Skip to main content

Analysis of Perceived Helpfulness in Adaptive Autonomous Agent Populations

  • Chapter
  • First Online:
  • 800 Accesses

Part of the book series: Lecture Notes in Computer Science ((TCCI,volume 10780))

Abstract

Adaptive autonomy allows agents to change their autonomy levels based on circumstances, e.g. when they decide to rely upon one another for completing tasks. In this paper, two configurations of agent models for adaptive autonomy are discussed. In the former configuration, the adaptive autonomous behavior is modeled through the willingness of an agent to assist others in the population. An agent that completes a high number of tasks, with respect to a predefined threshold, increases its willingness, and vice-versa. Results show that, agents complete more tasks when they are willing to give help, however the need for such help needs to be low. Agents configured to be helpful will perform well among alike agents. The second configuration extends the first by adding the willingness to ask for help. Furthermore, the perceived helpfulness of the population and of the agent asking for help are used as input in the calculation of the willingness to give help. Simulations were run for three different scenarios. (i) A helpful agent which operates among an unhelpful population, (ii) an unhelpful agent which operates in a helpful populations, and (iii) a population split in half between helpful and unhelpful agents. Results for all scenarios show that, by using such trait of the population in the calculation of willingness and given enough interactions, helpful agents can control the degree of exploitation by unhelpful agents.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hardin, B., Goodrich, M.A.: On using mixed-initiative control: a perspective for managing large-scale robotic teams. In: Proceedings of the 4th ACM/IEEE International Conference on Human Robot Interaction, pp. 165–172. ACM (2009)

    Google Scholar 

  2. Johnson, M., Bradshaw, J.M., Feltovich, P.J., Jonker, C.M., van Riemsdijk, B., Sierhuis, M.: The fundamental principle of coactive design: interdependence must shape autonomy. In: De Vos, M., Fornara, N., Pitt, J.V., Vouros, G. (eds.) COIN -2010. LNCS (LNAI), vol. 6541, pp. 172–191. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21268-0_10

    Chapter  Google Scholar 

  3. Fong, T., Thorpe, C., Baur, C.: Collaborative Control: A Robot-Centric Model for Vehicle Teleoperation, vol. 1. Carnegie Mellon University, The Robotics Institute, Pittsburgh (2001)

    MATH  Google Scholar 

  4. Brookshire, J., Singh, S., Simmons, R.: Preliminary results in sliding autonomy for assembly by coordinated teams. In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2004. Proceedings, vol. 1, pp. 706–711. IEEE (2004)

    Google Scholar 

  5. Parasuraman, R., Sheridan, T.B., Wickens, C.D.: A model for types and levels of human interaction with automation. IEEE Trans. Syst. Man Cybernet. Part A Syst. Hum. 30(3), 286–297 (2000)

    Article  Google Scholar 

  6. Castelfranchi, C.: Founding agent’s ‘autonomy’ on dependence theory. In: Proceedings of the 14th European Conference on Artificial Intelligence, pp. 353–357. IOS Press (2000)

    Google Scholar 

  7. Frasheri, M., Çürüklü, B., Ekström, M.: Towards collaborative adaptive autonomous agents. In: 9th International Conference on Agents and Artificial Intelligence 2017 ICAART, 24 February 2017, Porto, Portugal (2017)

    Google Scholar 

  8. Lewis, B., Tastan, B., Sukthankar, G.: An adjustable autonomy paradigm for adapting to expert-novice differences. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1656–1662. IEEE (2013)

    Google Scholar 

  9. Muszynski, S., Stückler, J., Behnke, S.: Adjustable autonomy for mobile teleoperation of personal service robots. In: RO-MAN, 2012 IEEE, pp. 933–940. IEEE (2012)

    Google Scholar 

  10. Birk, A., Pfingsthorn, M.: A HMI supporting adjustable autonomy of rescue robots. In: Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y. (eds.) RoboCup 2005. LNCS (LNAI), vol. 4020, pp. 255–266. Springer, Heidelberg (2006). https://doi.org/10.1007/11780519_23

    Chapter  Google Scholar 

  11. Goodrich, M.A., Olsen, D.R., Crandall, J.W., Palmer, T.J.: Experiments in adjustable autonomy. In: Proceedings of IJCAI Workshop on Autonomy, Delegation and Control: Interacting with Intelligent Agents, pp. 1624–1629 (2001)

