Skip to main content

Maximum Consensus Parameter Estimation by Reweighted \(\ell _1\) Methods

  • Conference paper
  • First Online:
Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2017)

Abstract

Robust parameter estimation in computer vision is frequently accomplished by solving the maximum consensus (MaxCon) problem. Widely used randomized methods for MaxCon, however, can only produce random approximate solutions, while global methods are too slow to exercise on realistic problem sizes. Here we analyse MaxCon as iterative reweighted algorithms on the data residuals. We propose a smooth surrogate function, the minimization of which leads to an extremely simple iteratively reweighted algorithm for MaxCon. We show that our algorithm is very efficient and in many cases, yields the global solution. This makes it an attractive alternative for randomized methods and global optimizers. The convergence analysis of our method and its fundamental differences from the other iteratively reweighted methods are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Since \(\mathbf {s}^{(l)}\) is only used to compute the weights \(\mathbf {w}^{(l+1)}\) in the next iteration, an approximate solution, which still minimizes the objective, is sufficient to initialize \(\mathbf {s}^{(l+1)}\).

  2. 2.

    http://pulakpurkait.com/Data/astar_cvpr15_code.zip.

  3. 3.

    http://statweb.stanford.edu/~candes/l1magic/.

  4. 4.

    http://cvxr.com/cvx/.

  5. 5.

    http://www.robots.ox.ac.uk/~vgg/data/.

  6. 6.

    http://www.vlfeat.org.

References

  1. Meer, P.: Robust techniques for computer vision. In: Medioni, G., Kang, S.B. (eds.) Emerging Topics in Computer Vision, pp. 107–190. Prentice Hall (2004)

    Google Scholar 

  2. Huber, P.J.: Robust Statistics. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-04898-2

    Book  Google Scholar 

  3. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2, 183–202 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Olsson, C., Kahl, F.: Generalized convexity in multiple view geometry. J. Math. Imaging Vis. 38, 35–51 (2010)

    Article  MathSciNet  Google Scholar 

  5. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24, 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  6. Choi, S., Kim, T., Yu, W.: Performance evaluation of RANSAC family. JCV 24, 271–300 (1997)

    Google Scholar 

  7. Torr, P.H., Zisserman, A.: MLESAC: a new robust estimator with application to estimating image geometry. CVIU 78, 138–156 (2000)

    Google Scholar 

  8. Raguram, R., Frahm, J.-M., Pollefeys, M.: A comparative analysis of RANSAC techniques leading to adaptive real-time random sample consensus. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5303, pp. 500–513. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88688-4_37

    Chapter  Google Scholar 

  9. Raguram, R., Chum, O., Pollefeys, M., Matas, J., Frahm, J.M.: USAC: a universal framework for random sample consensus. IEEE TPAMI 35, 2022–2038 (2013)

    Article  Google Scholar 

  10. Olsson, C., Enqvist, O., Kahl, F.: A polynomial-time bound for matching and registration with outliers. In: CVPR (2008)

    Google Scholar 

  11. Enqvist, O., Ask, E., Kahl, F., Åström, K.: Robust fitting for multiple view geometry. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7572, pp. 738–751. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33718-5_53

    Chapter  Google Scholar 

  12. Chin, T.J., Purkait, P., Eriksson, A., Suter, D.: Efficient globally optimal consensus maximisation with tree search. In: CVPR, pp. 2413–2421 (2015)

    Google Scholar 

  13. Li, H.: Consensus set maximization with guaranteed global optimality for robust geometry estimation. In: ICCV, pp. 1074–1080. IEEE (2009)

    Google Scholar 

  14. Zheng, Y., Sugimoto, S., Okutomi, M.: Deterministically maximizing feasible subsystems for robust model fitting with unit norm constraints. In: CVPR (2011)

    Google Scholar 

  15. Chum, O., Matas, J., Kittler, J.: Locally optimized RANSAC. In: Michaelis, B., Krell, G. (eds.) DAGM 2003. LNCS, vol. 2781, pp. 236–243. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45243-0_31

    Chapter  Google Scholar 

  16. Lebeda, K., Matas, J., Chum, O.: Fixing the locally optimized RANSAC-full experimental evaluation. In: BMVC12. Citeseer (2012)

    Google Scholar 

  17. Tordoff, B.J., Murray, D.W.: Guided-MLESAC: faster image transform estimation by using matching priors. IEEE TPAMI 27, 1523–1535 (2005)

    Article  Google Scholar 

  18. Olsson, C., Eriksson, A., Hartley, R.: Outlier removal using duality. In: CVPR (2010)

    Google Scholar 

  19. Vanderbei, R.J.: LOQO User’s Manual-version 4.05. Princeton University, Princeton (2006)

    Google Scholar 

  20. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Prog. 106, 25–57 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chartrand, R., Yin, W.: Iteratively reweighted algorithms for compressive sensing. In: ICASSP, pp. 3869–3872. IEEE (2008)

    Google Scholar 

  22. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  23. Kahl, F., Hartley, R.I.: Multiple-view geometry under the \(l_\infty \)-norm. IEEE TPAMI 30, 1603–1617 (2008)

    Article  Google Scholar 

  24. Candes, E.J., Wakin, M.B., Boyd, S.P.: Enhancing sparsity by reweighted \(\mathbf{l}_1\) minimization. J. Fourier Anal. Appl. 14, 877–905 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gorodnitsky, I.F., Rao, B.D.: Sparse signal reconstruction from limited data using focuss: a re-weighted minimum norm algorithm. TSP 45, 600–616 (1997)

    Google Scholar 

  26. Chartrand, R.: Exact reconstruction of sparse signals via nonconvex minimization. IEEE SPL 14, 707–710 (2007)

    Google Scholar 

  27. Sriperumbudur, B.K., Lanckriet, G.R.: A proof of convergence of the concave-convex procedure using Zangwill’s theory. Neural Comput. 24, 1391–1407 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Tu, L.W.: An Introduction to Manifolds. Springer, New York (2010). https://doi.org/10.1007/978-1-4419-7400-6

    Google Scholar 

  29. Megiddo, N.: Linear programming in linear time when the dimension is fixed. JACM 31, 114–127 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ye, Y., Tse, E.: An extension of Karmarkar’s projective algorithm for convex quadratic programming. Math. Prog. 44, 157–179 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sim, K., Hartley, R.: Removing outliers using the \(l_\infty \) norm. In: CVPR (2006)

    Google Scholar 

  32. Wipf, D., Nagarajan, S.: Iterative reweighted and methods for finding sparse solutions. JSTSP 4, 317–329 (2010)

    Google Scholar 

  33. Candes, E.J., Tao, T.: Decoding by linear programming. IEEE TIT 51, 4203–4215 (2005)

    MathSciNet  MATH  Google Scholar 

  34. Grant, M., Boyd, S.: CVX: matlab software for disciplined convex programming (2008)

    Google Scholar 

  35. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pulak Purkait .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Purkait, P., Zach, C., Eriksson, A. (2018). Maximum Consensus Parameter Estimation by Reweighted \(\ell _1\) Methods. In: Pelillo, M., Hancock, E. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2017. Lecture Notes in Computer Science(), vol 10746. Springer, Cham. https://doi.org/10.1007/978-3-319-78199-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78199-0_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78198-3

  • Online ISBN: 978-3-319-78199-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics