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Abstract

A secret-sharing scheme for a monotone Boolean (access) function F : {0, 1}n → {0, 1}
is a randomized algorithm that on input a secret, outputs n shares s1, . . . , sn such that for
any (x1, . . . , xn) ∈ {0, 1}n, the collection of shares {si : xi = 1} determine the secret if
F (x1, . . . , xn) = 1 and reveal nothing about the secret otherwise. The best secret sharing
schemes for general monotone functions have shares of size Θ(2n). It has long been conjectured
that one cannot do much better than 2Ω(n) share size, and indeed, such a lower bound is known
for the restricted class of linear secret-sharing schemes.

In this work, we refute two natural strengthenings of the above conjecture:

• First, we present secret-sharing schemes for a family of 22n/2

monotone functions over
{0, 1}n with sub-exponential share size 2O(

√
n log n). This unconditionally refutes the

stronger conjecture that circuit size is, within polynomial factors, a lower bound on the
share size.

• Second, we disprove the analogous conjecture for non-monotone functions. Namely, we
present “non-monotone secret-sharing schemes” for every access function over {0, 1}n with
shares of size 2O(

√
n log n).

Our construction draws upon a rich interplay amongst old and new problems in information-
theoretic cryptography: from secret-sharing, to multi-party computation, to private information
retrieval. Along the way, we also construct the first multi-party conditional disclosure of secrets
(CDS) protocols for general functions F : {0, 1}n → {0, 1} with communication complexity
2O(

√
n log n).
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1 Introduction

Secret sharing [Sha79, Bla79] is a powerful cryptographic technique that allows a dealer to distribute
shares of a secret to n parties such that certain authorized subsets of parties, and only they, can
recover the secret. The original definition of secret sharing is what we now call an (n, t)-threshold
secret sharing scheme, where any set of t or more parties can recover the secret, and no subset of
fewer than t parties can learn any information about the secret whatsoever.

Later on, this was generalized in [ISN89] to the notion of a secret-sharing scheme realizing a
monotone function F : {0, 1}n → {0, 1}. This is simply a randomized algorithm that on input
a secret, outputs n shares s1, . . . , sn such that for any (x1, . . . , xn) ∈ {0, 1}n, the collection of
shares {si : xi = 1} determine the secret if F (x1, . . . , xn) = 1 and reveal nothing about the secret
otherwise.1 It is easy to see that (n, t)-threshold secret sharing corresponds to the special case
where F is the (monotone) threshold function that outputs 1 if and only if at least t of the n input
bits are 1.

While the landscape of threshold secret sharing is relatively well-understood, even very basic
information-theoretic questions about the more general notion of secret sharing remain embar-
rassingly open. It is simple to construct a secret sharing scheme realizing any monotone function
F : {0, 1}n → {0, 1} where each share is at most 2n bits; the share size can be improved to O(2n/

√
n)

bits [ISN89]. We also know that there is an (explicit) monotone function F : {0, 1}n → {0, 1} that
requires a total share size of Ω(n2/ log n) bits [Csi97], a far cry from the upper bound. No better
lower bounds are known (except for the restricted class of linear secret-sharing schemes, cf. Sec-
tion 1.3), even in a non-explicit sense.

Closing the exponential gap between the afore-mentioned upper bound or lower bounds is a
long-standing open problem in cryptography. The general consensus appears to be that the upper
bound is almost tight, as formalized in a conjecture of Beimel [Bei11]:

Conjecture (main). There exists a family of monotone functions {Fn : {0, 1}n →
{0, 1}}n∈N s.t. the total share size of any secret sharing scheme realizing Fn is 2Ω(n)

bits.

Note that this is a purely information-theoretic statement with no reference to the computational
complexity of sharing or reconstruction.

1.1 Our Results

In this work, we refute two natural strengthenings of the main conjecture by presenting new secret
sharing schemes. The first variant of the main conjecture considers a lower bound on share size that
depends on the representation size of the function F as is the case for the state-of-the-art upper
bounds, and the second variant considers a natural generalization of secret-sharing to non-monotone
functions.

The representation size barrier. To construct a secret-sharing scheme for a function F , we
would need some representation of the function F , e.g., as a boolean formula or as a circuit or as a

1The typical formulation of secret-sharing refers to a dealer that holds a secret distributing shares to n parties,
such that only certain subsets of parties —described by a so-called access structure— can reconstruct the secret. In
our formulation, the randomized algorithm corresponds to the dealer, si corresponds to the share given to party i,
xi ∈ {0, 1} indicates whether party i is present in a subset, and F corresponds to the access structure.
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span program [KW93]. The most general approach we have for constructing secret-sharing schemes
with small share sizes yields share sizes that are linear in the size of the monotone Boolean formula
(more generally, the monotone span program) [BL88]. Recall that there are most 2O(s log s) circuits
or formulas or span programs of size s. The following conjecture then captures the intuition that
any secret-sharing scheme must yield share sizes that is polynomial in the representation size:

Conjecture 1. For any collection Fn of monotone functions over {0, 1}n such that
|Fn| ≥ 2ω(n logn), the total share size of any secret-sharing scheme realizing Fn is at
least (log |Fn|)Ω(1). 2

Note that there are 2Θ(2n/
√
n) monotone functions over {0, 1}n, so the main conjecture is a special

case of Conjecture 1. In addition, by a counting argument, the number of unbounded-fan-in circuits
with s gates is no more than 2O(s(n+s)), thus the collection Fn contains functions whose circuit (and
thus formula) size at least Ω(

√
log |Fn| − n). This means that if our intuition that the share size

is polynomial in the representation size (as a formula or even a circuit) is correct, then the share
size for Fn must be at least (log |Fn|)Ω(1), as captured by the conjecture. Indeed, we refute this
conjecture.

Theorem 1 (informal). For any s = s(n) ≤ 2n/2, there is a collection F̂n,s of 2s(n)

monotone functions over {0, 1}n and a secret-sharing scheme for F̂n,s where each share

is 2O(
√

log s log log s) = (log |F̂n,s|)o(1) bits.

In particular, Theorem 1 has the following, we believe surprising, consequences.
First, our result implies that there are secret sharing schemes whose share size is much better

than what the “representation size intuition” would suggest. In one extreme case, taking s(n) =

2n/2, our result implies a family F̂n,2n/2 of 22n/2
= 22Ω(n)

monotone functions and a secret sharing

scheme for F̂n,2n/2 with share size only 2Õ(
√
n). Whereas, by simple counting arguments, there must

be a function in this class with circuits (or formulas or monotone span programs or essentially
every other natural computational model we can think of) of size 2Ω(n). As another reference
point, taking s(n) = nlogn, it follows that there exists monotone functions over {0, 1}n that require
quasi-polynomial (in n) size circuits (and formulas and monotone span programs), but which admit
secret-sharing schemes with polynomial share size. This in particular implies that existing secret-
sharing schemes with share sizes linear in the formula size are far from optimal.

Second, our result implies that “non-linear reconstruction” totally dominates “linear reconstruc-
tion”. Secret-sharing schemes with linear reconstruction are known to be equivalent to monotone
span programs [KW93], whereas the scheme from Theorem 1 has a non-linear reconstruction algo-
rithm. In particular, our results shows that for share size poly(n) (resp., 2

√
n), there are 2quasipoly(n)

(resp., 22Ω(n)
) access structures that can be realized by secret sharing schemes with non-linear

reconstruction, compared to 2poly(n) (resp., 22Ω(
√

n)
) by linear schemes.

Prior to this work, such a statement was only known under intractibility assumptions pertaining
to number-theoretic and combinatorial problems like quadratic residuosity and graph isomorphism
[BI01, VV15], whereas our result is unconditional.

2The same secert-sharing algorithm can be used to realizing as many as n! different access functions by permuting
the parties. This trick comes from the nature of secret sharing, thus two access functions is equivalent if one is the
composition of a permutation and the other, and Conjecture 1 should be stated on the number of equivalence classes
in Fn. Assuming |Fn| � n! has essentially the same effect.
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Non-monotone secret sharing. A further generalization called non-monotone secret sharing
was defined in the work of Beimel and Ishai [BI01] and further studied in [BIKK14, VV15]; this is
a natural extension of secret sharing to any arbitrary, possibly non-monotone F . A non-monotone
secret-sharing scheme for a function F : {0, 1}n → {0, 1} is a randomized algorithm that on
input a secret, outputs n pairs of shares (si,0, si,1)i∈[n] such that for any (x1, . . . , xn), the n shares
(s1,x1 , . . . , sn,xn) determine the secret if F (x1, . . . , xn) = 1 and reveal nothing about the secret
otherwise. Standard monotone secret-sharing correspond to the special case where F is monotone
and s1,0 = · · · = sn,0 = ⊥. Non-monotone secret sharing schemes are natural candidates for use in
advanced cryptographic schemes such as attribute-based encryption [GPSW06, OSW07].

It is easy to see that we can construct non-monotone secret-sharing schemes for all functions
on n bits starting from standard secret-sharing for all monotone functions on 2n bits, with a
small polynomial blow-up in the share size. This might suggest that the best share sizes for
non-monotone secret-sharing and standard secret-sharing are polynomially related, motivating the
following strengthening of the main conjecture that we formalize below:

Conjecture 2. There exists a family of functions {Fn : {0, 1}n → {0, 1}}n∈N such that
the total share size in any non-monotone secret sharing scheme for Fn is 2Ω(n) bits.

Indeed, we also refute this conjecture:

Theorem 2 (informal). There is a non-monotone secret-sharing for the family of all

functions F : {0, 1}n → {0, 1} where each share is 2Õ(
√
n) bits.

1.2 Overview of Our Constructions

We derive both Theorems 1 and 2 from the construction of a more general cryptographic primitive,
namely that of conditional disclosure of secrets (CDS) [GIKM00], which is a generalization of
non-monotone secret-sharing to general, non-boolean inputs. Informally, conditional disclosure of
secrets allows a set of parties to disclose a secret to an external party Charlie, subject to a given
condition on their joint inputs. Concretely, we consider (k + 1)-party CDS for INDEXN , where
Alice holds D ∈ {0, 1}N , parties P1, . . . , Pk “jointly” hold an index i ∈ [N ]3, and all of them hold
a secret µ ∈ {0, 1}, and Charlie knows D, i and should learn µ iff D[i] = 1. To enable this, Alice
and all the parties should share randomness that is hidden from Charlie (akin to the random coins
used in a secret-sharing scheme). Our goal is to minimize the communication complexity in CDS,
that is, the total number of bits sent by Alice and the k parties to Charlie.

Our main result is as follows:

Theorem (main). For any 1 ≤ k ≤ logN , there is a (k+ 1)-party CDS for INDEXN

where the total communication complexity is 2O(
√

logN ·log logN) bits.

Previously, such a result was only known for k = 1 [LVW17]. Before describing our (k + 1)-party
CDS, we briefly explain how Theorems 1 and 2 follow from the CDS.

Our non-monotone secret-sharing scheme for all functions F : {0, 1}n → {0, 1} in Theorem 2
follows from the special case k = logN , where N = 2n. Concretely, the non-monotone secret-
sharing scheme for F is derived from the (n+ 1)-party CDS for INDEX2n as follows: Alice holds

3We will make the precise sense of how the parties “jointly” hold the index clear in a little bit, but roughly
speaking, the reader should imagine that each party holds d(logN)/ke bits of the index.
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the truth table D ∈ {0, 1}2n of a function F : {0, 1}n → {0, 1} and each party Pi, i = 1, . . . , n holds
a single bit of the index i ∈ [2n], and the messages sent by Pi in the CDS corresponds to the shares.
Going from the (n+1)-party CDS to Theorem 1 requires an additional folklore transformation which
transforms a non-monotone secret-sharing scheme for any F : {0, 1}n → {0, 1} into a monotone
secret-sharing scheme with roughly the same share size for a related function F ′; see Section 6.3
for details.

1.2.1 A general framework for CDS.

We proceed to provide an overview for our (k + 1)-party CDS protocol. We begin with a general
framework for constructing CDS protocols, and then sketch how to instantiate the underlying
building blocks to obtain our main result.

The LVW17 framework. We begin by sketching the 2-party CDS protocol, i.e. k = 1, from
[LVW17] (which in turn builds upon [BIKK14, DG15]). The starting point of their protocol is
a notion of (N, `)-PIR encoding, which encodes i ∈ [N ] as vector ui ∈ Z`6 and D as a function
HD : Z`6 → Z`6 such that for all i,D,w, we have

D[i] = 〈HD(ui + w),ui〉 − 〈HD(w),ui〉.

This immediately implies that for all µ ∈ {0, 1}, we have

µD[i] = 〈HD(µui + w),ui〉 − 〈HD(w),ui〉. (1)

[LVW17] constructed a two-party CDS protocol with communication O(`) starting from any (N, `)-

PIR encoding, and also gave a construction of a (N, 2Õ(
√

logN))-PIR encoding. The two-party CDS
protocol is as follows:

• Alice and P1 share randomness w, r (hidden from Charlie);

• Alice sends m1
A := HD(w) + r.

• P1 sends m1
B := µui + w and m2

B := 〈ui, r〉.

• Charlie can now compute µD[i] (and thus µ) given D, i, (m1
A,m

1
B,m

2
B) using the relation

µD[i] = 〈HD(µui + w︸ ︷︷ ︸
m1

B

),ui〉 − 〈HD(w) + r︸ ︷︷ ︸
m1

A

,ui〉+ 〈r,ui〉︸ ︷︷ ︸
m2

B

which follows readily from (1).

It is easy to see that the total communication is O(`). Privacy follows fairly readily from the fact
that the joint distribution of (m1

A,m
1
B) is uniformly random, and that m2

B is completely determined
given (m1

A,m
1
B) and µD[i] along with D, i.
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The multi-party setting. We show how to extend the [LVW17] construction to the multi-party
setting with k parties, for any k ≥ 1. Here, the index i is distributed across k parties P1, . . . , Pk.
The key idea is to have these k parties jointly emulate P1 in the two-party CDS via secure multi-
party computation (MPC); in fact, because of communication constraints, we will use a private
simultaneous messages protocol [FKN94, IK97] in this setting, where each of the k parties sends a
single message to Charlie. That is, these k parties jointly hold inputs i,w, r, µ and they will run
an MPC protocol with Charlie so that Charlie learns

(µui + w, 〈ui, r〉), (2)

upon which Charlie can proceed as in the two-party CDS to recover µD[i]. Moreover, security of
the MPC protocol ensures that what Charlie learns in the k-party CDS is the same as that in the
two-party CDS. Correctness and security then follow readily from those of the two-party CDS and
the MPC protocol.

Recall that our goal is to obtain a protocol with total communication complexity 2o(n), and
we need to make sure that the MPC protocol does not blow up the communication by too much.
The key insight is that the total size of the inputs for the MPC protocol is O(logN + `) and is in
particular independent of D. Therefore, it suffices to design an MPC protocol for computing (2)

with polynomial communication for the (N, 2Õ(
√

logN))-PIR encoding in [LVW17], upon which we

will derive a k-party CDS protocol with total communication poly(`) = 2Õ(
√

logN).

Minimizing communication via decomposability.

Prior works on MPC tells us that the communication cost for securely computing (2) is essentially
dominated by the cost of (non-securely) computing the k-ary functionality

i = (i1, . . . , ik) 7→ ui.