    Google Scholar 

  12. Lin, L., Goodrich, M.A.: Sliding autonomy for UAV path-planning: adding new dimensions to autonomy management. In: Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems, pp. 1615–1624. International Foundation for Autonomous Agents and Multiagent Systems (2015)

    Google Scholar 

  13. Dorais, G., Bonasso, R.P., Kortenkamp, D., Pell, B., Schreckenghost, D.: Adjustable autonomy for human-centered autonomous systems. In: Working notes of the Sixteenth International Joint Conference on Artificial Intelligence Workshop on Adjustable Autonomy Systems, pp. 16–35 (1999)

    Google Scholar 

  14. Kortenkamp, D., Keirn-Schreckenghost, D., Bonasso, R.P.: Adjustable control autonomy for manned space flight. In: Aerospace Conference Proceedings, 2000 IEEE, vol. 7, pp. 629–640. IEEE (2000)

    Google Scholar 

  15. Calhoun, G.L., Goodrich, M.A., Dougherty, J.R., Adams, J.A.: Human-autonomy collaboration and coordination toward multi-RPA missions. In: Remotely Piloted Aircraft Systems: A Human Systems Integration Perspective, p. 109 (2016)

    Google Scholar 

  16. Barnes, M.J., Chen, J.Y., Jentsch, F.: Designing for mixed-initiative interactions between human and autonomous systems in complex environments. In: 2015 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 1386–1390. IEEE (2015)

    Google Scholar 

  17. Stubbs, K., Hinds, P.J., Wettergreen, D.: Autonomy and common ground in human-robot interaction: a field study. IEEE Intell. Syst. 22(2), 42–50 (2007)

    Article  Google Scholar 

  18. van der Vecht, B., Dignum, F., Meyer, J.C.: Autonomy and coordination: controlling external influences on decision making. In: IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intelligent Agent Technologies, WI-IAT 2009, vol. 2, pp. 92–95. IEEE (2009)

    Google Scholar 

  19. Landén, D., Heintz, F., Doherty, P.: Complex task allocation in mixed-initiative delegation: a UAV case study. In: Desai, N., Liu, A., Winikoff, M. (eds.) PRIMA 2010. LNCS (LNAI), vol. 7057, pp. 288–303. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-25920-3_20

    Chapter  Google Scholar 

  20. Kim, S., Kim, M., Lee, J., Hwang, S., Chae, J., Park, B., Cho, H., Sim, J., Jung, J., Lee, H., et al.: Team SNU’s control strategies for enhancing a robot’s capability: lessons from the 2015 DARPA robotics challenge finals. J. Field Robot. 34, 359–380 (2016)

    Article  Google Scholar 

  21. Farinelli, A., Raeissi, M.M., Brooks, N., Scerri, P., et al.: Interacting with team oriented plans in multi-robot systems. Auton. Agents Multi-Agent Syst. 31, 332–361 (2016)

    Article  Google Scholar 

  22. Côté, N., Canu, A., Bouzid, M., Mouaddib, A.I.: Humans-robots sliding collaboration control in complex environments with adjustable autonomy. In: Proceedings of the The 2012 IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intelligent Agent Technology, vol. 02, pp. 146–153. IEEE Computer Society (2012)

    Google Scholar 

  23. Chitalia, Y., Zhang, W., Hyun, B., Girard, A.: A revisit-based mixed-initiative nested classification scheme for unmanned aerial vehicles. In: American Control Conference, ACC 2014, pp. 1793–1798. IEEE (2014)

    Google Scholar 

  24. Feltovich, P.J., Bradshaw, J.M., Clancey, W.J., Johnson, M.: Toward an ontology of regulation: socially-based support for coordination in human and machine joint activity. In: O’Hare, G.M.P., Ricci, A., O’Grady, M.J., Dikenelli, O. (eds.) ESAW 2006. LNCS (LNAI), vol. 4457, pp. 175–192. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75524-1_10

    Chapter  Google Scholar 

  25. Bradshaw, J.M., Jung, H., Kulkarni, S., Johnson, M., Feltovich, P., Allen, J., Bunch, L., Chambers, N., Galescu, L., Jeffers, R., et al.: Kaa: policy-based explorations of a richer model for adjustable autonomy. In: Proceedings of the fourth international joint conference on Autonomous agents and multiagent systems, pp. 214–221. ACM (2005)

    Google Scholar 

  26. Scerri, P., Pynadath, D.V., Tambe, M.: Towards adjustable autonomy for the real world. J. Artif. Intell. Res. 17(1), 171–228 (2002)

