Skip to main content

Identifying and Interpreting Clusters of Persons with Similar Mobility Behaviour Change Processes

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Geoinformation and Cartography ((LNGC))

Abstract

With the emergence of new mobility options and various initiatives to increase the sustainability of our travel behaviour, it is desirable to gain a deeper understanding of our behavioural reactions to such stimuli. Although it is now possible to use GPS-tracking to record people’s movement behaviour over a longer period, there is still a lack of computational methods which allow to detect and evaluate such behaviour change processes in the resulting datasets. In this study, we propose a data mining method for describing individual persons’ mobility behaviour change processes based on their movement trajectories and clustering participants based on the similarity of these behavioural adaptations. We further propose to use a decision tree classifier to semantically explain the derived clusters in a human-interpretable form. We apply our method to a real, longitudinal movement dataset.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    www.sbb-greenclass.ch.

  2. 2.

    See www.mobitool.ch.

  3. 3.

    SBB DailyTracks, developed by MotionTag GmbH.

  4. 4.

    See www.sbb-greenclass.ch.

  5. 5.

    The following modes of transport were available to the study participants for validation: Airplane, Bicycle, Boat, Bus, Car, Coach, Ebicycle, Ecar, Train, Tram, Walk. With regards to the stay points, the following purposes could be allocated by the participants: Home, Work, Errand, Leisure, Wait.

References

  • Abernethy CL (1986) Performance measurement in canal water management: a discussion. Overseas Development Institute (ODI)

    Google Scholar 

  • Aggarwal CC, Yu PS (2001) Outlier detection for high dimensional data. In: ACM Sigmod Record, vol 30, pp 37–46. ACM

    Google Scholar 

  • Axhausen KW, Frick M (2005) Nutzungen—Strukturen—Verkehr, pp 61–79. Springer, Berlin, Heidelberg. ISBN 978-3-540-27010-2

    Google Scholar 

  • Bhaskar A, Chung E et al (2015) Passenger segmentation using smart card data. IEEE Trans Intel Transp Syst 16(3):1537–1548

    Article  Google Scholar 

  • Breiman L, Friedman J, Stone CJ, Olshen RA (1984) Classification and regression trees, CRC press

    Google Scholar 

  • Bucher D, Cellina F, Mangili F, Raubal M, Rudel R, Rizzoli AE, Elabed O (2016) Exploiting fitness apps for sustainable mobility-challenges deploying the goeco! app. In: ICT for sustainability (ICT4S)

    Google Scholar 

  • Chen L, Özsu MT, Oria V (2005) Robust and fast similarity search for moving object trajectories. In: Proceedings of the 2005 ACM SIGMOD international conference on management of data, pp 491–502. ACM

    Google Scholar 

  • Chiou J-M, Li P-L (2007) Functional clustering and identifying substructures of longitudinal data. J Royal Statist Soc Series B (Statistical Methodology) 69(4):679–699

    Article  Google Scholar 

  • Claramunt C, Thériault M (1995) Managing time in GIS: an event-oriented approach. Recent Adv Temp Databases, 23–42

    Google Scholar 

  • Ester M, Kriegel H-P, Sander J, Xu X et al (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. KDD 96:226–231

    Google Scholar 

  • Garcia-Escudero LA, Gordaliza A (2005) A proposal for robust curve clustering. J Classif 22(2):185–201

    Article  Google Scholar 

  • Golledge RG (1997) Spatial behavior: a geographic perspective, Guilford Press

    Google Scholar 

  • Gonzalez MC, Hidalgo CA, Barabasi A-L (2008) Understanding individual human mobility patterns. Nature 453(7196):779–782

    Article  Google Scholar 

  • Gossling S (2017) Ict and transport behaviour: a conceptual review. Int J Sustain Transp (Just-accepted)

    Google Scholar 

  • Gupta M, Gao J, Aggarwal CC, Han J (2014) Outlier detection for temporal data: a survey. IEEE Trans Knowl Data Eng 26(9):2250–2267

    Article  Google Scholar 

  • Hall MA (2000) Correlation-based feature selection of discrete and numeric class machine learning

    Google Scholar 

  • Hartigan JA, Wong MA (1979) Algorithm as 136: a k-means clustering algorithm. J Royal Statis Soc. Series C (Applied Statistics) 28(1):100–108

    Google Scholar 

  • Heinen E, Ogilvie D (2016) Variability in baseline travel behaviour as a predictor of changes in commuting by active travel, car and public transport: a natural experimental study. J Transp Health 3(1):77–85

    Article  Google Scholar 

  • Inselberg A, Dimsdale B (1987) Parallel coordinates for visualizing multi-dimensional geometry. In: Computer graphics 1987, pp 25–44. Springer

    Google Scholar 

  • Isermann R (2005) Model-based fault-detection and diagnosis-status and applications. Annual Rev Control 29(1):71–85

    Article  Google Scholar 

  • Jolliffe P (2016) Introduction. In: Learning, migration and intergenerational relations, pp 1–33. Springer

    Google Scholar 

  • Jonietz D, Bucher D (2018) Continuous trajectory pattern mining for mobility behaviour change detection. In: Progress in location-based services 2018. Springer

    Google Scholar 

  • Kim J, Corcoran J, Papamanolis M (2017) Route choice stickiness of public transport passengers: Measuring habitual bus ridership behaviour using smart card data. Transp Res Part C: Emerg Technol 83:146–164

    Article  Google Scholar 

  • Langlois GG, Koutsopoulos HN, Zhao J (2016) Inferring patterns in the multi-week activity sequences of public transport users. Transp Res Part C: Emerg Technol 64:1–16

    Article  Google Scholar 

  • Lanzendorf M (2003) Mobility biographies. A new perspective for understanding travel behaviour. In: 10th international conference on travel behaviour research, vol 10, p 15

    Google Scholar 

  • Lee J-G, Han J, Whang K-Y (2007) Trajectory clustering: a partition-and-group framework. In: Proceedings of the 2007 ACM SIGMOD international conference on management of data, pp 593–604. ACM

    Google Scholar 

  • Ma X, Wu Y-J, Wang Y, Chen F, Liu J (2013) Mining smart card data for transit riders travel patterns. Transp Res Part C: Emerg Technol 36:1–12

    Article  Google Scholar 

  • Montini L, Prost S, Schrammel J, Rieser-Schüssler N, Axhausen KW (2015) Comparison of travel diaries generated from smartphone data and dedicated GPS devices. Transp Res Procedia 11:227–241

    Article  Google Scholar 

  • Parisot O, Ghoniem M, Otjacques B (2014) Decision trees and data preprocessing to help clustering interpretation. In: DATA, pp 48–55

    Google Scholar 

  • Pendyala R, Parashar A, Muthyalagari G (2001) Measuring day-to day variability in travel characteristics using GPS data. In: 79th annual meeting of the transportation research board

    Google Scholar 

  • Rokach L, Maimon O (2005) Decision trees. Data mining and knowledge discovery handbook, pp 165–192

    Google Scholar 

  • Rousseeuw PJ (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20:53–65

    Google Scholar 

  • Rousseeuw PJ, Van Zomeren BC (1990) Unmasking multivariate outliers and leverage points. J Amer Statist Assoc 85(411):633–639

    Article  Google Scholar 

  • Sander J, Ester M, Kriegel H-P, Xu X (1998) Density-based clustering in spatial databases: the algorithm GDB scan and its applications. Data Mining Knowl Discov 2(2):169–194

    Article  Google Scholar 

  • Scheiner J, Holz-Rau C (2013) Changes in travel mode use after residential relocation: a contribution to mobility biographies. Transportation 40(2):431–458

    Article  Google Scholar 

  • Schlich R, Axhausen KW (2003) Habitual travel behaviour: evidence from a six-week travel diary. Transportation 30(1):13–36

    Article  Google Scholar 

  • Schönfelder S, Axhausen KW (2001) Mobidrive-längsschnitterhebungen zum individuellen verkehrsverhalten: Perspektiven für raum-zeitliche analysen

    Google Scholar 

  • Shen L, Stopher PR (2017) Review of GPS travel survey and GPS data-processing methods. Transport reviews, 0(0):1–19. ISSN 0144-1647. https://doi.org/10.1080/01441647.2014.903530

  • Singer JD, Willett JB (2003) Applied longitudinal data analysis: modeling change and event occurrence, Oxford university press

    Google Scholar 

  • Song C, Qu Z, Blumm N, Barabási A-L (2010) Limits of predictability in human mobility. Science 327(5968):1018–1021

    Article  Google Scholar 

  • Stopher PR, Moutou CJ, Liu W (2013) Sustainability of voluntary travel behaviour change initiatives: a 5-year study

    Google Scholar 

  • Van der Waerden P (2003) The influence of key events and critical incidents on transport mode choice switching behaviour: a descriptive analysis. In: Proceedings of 10th international conference on travel behaviour research, 2003

    Google Scholar 

  • Venkatasubramanian V, Rengaswamy R, Yin K, Kavuri SN (2003) A review of process fault detection and diagnosis: part i: quantitative model-based methods. Comput Chem Eng 27(3):293–311

    Article  Google Scholar 

  • Weiser P, Scheider S, Bucher D, Kiefer P, Raubal M (2016) Towards sustainable mobility behavior: research challenges for location-aware information and communication technology. GeoInformatica 20(2):213–239

    Article  Google Scholar 

  • Xu R, Wunsch D (2005) Survey of clustering algorithms. IEEE Trans Neural Netw 16(3):645–678

    Article  Google Scholar 

  • Yuan Y, Raubal M (2012) Extracting dynamic urban mobility patterns from mobile phone data. In: GIScience, vol 7478, pp 354–367. Springer

    Google Scholar 

  • Yuan Y, Raubal M (2016) Analyzing the distribution of human activity space from mobile phone usage: an individual and urban-oriented study. Int J Geogr Inf Sci 30(8):1594–1621

    Article  Google Scholar 

  • Zaki MJ, Meira W Jr, Meira W (2014) Data mining and analysis: fundamental concepts and algorithms. Cambridge University Press

    Google Scholar 

Download references

Acknowledgements

This research was supported by SBB CFF FFS within the SBB Green Class Project, the Swiss National Science Foundation (SNF) within NRP 71 “Managing energy consumption”, and by the Commission for Technology and Innovation (CTI) within the Swiss Competence Center for Energy Research (SCCER) Mobility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Jonietz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jonietz, D., Bucher, D., Martin, H., Raubal, M. (2018). Identifying and Interpreting Clusters of Persons with Similar Mobility Behaviour Change Processes. In: Mansourian, A., Pilesjö, P., Harrie, L., van Lammeren, R. (eds) Geospatial Technologies for All. AGILE 2018. Lecture Notes in Geoinformation and Cartography. Springer, Cham. https://doi.org/10.1007/978-3-319-78208-9_15

Download citation

Publish with us

Policies and ethics