In fact, it suffices to construct PIR-encodings where ui ∈ Z`6 may be derived by applying a simple
function to vectors ui1 , . . . ,uik ∈ Z`6, each of which is derived from some local (and possibly
complex) computation on i1, . . . , ik respectively. In this work, we consider ui that are given by

ui = u1,i1 ◦ · · · ◦ uk,ik

where ◦ corresponds to point-wise product of vectors. We refer to this property as k-decomposability.
Using k-decomposable ui, the computation in (2) can be written as

(i1, . . . , ik,w, r, µ) 7→ (µu1,i1 ◦ · · · ◦ uk,ik + w, 〈u1,i1 ◦ · · · ◦ uk,ik , r〉)

which is essentially a degree k+ 1 computation over the inputs; concretely, it can be written as the
sum of a small number of monomials over (ui1 , . . . ,uik ,w, r, µ). Following [IK00, IK02, CFIK03],
such a computation admits a non-interactive MPC protocol satisfying perfect, information-theoretic
security, and total communication polynomial in `, k, logN .

This brings us to the final building block: a (N, 2Õ(
√

logN))-PIR encoding that is k-decomposable.

1.2.2 PIR-Encodings from Matching Vector (MV) Families.

The key tool in the (N, 2Õ(
√

logN))-PIR encoding in [LVW17] is matching vector (MV) families,
first constructed by Grolmusz [Gro00] and introduced to cryptography in the context of private
information retrieval [Yek08, Efr12, DGY11, DG15].
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MV families. A (mod 6) MV family is an explicit collection of vectors {(ui,vi)}i∈[N ] such that

ui,vi ∈ Z`6 where ` = 2O(
√

logN ·log logN) and:

〈ui,vi〉 = 0,

〈ui,vj〉 ∈ {1, 3, 4} for i 6= j.

where all computations are done mod 6.
At this point, it may seem like we are abusing notation as we are using ui to denote both the

vectors in a MV family and those in a PIR encoding. Fortunately, they are essentially the same
thing in the [LVW17] construction, and therefore, it suffices to construct MV families where the
underlying ui’s are k-decomposable.

Prior constructions. We begin with an overview of Grolmusz’s MV families [Gro00]. Fix any
integers h,w so that

(
h
w

)
≥ N . Pick any distinct x1, . . . ,xN ∈ {0, 1}h of Hamming weight exactly

w. Observe that for all i, j ∈ [N ]:

‖xi ◦ xj‖1

{
= w if i = j

< w if i 6= j

The vectors ui will have length ` = hO(
√
w) indexed by subsets S of [h] of size at most O(

√
w) and

defined as follows:
ui[S] =

∏
i′∈S

xi[i
′]

The reason for defining ui this way is that for any fixed polynomial f of degree O(
√
w) from

{0, 1}h → Z6, we can write f(xi ◦ xj) as 〈ui,vj〉 where vj depends only on f and xj . (Roughly
speaking, the polynomial f checks whether the Hamming weight of its input is equal to or less than
w.) We can then set h = 2 logN,w = logN , which yields ` = 2O(

√
logN ·log logN).

Our construction. In our setting, the index i = (i1, . . . , ik) is divided equally amongst k parties
and want ui to be of the form

ui = u1,i1 ◦ · · · ◦ uk,ik .

To achieve this property, it suffices to modify the choices of x1, . . . ,xN in the prior construction.

Concretely, we pick w, h to be multiples of k such that
(h/k
w/k

)k
≥ N . Then, we choose x1, . . . ,xN so

that each xi can be decomposed into k blocks (xi1‖ · · · ‖xik) each of weight exactly w/k. Recall that
each entry of ui is a product of O(

√
w) entries of xi, which means we can write ui = u1,i1 ◦· · ·◦uk,ik

where each u1,i1 , . . . ,uk,ik depends on xi1 , . . . ,xik respectively. We can still set h = 2 logN,w =

logN as before, since
(h/k
w/k

)k
≥ (( hw )w/k)

k
= N for any 1 ≤ k ≤ logN .

1.3 Related Work

A linear secret-sharing scheme is one where the secret sharing algorithm computes a linear function
of the secret and its randomness. Most secret-sharing schemes in the literature are linear secret-
sharing schemes, and many cryptographic applications also require the linearity property. For linear
secret-sharing schemes, the existing upper bounds (namely, linear in formula or span program size)

6



are essentially optimal, due to their connection to a computational model called monotone span
programs defined by Karchmer and Wigderson [KW93].

Using this connection, we know the following results about linear secret-sharing schemes. We
know there exist access functions that need 2Ω(n) share size for linear secret sharing via a counting
argument [KW93, Bei11]. As for explicit functions, we have nlogn/ log logn lower bounds for lin-
ear secret sharing realizing some explicit access functions [BGP95, BGW99]. Quite recently, this
was improved by Pitassi and Robere [RPRC16, PR17] who showed an exponential lower bound
for monotone span programs realizing some explicit access functions. Therefore, to beat these
exponential bounds, as we do in this work, we need to turn to general, non-linear secret-sharing
schemes.

1.4 Discussion

Our work highlights new connections and exploits the rich interplay amongst old and new problems
in information-theoretic cryptography: from secret-sharing (70s), to multi-party computation (80s),
to private information retrieval (90s), and brings forth strong evidence against the conjectured
optimality of the classic constructions for monotone secret-sharing.

While we do not construct secret-sharing schemes with sub-exponential share sizes for all mono-
tone functions over {0, 1}n, as would be necessary to refute the main conjecture, we do achieve

sub-exponential 2O(
√
n logn) share sizes for a large number of these functions, namely 22n/2

out of
22n−O(log n)

of them. There are several very exciting new research directions at this point, and we
highlight two specific questions related to the main conjecture:

• Does there exist a family containing 1% of all monotone functions over {0, 1}n that admit a
monotone secret-sharing scheme of total share size 2o(n)? Here, 1% can be replaced by any
constant. One way to resolve this question would be to extend our construction to a larger
set of monotone functions.

• Does there exist a family of 22Ω(n)
functions over {0, 1}n that admit a monotone secret-

sharing scheme of total share size 2o(
√
n)? One way to resolve this question would be to

improve the communication complexity of 2-party CDS, which in turn seems closely related
to the problem of improving the communication complexity of the state-of-the-art 2-server
private information retrieval.

On another thread, we note that the work of Beimel, Ishai, Kumaresan and Kushilevitz [BIKK14]
showed ways to use improved PIR schemes to obtain protocols for various information-theoretic
multiparty tasks improving their communication complexity or randomness complexity. Our work
continues this line of thought. We mention that the problem of improving the communication com-
plexity of private simultaneous messages (PSM) protocols, a a generalization of CDS, for general
functions to a sub-exponential number remains wide open.

1.5 Organization

We start with Section 3 which describes the framework of the multiparty CDS construction. That is,
a multi-party CDS scheme for the INDEXpredicate can be constructed from: a) a “PIR-encoding”,
and b) a private simultaneous messages (PSM) protocol computing a special functionality related to
the PIR-encoding (see Theorem 3.1). The following two sections construct these two building blocks.
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Section 4 shows there exists a succinct PIR-encoding that is also decomposable (Theorem 4.6).
Section 5 shows there exists an efficient PSM for the special functionality if the PIR-encoding is
decomposable (Theorem 5.1). An immediate combination of the above results gives an good multi-
party CDS protocol (Theorem 6.1, which is a restatement of the main theorem in the introduction).
Section 6 also presents our applications to secret sharing. A good multi-party CDS protocol implies
non-monotone secret sharing for all functions (Theorem 6.4, which is a restatement of Theorem 2 in
the introduction). It also implies monotone secret sharing for a large class of functions (Theorem 6.6,
which is a restatement of Theorem 1 in the introduction). In addition, Section 7 shows similar
results for linear CDS and linear secret sharing.

2 Preliminaries and Definitions

We start with some notation that we will use throughout the paper.

• Let R denote a generic commutative ring, Z denote the integer ring, and Zm denote the ring
of integers modulo m. Let F denote a generic finite field. When q is a prime power, let Fq
denote the finite field of size q. For an integer m, let [m] := {1, . . . ,m}.

• We will let boldface letters, such as x, denote vectors. When x is a vector, let x[i] denote its
i-th element.

• For vectors x ∈ R`,y ∈ R`′ , let x‖y ∈ R`+`′ denote their concatenation.

• Call a vector x ∈ R` a zero-one vector if its entries are either 0 or 1. For a zero-one vector
x, let ‖x‖1 denote the number of 1’s in x.

Definition 1 (point-wise product). For any two vectors x,y ∈ R`, their point-wise product,
denoted by x ◦ y, is a vector in the same linear space whose i-th element is the product of the i-th
elements of x,y, i.e. (x ◦ y)[i] = x[i] · y[i].

This is also known in the literature as the Hadamard product or Schur product, typically used
in the context of matrices.

2.1 k-party Conditional Disclosure of Secrets (CDS)

In a k-party CDS scheme, there are k parties who know a secret message µ and jointly hold input
x. These parties cannot communicate with each other, but instead they have access to a common
random string (CRS). Their goal is to send a single message to the CDS referee Charlie, at the end
of which Charlie, who already knows x, should learn µ if and only if P(x) = 1, for a fixed predicate
P.

Definition 2 (conditional disclosure of secrets (CDS) [GIKM00]). Let input spaces X1, . . . ,Xk,
secret space M and randomness space W be finite sets. Fix a predicate P : X1 × X2 × . . .× Xk →
{0, 1}. A cc-conditional disclosure of secrets (CDS) protocol for P is a tuple of deterministic
functions (B1, . . . ,Bk,C)

Transmitting functions Bi :M×Xi ×W → {0, 1}cc

Reconstruction function C : X1 × . . .×Xk × {0, 1}cc×k →M

satisfying the following properties:

8



(reconstruction.) For all (x1, . . . , xk) ∈ X1× . . .×Xk such that P(x1, . . . , xk) = 1, for all w ∈ W,
and for all µ ∈M:

C(x1, . . . , xk,B1(µ, x1;w), . . . ,Bk(µ, xk;w)) = µ .

(privacy.) There exists a randomized algorithm S such that for all input tuple (x1, . . . , xk) ∈ X1×
. . .×Xk satisfying P(x1, . . . , xk) = 0, the joint distribution of

(
B1(µ, x1;w), . . . ,Bk(µ, xk;w)

)
is perfectly indistinguishable from S(x1, . . . , xk), where the randomness are taken over w

r←W
and the coin tosses of S.

Predicates. We consider the following predicates:

• Index INDEXk+1
N : An index i ∈ [N ] is distributed amongst the first k parties. Let X1 =

· · · = Xk := [ k
√
N ], Xk+1 = {0, 1}N and under the natural mapping [N ] 3 i 7→ (i1, . . . , ik) ∈

([ k
√
N ])k,

PINDEX(i1, . . . , ik,D) = 1 iff D[i] = 1

Note that D can also be interpreted as the characteristic vector of a subset of [N ].

• All (“worst”) predicates ALLkN : An index i ∈ [N ] is distributed among the k parties as before
and the predicate is specified by a truth table. Let X1 = . . . = Xk := [ k

√
N ] and there is a fixed

public function F : [N ]→ {0, 1}. under the natural mapping i ∈ [N ] 7→ (i1, . . . , ik) ∈ [ k
√
N ]k,

PALL(i1, . . . , ik) := F (i).

ALLkN is an easier predicate (family) than INDEXk+1
N , as any CDS protocol for INDEXk+1

N

implies a CDS protocol for ALLkN with the same total communication complexity (e.g. [LVW17,
Section 2.3]).

The definitions of both predicates inherently require N to be a perfect k-th power. In the case
where N is not a k-th power, we can pad N to the nearest larger k-th power. When k ≤ logN , it’s
guaranteed that the nearest larger k-th power is no greater than N2. For the sake of our result, a
square blowup on N doesn’t matter.

2.2 k-party Private Simultaneous Messages (PSM)

In a k-party PSM scheme, there are k parties who jointly have input x, and they cannot commu-
nicate with each other, but have access to a common random string (CRS), as in the case of CDS.
There is also the PSM referee Charlie who wants to learn F(x), for a fixed functionality F. In the
PSM scheme, every party sends a single message to Charlie based on its piece of input and the
CRS. Given these messages, Charlie should be able to learn F(x) and nothing else about x.

Definition 3 (private simultaneous message (PSM)). Let Xt be the input space of the t-th party,
let X ⊆ X1 × . . . × Xk be the input space, and let M be the output space. Fix a functionality
F : X →M. A cc-bits private simultaneous message (PSM) protocol for F is a tuple of deterministic
functions (B1, . . . ,Bk,C):

Transmitting functions Bi : Xi ×W → {0, 1}cc,
Reconstruction function C : {0, 1}cc×k →M

satisfying the following properties:
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(reconstruction.) For all (x1, . . . , xk) ∈ X :

C(B1(x1;w), . . . ,Bk(xk;w)) = F(x1, . . . , xk)

(privacy.) There exists a simulator S, such that for any input tuple (x1, . . . , xk) ∈ X , the joint
distribution (B1(x1;w), . . . ,Bk(xk;w)) is perfectly indistinguishable from S(F(x1, . . . , xk)),

where the distributions are taken over w
r←W and the coin tosses of S.

Common Input. In the PSM functionalities we care about in this work, a part of the input is
shared among all parties. That is, the input of the t-th party is of the form x′t = (xt, y), where xt is
t-th party’s exclusive input, and y is shared input known by all parties but the referee Charlie. This
can be formalized by letting X ′t = Xt×Y as the t-th party’s input space and by defining the global
input space X as consisting of vectors ((x1, y1), . . . , (xk, yk)) where y1 = . . . = yk. For notational
simplicity, let F(x1, . . . , xk; y) denotes F((x1, y), . . . , (xk, y)) and let the transmission functions be
denoted as Bi(xi; y;w).

Functionality. We consider the following functionalities of interest:

• Affine functions AFFINEk: For vectors x1, . . . ,xk ∈ Rn and any affine function f : Rkn → R

FAFFINE(x1, . . . ,xk; f) = f(x1, . . . ,xk).

• Branching Program BPk
m: A mod-R branching program is a directed acyclic graph with a

source s and a sink t, where every edge is labeled with an affine function. Given an input
vector x, the value of an edge is the value of its label function when applied to x; the value
of an (s, t)-path is the product of the values on its edges; and the value of the branching
program is the sum of the values of all (s, t)-paths.

To formalize the branching program problem as a PSM functionality: let the branching
program be the shared input; split input vector x among the parties as their exclusive input.
More precisely, in BPk

m, there are k parties and a branching program with m nodes. Let fi,j
(1 ≤ i < j ≤ m) denote the affine function assigned to edge (i, j). The t-th party’s input is
xt ∈ Rn and {fi,j}i<j . The functionality BPk

m is defined as

FBP(x1, . . . ,xk; {fi,j}i<j) =
∑

s-t path p

∏
edge (i, j)

in p

fi,j(x1, . . . ,xk).

The affine function functionality AFFINEk is the special case of BPk when the associated
graph has only two nodes and one edge.