    MathSciNet  MATH  Google Scholar 

  27. Goodrich, M.A., Schultz, A.C.: Human-robot interaction: a survey. Found. Trends Hum. Comput. Interact. 1(3), 203–275 (2007)

    Article  MATH  Google Scholar 

  28. Suzanne Barber, K., Goel, A., Martin, C.E.: Dynamic adaptive autonomy in multi-agent systems. J. Exp. Theor. Artif. Intell. 12(2), 129–147 (2000)

    Article  MATH  Google Scholar 

  29. Martin, C., Barber, K.S.: Adaptive decision-making frameworks for dynamic multi-agent organizational change. Auton. Agents Multi Agent Syst. 13(3), 391–428 (2006)

    Article  Google Scholar 

  30. Johnson, M., Bradshaw, J.M., Feltovich, P.J., Jonker, C.M., Van Riemsdijk, M.B., Sierhuis, M.: Coactive design: designing support for interdependence in joint activity. J. Hum. Robot Interact. 3(1), 2014 (2014)

    Article  Google Scholar 

  31. Klien, G., Woods, D.D., Bradshaw, J.M., Hoffman, R.R., Feltovich, P.J.: Ten challenges for making automation a “team player” in joint human-agent activity. IEEE Intell. Syst. 19(6), 91–95 (2004)

    Article  Google Scholar 

  32. Tambe, M.: Agent architectures for flexible. In: Proceedings of the 14th National Conference on AI, USA, pp. 22–28. AAAI press (1997)

    Google Scholar 

  33. Laird, J.E.: The Soar Cognitive Architecture. MIT Press, Cambridge (2012)

    Google Scholar 

  34. Schurr, N., Marecki, J., Tambe, M.: Improving adjustable autonomy strategies for time-critical domains. In: Proceedings of The 8th International Conference on Autonomous Agents and Multiagent Systems, vol. 1, pp. 353–360. International Foundation for Autonomous Agents and Multiagent Systems (2009)

    Google Scholar 

  35. McGill, S.G., Yi, S.J., Yi, H., Ahn, M.S., Cho, S., Liu, K., Sun, D., Lee, B., Jeong, H., Huh, J., et al.: Team THOR’s entry in the DARPA robotics challenge finals 2015. J. Field Robot. 34, 775–801 (2016)

    Article  Google Scholar 

  36. Castelfranchi, C., Falcone, R.: Principles of trust for MAS: cognitive anatomy, social importance, and quantification. In: International Conference on Multi Agent Systems, Proceedings, pp. 72–79. IEEE (1998)

    Google Scholar 

  37. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: ROS: an open-source robot operating system. In: ICRA Workshop on Open Source Software, vol. 3, p. 5, Kobe (2009)

    Google Scholar 

  38. Cardoso, H.L., Oliveira, E.: Adaptive deterrence sanctions in a normative framework. In: IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intelligent Agent Technologies, WI-IAT 2009, vol. 2, pp. 36–43. IEEE (2009)

    Google Scholar 

  39. Falcone, R., Castelfranchi, C.: Social trust: a cognitive approach. In: Castelfranchi, C., Tan, Y.H. (eds.) Trust and Deception in Virtual Societies, pp. 55–90. Springer, Dordrecht (2001)

    Chapter  MATH  Google Scholar 

  40. Pinyol, I., Sabater-Mir, J.: Computational trust and reputation models for open multi-agent systems: a review. Artif. Intell. Rev. 40(1), 1–25 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirgita Frasheri .

Editor information

Editors and Affiliations

Appendix

Appendix

The source code to replicate the C1 simulations is publicly available on github, under the following URL: https://github.com/gitting-around/gitagent_base.git. Whereas, for C2 simulations the source code is available under the following URL: https://github.com/gitting-around/gitagent.git. Finally, the simulations for this paper were conducted on HP EliteBook 840 laptop with Ubuntu 14.04 and ROS Indigo.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Frasheri, M., Çürüklü, B., Ekström, M. (2018). Analysis of Perceived Helpfulness in Adaptive Autonomous Agent Populations. In: Nguyen, N., Kowalczyk, R., van den Herik, J., Rocha, A., Filipe, J. (eds) Transactions on Computational Collective Intelligence XXVIII. Lecture Notes in Computer Science(), vol 10780. Springer, Cham. https://doi.org/10.1007/978-3-319-78301-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78301-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78300-0

  • Online ISBN: 978-3-319-78301-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics