered sub-
set of simple ImageNet images and training for the semantic
segmentation task. Importantly, this process uses only im-
age labels and is fully automatic, requiring no human inter-
vention. The learned 60; provides a very good initialization
for the EM algorithm, enabling it to avoid poor local max-
ima. This is shown visually in Figure 3: the initial model
(third column) is already a good prediction, with the first
and second EM iterations (fourth and fifth columns), im-
proving the semantic segmentation even further. We high-
light that with this simple approach, surprisingly, our initial
model beats all current state-of-the-art methods, which are
more complex and often use higher degrees of supervision.
By implementing this intuitive modification, we believe that
many methods can easily boost their performance.

To CRF or not to CRF? In our work, we specifically
choose not to employ a CRF [20] as a post-processing step
nor inside our models, during training and testing, for the
following reasons: (1) CRF hyper-parameters are normally
cross validated over a fully-supervised pixel-wise segmen-
tation dataset which contradicts a fully “weak’ supervision.
This is likewise the case for MCG [3] which is trained on
a pixel-level semantic segmentation dataset. (2) The CRF
hyper-parameters are incredibly sensitive, and if we wish to
extend our framework to incorporate new object categories,
this would require a pixel-level annotated dataset of the new
categories along with the old ones for the cross-validation
of the CRF hyper-parameters. This is highly non-scalable.
For completeness, however, we include our method with a
CRF applied (Table | & 2) which boosts our accuracy by
1.8%. We note that even without a CRF, our best approach
exceeds the state-of-the-art (which uses a CRF and a higher
degree of supervision) by 2.2% on the fest set.

6. Conclusions and Future Work

We have addressed weakly-supervised semantic segmen-
tation using only image labels. We proposed an EM-based
approach and focus on the three key components of the al-
gorithm: (i) initialization, (ii) E-step and (iii) M-step. Using
only the image labels of a filtered subset of ImageNet, we
learn a set of parameters for the semantic segmentation task
which provides an informed initialization of our EM algo-
rithm. Following this, with each EM iteration, we empiri-
cally and qualitatively verify that our method improves the
segmentation accuracy on the challenging PASCAL VOC
2012 benchmark. Furthermore, we show that our method
outperforms all state-of-the-art methods by a large margin.

Future directions include making our method more
robust to noisy labels, for example, when images down-
loaded from the Internet have incorrect labels, as well as



Data | Method | CRF | bkg plane bike bird boat bottle bus car cat chair cow table dog horse motor person plant sheep sofa train tv | mloU
Initial X [87.1 747 29.0 69.8 558 55.6 73.3 65.2 63.4 15.8 61.5 159 60.0 564 575 53.7 329 656 239 64.6 42.2|53.53

Val v 1877 79.7 32.6 73.4 584 57.8 743 64.8 66.0 159 63.1 15.0 62.3 59.6 57.7 549 33.8 69.1 23.7 65.0 44.3| 55.19
Final X |87.8 724 28.7 67.9 58.8 558 78.0 69.7 70.2 17.8 63.3 23.2 65.7 60.5 63.1 58.7 40.0 682 289 70.9 45.5|56.91

v |88.6 76.1 30.0 71.1 62.0 58.0 79.2 70.5 72.6 18.1 65.8 22.3 684 635 64.7 60.0 415 71.7 29.0 72.5 47.3|58.71

Initial X 879 69.2 292 749 41.7 53.4 70.6 69.6 59.9 18.3 66.1 249 62.5 633 68.8 554 33.7 63.8 18.6 64.3 44.9|54.35

Test v |88.5 72.6 32.6 80.3 44.6 554 709 69.6 62.2 189 68.4 246 652 66.8 712 572 372 66.7 174 64.8 45.9]56.24
Final X |882 69.5 29.7 72.2 45.1 573 73.2 72.7 69.3 20.5 654 335 67.8 64.0 723 589 455 69.8 26.8 63.8 46.8|57.74

v [88.9 727 31.0 76.3 47.7 59.2 743 732 71.7 199 67.1 34.0 70.3 66.6 744 60.2 48.1 73.1 27.8 66.9 47.9|59.58

Table 2: Per-class results (in %) on PASCAL VOC 2012 val and fest sets. Initial shows results for initial model trained using D(I) for
EM algorithm initialization. Final shows results at final EM iteration (K = 2). Results show with and without application of post-process

CRF [

Dependency Supervision
. Image labels
Class size + Bboxes
[32] Image labels
Saliency [18] Bboxes

[15] Saliency masks

Attention [36] Image labels

Objectness [2] Image labels

+ Bboxes
Localization [38] Image labels
Superpixels [13] None
Bbox BING [7] Bboxes
MCG [3] Pixel labels
SS [33] Bboxes
CRF [20] Pixel labels

(parameter cross-val)

Table 3: Dependency table. The degrees of supervision required
by the dependencies of several weakly-supervised methods for the
semantic segmentation task. ‘Bboxes’ represents bounding boxes.

better handling images with multiple classes of objects.
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Figure 3: Qualitative results for weakly-supervised semantic segmentation using our proposed EM-based method. It is clear that as we
move from the initial model (3rd column) to the second iteration of the EM algorithm (5th column), the segmentation quality improves
incrementally. The two bottom rows show failure cases.