3 A Framework for Multi-Party CDS

In this section, we describe a framework for constructing multi-party conditional disclosure of in-
formation (CDS) protocols. Our framework relies on vector families that satisfy two properties
described below. The first is the property of being a “PIR encoding”, satisfied by matching vector
families and was used in [LVW17] to construct two-party CDS. The second is the existence of a
communication-efficient private simultaneous messages (PSM) protocol for a functionality associ-
ated to the PIR encoding scheme.
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PIR encoding. We define an (N, `)-PIR encoding as a family of N vectors (ui)i∈[N ] where each

ui ∈ Z`6, along with a mapping HD : Z`6 → Z`6 for every table (string) D ∈ {0, 1}N . The PIR
encoding property requires that for any index i ∈ [N ] and any vector w ∈ Z`6,〈

ui, HD(w + ui)−HD(w)
〉

= D[i] · φw,i (3)

where φw,i 6= 0.
As the name suggests, any PIR encoding scheme can be used to construct a 2-server information

theoretic private information retrieval (PIR) scheme. Indeed, the 2-server PIR schemes of [CKGS98,
WY05, DG15] can all be viewed as instances of this paradigm.

A Special-Purpose PSM Protocol. A PIR encoding scheme can also be used to construct
the following CDS protocol as described in [LVW17]. Alice holds a database D, and Bob holds an
index i and a secret message µ. Bob sends the pair (w + µui, 〈ui, r〉), and Alice sends HD(w) + r
to Charlie. Here, w and r come from the CRS. Charlie now has enough information to compute〈

ui, HD(w + µui)−HD(w)
〉

= D[i] · µ · φw,i

which reveals the secret µ if and only if D[i] 6= 0.
In (k + 1)-party CDS for INDEXN , the index i = (i1, . . . , ik) is divided equally among the

first k parties and the (k+ 1)th party holds the database D. Our plan is to have the first k parties
simulate what Bob did in the 2-party CDS. We describe our CDS protocol in Figure 1, which
assumes a PSM protocol for computing the k-party functionality

Faux : [
k
√
N ]× . . .× [

k
√
N ]× ({0, 1} × Z`6 × Z`6)→ Z`6 × Z6

where Faux(i1, . . . , ik; (µ,w, r)) 7→ (w + µui, 〈ui, r〉)
(4)

Here, w, r and µ are common inputs and the index i is divided equally among the first k parties.
This, in particular, will enable the k parties to simulate the Bob in the 2-party CDS setting, and
jointly send w+µui and 〈ui, r〉 to Charlie without revealing any extra information. More precisely,
our construction requires a PIR encoding such that there is a PSM for this functionality with
communication complexity ccPSM(N, `, k) that is as small as possible.

Theorem 3.1. Assume that there is an (N, `)-PIR encoding scheme (ui)i∈[N ] and a PSM for Faux

in (4) with communication complexity ccPSM(N, `, k), then there is a (k + 1)-party CDS protocol
for INDEXk+1

N (Figure 1) with communication complexity `+ ccPSM(N, `, k).

Proof. By the definition of PIR encoding, for any table D ∈ {0, 1}N , there exists a mapping
HD : Z`6 → Z`6 that satisfies equation (3). We now show correctness, privacy and efficiency of the
protocol.

Correctness. The correctness of the PSM protocol tells us that m1
B = w+µui and m2

B = 〈ui, r〉.
Equation (3) then directly implies that

〈ui, HD(w + µui)〉 − 〈ui, HD(w)〉 = D[i] · µ · φw,i
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CDS for INDEXk+1
N

Building blocks: An (N, `)-PIR encoding scheme (ui)
N
i=1

and a PSM protocol (B1, . . . ,Bk+1,C) for Faux in (4).
Input of Pt (1 ≤ t ≤ k): it ∈ [N1/k]
Input of Pk+1 (Alice): D ∈ {0, 1}N .
Shared Randomness: w, r ∈ Z`6, µ ∈ {0, 1} and randomness s for the PSM.

The protocol proceeds as follows.

• For 1 ≤ t ≤ k, the t-th party sends mpsm,t := Bt(it; (µ,w, r); s).

• Pk+1 (Alice) sends mA := r +HD(w).

• Charlie computes (m1
B,m

2
B) := C(mpsm,1, . . . ,mpsm,k).

• Charlie outputs 1 if 〈ui, HD(m1
B)〉 − 〈ui,mA〉+m2

B 6= 0, and outputs 0 otherwise.

Figure 1: (k + 1)-party CDS for INDEXk+1
N from PIR encodings and PSM.

where µ ∈ {0, 1} is the secret message. Charlie learns

〈ui,HD(m1
B)〉 − 〈ui,mA〉+m2

B

= 〈ui, HD(w + µui)〉 − 〈ui, r +HD(w)〉+ 〈ui, r〉
= 〈ui, HD(w + µui)〉 − 〈ui, HD(w)〉
= D[i] · µφw,i,

which, since φw,i 6= 0, gives µ if and only if D[i] = 1.

Privacy. Privacy follows by putting the following observations together.

• First, the joint distribution of m1
B and mA is uniformly random, since we are using (w, r) as

one-time pads;

• Secondly, when D[i] = 0, we have 〈ui, HD(w + µui)〉 − 〈ui, HD(w)〉 = 0. This means that
m2
B = 〈ui,mA〉 − 〈ui, HD(m1

B)〉 and thus can be simulated knowing only mA and m1
B (and,

of course, D and i);

• Finally, the joint distribution of mpsm,1, . . . ,mpsm,k can be perfectly simulated from (m1
B,m

2
B),

due to the privacy of the PSM.

Efficiency. Each party except Alice sends a PSM message of size at most ccPSM(N, `, k). Alice
sends a vector of size `. The communication complexity of a party is no more than `+ccPSM(N, `, k).
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4 PIR Encoding from Decomposable Matching Vectors

These two ingredients used to construct multi-party CDS, namely PIR encodings and the special-
purpose PSM protocol are connected by the property of decomposability.

Definition 4 (k-decomposability). Let N ′ := k
√
N . A family of vectors (ui)

N
i=1 is k-decomposable

if there exist vector families (u1,i)
N ′
i=1, . . . , (uk,i)

N ′
i=1 such that under the natural mapping i 7→

(i1, . . . , ik) ∈ [N ′]k

ui = u1,i1 ◦ . . . ◦ uk,ik

for all i ∈ [N ]. Here, ◦ denotes the component-wise multiplication operation. A family of vectors
(ui)i∈[N ] is called a k-decomposable PIR encoding if it is a PIR encoding and it is k-decomposable.

In this section, we construct a k-decomposable (N, `)-PIR encoding with ` = 2O(
√

logN log logN).
In section 5, we show an efficient PSM for functionality (4) as long as (ui)i∈[N ] is k-decomposable.
Put together, they fulfill the assumptions in Theorem 3.1 and give us a communication-efficient
multiparty CDS protocol.

4.1 PIR Encodings from Matching Vector Families

First, we define matching vector families and show that they give rise to PIR encodings. Our
exposition here follows [LVW17] and uses techniques from [DG15].

Definition 5 (Matching vector family). For integers N, `, a collection of N pairs of vectors
{(ui,vi)}Ni=1 where all vectors are in Z`6, is an (N, `)-matching vector family if

• for any i ∈ [N ], 〈ui,vi〉 = 0,

• for any i 6= j ∈ [N ], 〈ui,vj〉 ∈ {1, 3, 4}.

where all operations are done over Z6.

This definition is a specialization of the one from [Yek08, Efr12], and is sufficient for our pur-
poses. The magical fact about matching vector families is that they exist for values of ` that are
significantly less than N . (In contrast, if one replaces Z6 with Zp for a prime p, we know that
` ≥ N1/(p−1) [BF98, BDL12]. It is thus a surprise that one can do much better when the modulus
is a (small) composite number.

Lemma 4.1 ([Gro00]). For every integer N , there is a (N, `)-matching vector family {(ui,vi)}i∈[N ]

of length ` = 2O(
√

logN log logN) = No(1).

We now show that any MV family gives rise to a PIR encoding scheme. This lemma was
observed in the current form in [LVW17] and is implicit in the 2-server PIR protocol of [DG15].

Lemma 4.2 ([LVW17]). If {(ui,vi)}Ni=1 is an (N, `)-matching vector family, then the family of
vectors {1‖ui}Ni=1 is an (N, `+ 1)-PIR encoding.

Proof. Define ûi = 1‖ui ∈ Z`+1
6 and v̂i = 0‖vi ∈ Z`+1

6 for all i ∈ [N ]. Then {(ûi, v̂i)}Ni=1 remains
an (N, `+ 1)-matching vector family since

〈ûi, v̂i〉 = 〈ui,vi〉.
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Given a database D ∈ {0, 1}N , an index i ∈ [N ], and randomness w ∈ Z`6, define auxiliary
functions G,G′ : {0, 1} → Z6, Following [DG15]. (G and G′ implicitly depend on i, D and w). G
and G′ are defined as follows.

G(µ) :=
∑
j∈[N ]

D[j] · (−1)〈µûi+w,v̂j〉, and

G′(µ) :=
∑
j∈[N ]

〈ûi, v̂j〉 ·D[j] · (−1)〈µûi+w,v̂j〉. (5)

A straightforward computation shows the following (see [LVW17, Theorem 4.2]):

G′(1)−G(1) +G′(0)−G(0) = D[i] · (−1)〈w,v̂i〉. (6)

For each D ∈ {0, 1}N , define HD : Z`6 → Z`6 by

HD(z) := (−1)z[1] ·
∑
j∈[N ]

(v̂j − e1) ·D[j] · (−1)〈z,v̂j〉

where e1 = (1, 0, . . . , 0) is the first vector in the standard basis. Recalling that ûi[1], the first bit
of ûi, equals 1, we have

〈ûi, HD(µûi + w)〉 = (−1)µûi[1]+w[1] ·
∑
j∈[N ]

〈ûi, v̂j − e1〉 ·D[j] · (−1)〈µûi+w,v̂j〉

= (−1)µ+w[1] ·
∑
j∈[N ]

(〈ûi, v̂j〉 − 1) ·D[j] · (−1)〈µûi+w,v̂j〉

= (−1)µ+w[1] ·
(
G′(µ)−G(µ)

)
.

Combined with equation (6), we see that:

〈ûi, HD(ûi + w)〉 − 〈ûi, HD(w)〉 = (−1)1+w[1] · (G′(1)−G(1) +G′(0)−G(0))

= (−1)1+w[1] ·D[i] · (−1)〈w,v̂i〉

= D[i] · φw,i.

where φw,i := (−1)1+w[1]+〈w,v̂i〉. This completes the proof.

4.2 Decomposable Matching Vector (DMV) Families

The main contribution of this section is the definition and construction of a decomposable matching
vector family and thus, decomposable PIR encoding schemes.

Definition 6 (Decomposable Matching Vector Family). For integers N, ` and k ≤ logN , a collec-
tion of vectors u1, . . . ,uN ,v1, . . . ,vN ∈ Z`6 is a k-decomposable (N, `)-matching vector family if it
is an (N, `)-matching vector family and (ui)

N
i=1 is k-decomposable (as in definition 4).

First, we show that decomposable matching vector families imply decomposable PIR encodings,
extending Lemma 4.2.
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Lemma 4.3. For integers N, ` and k ≤ logN , if {(ui,vi)}Ni=1 is a k-decomposable (N, `)-matching
vector family, then the family {1‖ui}Ni=1 is a k-decomposable (N, `+ 1)-PIR encoding.

Proof. By Lemma 4.2, {1‖ui}Ni=1 is a (N, `+ 1)-PIR encoding.
Let N ′ = k

√
N and let {u1,i}N

′
i=1, . . . , {uk,i}N

′
i=1 be the k-decomposition of {ui}Ni=1, then {1‖ui}Ni=1

is a k-decomposable and {1‖u1,i}N
′

i=1, . . . , {1‖uk,i}N
′

i=1 is a k-decomposition of it.

Thus, our main goal is to construct a decomposable matching vector family (whose parameters
are slightly worse than that of the [Gro00] matching vector family). To this end, we build on the
construction of MV families from the work of Grolmusz [Gro00].

Lemma 4.4 (implicit in [Gro00]). For integers h,w,N and any distinct vectors x1, . . . ,xN ∈
{0, 1}h of Hamming weight exactly w. Then, there exists a matching vector family of N vectors
where the vectors have length ` = hO(

√
w). In particular, the vectors ui are indexed by subsets S of

[h] of size at most O(
√
w) and defined as follows:

ui[S] =
∏
j∈S

xi[j]

Proof. (Sketch.) Observe that for all i, j ∈ [N ]:

‖xi ◦ xj‖1

{
= w if i = j

< w if i 6= j

Let thresw : {0, 1}h → Z6 denote the function which maps 0-1 vectors of Hamming weight exactly
w to 0, and those of weight less than w to {1, 3, 4}. This means that

thresw(xi ◦ xi) = 0

thresw(xi ◦ xj) ∈ {1, 3, 4} if i 6= j

The choices of Z6 and {1, 3, 4} come from the work of Barrington, Beigel and Rudich [BBR94]
which tells us that thresw can be computed by a multilinear polynomial over Z6 of total degree
O(
√
w).

Next, we will construct the vectors ui and vj of length ` = hO(
√
w) from xi and xj respectively

so that 〈ui,vj〉 = thresw(xi ◦xj) for all i, j. The bound on ` comes from the fact that we can write
the evaluation of a multilinear polynomial of total degree O(

√
w) in h variables as the inner product

of two vectors of length ` = hO(
√
w). In particular, ui will be defined as above and vj will be the

coefficient vector of the degree O(
√
w) multilinear polynomial fj which maps x 7→ thresw(x◦xj).

In our setting, the index i = (i1, . . . , ik) ∈ [ k
√
N ]× · · · × [ k

√
N ] is divided amongst k players, as

described in Section 2.1.

Lemma 4.5. For integers N and k ≤ logN , there exists a k-decomposable (N, `)-matching vectors
family where ` = 2O(

√
logN ·log logN).

Proof. Let h,w be multiples of k such that
(h/k
w/k

)k
≥ N . Let y1, . . . ,y k√N be distinct vectors in

{0, 1}h/k, each of Hamming weight w/k. For each i = (i1, . . . , ik) ∈ [N ], we define

xi := yi1‖ · · · ‖yik ∈ {0, 1}
h
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Clearly, x1, . . . ,xN is a collection of distinct vectors with Hamming weight w, and by Lemma 4.4,
there exists a matching vector family {(ui,vi)}i∈[N ], where the ui’s are indexed by subsets S ⊆ [h]
of size at most O(

√
w) and satisfies

ui[S] =
∏
j∈S

xi[j] =

k∏
t=1

∏
j∈St

xi[j].

where St := S ∩ {(t− 1) · hk + 1, . . . , t · hk}. Now, if we define

ut,it [S] :=
∏
j∈St

xi[j] =
∏
j∈St

yit [j − (t− 1) · hk ],

we have ui = u1,i1 ◦ . . . ◦ uk,ik , giving us a k-decomposition.
Set w = dlogN/ke · k and h = 2w (so that h,w are multiples of k). Then,(

h/k

w/k

)k
≥ ((h/w)w/k)

k
= 2w ≥ N

Also, we have ` = hO(
√
w) = 2O(

√
logN ·log logN).

As a result, we have the main theorem of this section:

Theorem 4.6. For integers N and k ≤ logN , there exists a k-decomposable (N, `)-PIR encoding
where ` = 2O(

√
logN ·log logN).

5 A Special-Purpose PSM Protocol

Given the decomposable PIR encoding from Section 4.2, the final piece required to instantiate
the framework in Section 3 is a special purpose PSM protocol for the functionality described in
Equation 4.

Theorem 5.1. For integers N, ` and k ≤ logN , if (ui)
N
i=1 is k-decomposable, then there is a PSM

for the functionality

Faux : [
k
√
N ]× . . .× [

k
√
N ]× ({0, 1} × Z`6 × Z`6)→ Z`6 × Z6

where Faux(i1, . . . , ik; (µ,w, r)) 7→ (w + µui, 〈ui, r〉)
(4)

with communication complexity O(`k2) per party.

In order to construct a efficient PSM protocol for this specialized functionality, we show that (a)
this functionality can be written as an affine mod-6 branching program of size O(k · `) and (b) use
the fact that there are efficient PSM protocols that compute affine branching programs over rings
[IK00, IK02, CFIK03] where the total communication is polynomial in the size of the branching
program.

Lemma 5.2. There is a PSM protocol for the k-party affine branching program functionality BPk
m

over the ring Z6 with communication complexity O(m2) per party.
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Proof. A mod-Z6 branching program can be locally decomposed into a mod-F2 branching program
and a mod-F3 branching program using Chinese remainder theorem. [IK02] show a cc = O(m2 log p)
PSM protocol for mod-Fp branching program when p is a prime.

Moreover, [IK02] can be immediately extended to branching programs over any commutative
rings; see Appendix A for more details. It is further extended by [CFIK03] to branching programs
over any rings.

Proof of Theorem 5.1. Let {u1,i}
k√N
i=1 , . . . , {uk,i}

k√N
i=1 ⊆ Z`6 be the decomposition, then under the

natural mapping i 7→ (i1, . . . , iN ) ∈ [ k
√
N ]k, we have

ui = u1,i1 ◦ . . . ◦ uk,ik

for all i ∈ [N ].

For the functionality

F
(1)
aux(i1, . . . , ik;µ,w) = µui + w ∈ Z`6,

its j-th output bit can be written as

(µui + w)[j] = µu1,i1 [j]u2,i2 [j] . . .uk,ik [j] + w[j].

Since the t-th party (1 ≤ t ≤ k) can compute ut,it locally, the j-th bit of µui + w can be computed
by a mod-Z6 branching program with O(k) nodes. By Lemma 5.2, there exists a PSM scheme
evaluating the j-th output bit using O(k2) communication per party. Thus, all ` outputs can be
computed with communication complexity O(`k2) per party.

For the functionality

F
(2)
aux(i1, . . . , ik; r) = 〈ui, r〉 ∈ Z6,

let s ∈ Z`6 be a random vector sampled from CRS such that
∑`

j=1 s[j] = 0. Then, instead of
computing the functionality, the parties compute together the functionality

F
(2)′
aux (i1, . . . , ik; r, s) = ui ◦ r + s ∈ Z`6,

It is easy to see that ui ◦ r + s reveals 〈ui, r〉 and nothing more. The j-th bit of ui ◦ r + s can be
written as

(ui ◦ r + s)[j] = u1,i1 [j]u2,i2 [j] . . .uk,ik [j]r[j] + s[j],

which can again be computed by a simple affine branching program with O(k) nodes. By Lemma
5.2, there exists a PSM scheme evaluating this with O(k2) bits of communication per party. Thus,
to compute all the bits, we need O(`k2) bits of communication.

Clearly, once Charlie learns ui ◦ r + s, he can add up all the bits to get 〈ui, r〉.

6 Putting Together

We finally put together all the pieces to construct a multiparty CDS scheme, and various types of
secret sharing schemes.
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6.1 Multi-party CDS for INDEXk+1
N

We obtain the multiparty CDS protocol by instantiating our general framework in Section 3 with
the decomposable PIR encodings in Section 4.2 and the PSM protocol in Section 5.

Theorem 6.1. For 1 ≤ k ≤ logN , there is a (k + 1)-party CDS protocol for INDEXk+1
N whose

communication complexity is 2O(
√

logN log logN).

Proof. Theorem 3.1 gives us a k+1-party CDS protocol for INDEXk+1
N assuming a k-decomposable

PIR encoding scheme and a PSM protocol for the associated functionality Faux. Theorem 4.6
constructs such a k-decomposable (N, `)-PIR encoding scheme with ` = 2O(

√
logN log logN) and

Theorem 5.1 constructs a PSM protocol for the associated functionality Faux with communication
complexity O(k2 · `). Put together, applying Theorem 3.1, we get a (k + 1)-party CDS protocol
with communication complexity O(`+ k2`) = 2O(

√
logN log logN).

Because CDS for ALLkN is easier than CDS for INDEXk+1
N , we also get:

Corollary 6.2. For 1 ≤ k ≤ logN , there is a k-party CDS protocol for ALLkN whose communica-

tion complexity is 2O(
√

logN log logN).

6.2 From CDS to Non-Monotone Secret Sharing

A non-monotone secret-sharing scheme for access function F is a randomized algorithm that on
input a secret bit, outputs n pairs of shares (si,0, si,1)i∈[n] such that for any (x1, . . . , xn) ∈ {0, 1}n,
the n shares (s1,x1 , . . . , sn,xn) determine the secret if F (x1, . . . , xn) = 1 and reveal nothing about
the secret otherwise.

Definition 7 (Non-monotone Secret Sharing). Given a function F : {0, 1}n → {0, 1}, a non-
monotone secret-sharing scheme for access function F is a randomized algorithm

nmSS :M×W → ({0, 1}cc)2n

that on input a secret bit, outputs n pairs of shares s1,0, s1,1, . . . , sn,0, sn,1 ∈ {0, 1}cc satisfying the
following properties:

(correctness.) There exists a reconstruction algorithm C : {0, 1}n × ({0, 1}cc)n → M such that
for all (x1, . . . , xn) ∈ {0, 1}n that F (x1, . . . , xn) = 1 and for all µ ∈M, w ∈ W,

nmSS(µ;w) = (s1,0, s1,1, . . . , sn,0, sn,1) =⇒ C(x1, . . . , xn, s1,x1 , . . . , sn,xn) = µ.

(privacy.) There exists a simulator S such that for all tuple (x1, . . . , xn) ∈ {0, 1}n satisfying
F (x1, . . . , xn) = 0, the joint distribution of (s1,x1 , . . . , sn,xn) is perfectly indistinguishable
from S(x1, . . . , xk), where (s1,0, s1,1, . . . , sn,0, sn,1) := nmSS(µ;w) and the randomness are

taken over w
r←W and the coin tosses of S.

Standard monotone secret-sharing correspond to the special case where F is monotone and
s1,0 = · · · = sn,0 = ⊥. In such case, let s1, . . . , sn denotes s1,1, . . . , sn,1 respectively.

Let N := 2n. It is not hard to see that non-monotone secret sharing for all n-party access
functions F is the same as n-party CDS for ALLnN . This connection is almost syntactic, and can
be formalized as follows.
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Lemma 6.3. For any access function F : {0, 1}n → {0, 1}, there is a non-monotone secret-sharing
scheme for F with share size cc if and only if there is a CDS scheme for ALLn2n with communication
complexity cc when the predicate is F .

Proof. Assume (B1, . . . ,Bn) is a CDS for ALLn2n with predicate function F , a non-monotone secret
sharing scheme for F can be defined as

nmSS(µ;w) = (B1(µ, 0;w),B1(µ, 1;w), . . . ,Bn(µ, 0;w),Bn(µ, 1;w)).

Assume nmSS is a non-monotone secret sharing scheme for access function F . Then (B1, . . . ,Bn)
is a CDS for ALLn2n with predicate function F if Bt(xt;w) outputs st,xt and st,xt is defined as
(s1,0, s1,1, . . . , sn,0, sn,1) := nmSS(µ;w).

Thus, we obtain the following theorem, disproving Conjecture 2.

Theorem 6.4. There is a non-monotone secret-sharing for the family of all access functions F :
{0, 1}n → {0, 1} with total share size 2O(

√
n logn) bits.

6.3 From Non-Monotone to Monotone Secret Sharing

We describe the following folklore transformation which transforms a non-monotone secret-sharing
scheme for any F : {0, 1}n → {0, 1} into a monotone secret-sharing scheme with roughly the same
share size for a related function F ′.

Lemma 6.5. For any function F : {0, 1}n → {0, 1}, a non-monotone secret sharing scheme for
F with share size cc implies a monotone secret sharing scheme for a monotone access function
F ′ : {0, 1}2n → {0, 1} with share size cc + 2, where F ′ : {0, 1}2n → {0, 1} is defined as

F ′(x′1, . . . , x
′
2n) =


1 if ∃i such that x′2i−1 = x′2i = 1

0 else if ∃i such that x′2i−1 = x′2i = 0

F (x′2, x
′
4, . . . , x

′
2n) otherwise.

Proof. It is easy that F ′ is monotone. Let nmSS be the non-monotone secret-sharing scheme for
F , we construct a monotone secret sharing scheme mSS for F ′ as follows:

On input µ ∈ {0, 1}

1. Sample bits b1, . . . , bn, r1, . . . , rn and w ∈ W uniformly at random.

2. Let (s1,0, s1,1, . . . , sn,0, sn,1) := nmSS(µ⊕ r1 ⊕ . . .⊕ rn;w).

3. Output (s′1, . . . , s
′
2n) where

s′2i−1 := (si,0, ri, bi) s′2i := (si,1, ri, bi ⊕ µ).

The reconstruction algorithm for mSS either computes µ from (bi, bi⊕µ), or runs the one for nmSS
to recover µ⊕ r1⊕ · · ·⊕ rn and thus µ. More precisely, we argue correctness and privacy via a case
analysis. For any (x′1, . . . , x

′
2n) ∈ {0, 1}2n, given the shares (sj)x′j=1:
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Case 1: ∃i s.t. (x′2i−1, x
′
2i) = (1, 1). Here, F ′(x′1, . . . , x

′
2n) = 1, and the reconstruction algorithm

can recover µ from bi, bi ⊕ µ given in s′2i−1, s
′
2i.

Case 2: ∃i s.t. (x′2i−1, x
′
2i) = (0, 0). Here, F ′(x′1, . . . , x

′
2n) = 0, and privacy follows from the fact

that ri is perfectly hidden, and therefore µ is also perfectly hidden.

Case 3: ∀i, (x′2i−1, x
′
2i) ∈ {(0, 1), (1, 0)}. So F ′(x′1, . . . , x

′
2n) = F (x′2, x

′
4, . . . , x

′
2n). First, observe

that the shares (sj)x′j=1 = (s′2i−1+x′2i
)i∈[n] and reveal exactly

s1,x′2
, s2,x′4

, . . . , sn,x′2n , r1, . . . , rn.

Now, if F (x′2, x
′
4, . . . , x

′
2n) = 1, correctness of nmSS enables Charlie to recover µ⊕r1⊕ . . .⊕rn

and thus µ. Otherwise, privacy of nmSS hides µ⊕ r1 ⊕ . . .⊕ rn, thus µ is perfectly hidden.

This completes the proof.

As for non-monotone secret sharing, there are double exponential different access functions.
Under the mapping specified in Lemma 6.5, they are mapped to different monotone functions.
Thus, we obtain the following theorem, disproving Conjecture 1.

Theorem 6.6. There is a collection F̂n of 22n/2
monotone functions over {0, 1}n, such that there

is monotone secret sharing scheme for F̂n with share size 2O(
√
n logn) bits.

To obtain the more general statement in Theorem 1 (informal), we just apply the above con-
struction to the first log s bits of the input.

7 Linear CDS and Secret Sharing

A CDS protocol is linear if the transmitting functions are linear on the secret and randomness (not
necessarily linear on the inputs). A secret sharing scheme is linear if the share generation algorithm
is linear on the secret and randomness.

We present a linear non-monotone secret sharing scheme (equivalently, a multiparty CDS pro-
tocol) for every access function over {0, 1}n with shares of size O(2n/2). It is sufficient to construct
a linear (n+ 1)-party CDS for INDEXn+1

2n where each party sends O(2n/2) bits. The construction
will follow our general framework for building multi-party CDS from 2-party CDS.

In CDS for INDEXn+1
2n , each of the first n parties holds a bit of i ∈ {0, 1}n, the last party

holds a truth-table D ∈ {0, 1}2n , the secret is disclosed if and only if D[i] = 1. As a warm-up, we
recap the 2-party linear CDS for INDEX2

2n with total communication O(2n/2).

2-party CDS [GKW15]. Bob holds i ∈ {0, 1}n and split it into higher half jH ∈ {0, 1}n/2 and

lower half jL ∈ {0, 1}n/2. The shared randomness is w, r ∈ {0, 1}2n/2
. Bob sends

m1
B := µejL + w ∈ {0, 1}2n/2

, m2
B := r[jH ]

to Charlie. Alice holds the truthtable D ∈ {0, 1}2n which can be viewed as a 2n/2 × 2n/2 matrix,
sends

mA := Dw + r ∈ {0, 1}2n/2
.
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Charlie computes
ejH ·D ·m1

B − ejH ·mA +m2
B

= ejH ·D · (µejL + w)− ejH · (Dw + r) + r[jH ]

= µejH ·D · ejL
= µD[i].

(7)

PSM building block. Following our general framework for building multi-party CDS from 2-
party CDS, the crux is to construct a “linear” n-party PSM for the following functionality where
each party sends O(2n/2) bits.

(jH ; r) 7→ r[jH ] ∈ {0, 1} (8)

(jL; w, µ) 7→ µejL + w ∈ {0, 1}2n/2
(9)

where w ∈ {0, 1}2n/2
. For this, we should use “partial garbling” [IW14] and exploit the fact that

the PSM does not need to protect the privacy of jH , jL, which we may treat as “public” inputs.
In addition, observe that the computation in (8) and (9) are linear on the “private” inputs r,w, µ.
Our goal is a protocol where

• the communication of the “partial garbling PSM” is O(2n/2).

• each party’s PSM message is linear in r,w, µ and the PSM randomness.

As a partial PSM protocol for functionality (8): Sample random vectors r1, . . . , rn/2 ∈ {0, 1}2
n/2

such that r =
∑n/2

t=1 rt. For every 1 ≤ t ≤ n/2, the party who holds jHt sends rt[j] for all j ∈ {0, 1}n/2
such that jt = jHt . Charlie can reconstruct r[jH ] =

∑
t rt[j

H ].
As a partial PSM protocol for functionality (9): For every 1 ≤ t ≤ n/2, the party who holds jLt

sends w[j] for all j ∈ {0, 1}n/2 such that jt 6= jLt . One party sends µ+
∑

j w[j] in addition. Charlie

can reconstruct vector µejL + w as he receives all the bits of it except the jL-th bit and the jL-th
bit can be recovered from the sum the vector and the rest of the vector.

Theorem 7.1. For even k ≤ logN , there is a (k + 1)-party linear CDS protocol for INDEXk+1
N

(Figure 2) whose communication complexity is O(
√
N) per party.

Proof. The argument for correctness is the same as that for 2-party CDS: Let r :=
∑

t rt. Charlie
learns w′ = µejL + w from the first k/2 parties, learns r[jH ] from the following k/2 parties, gets
Dw + r from the last party (Alice), then he can reconstruct µ ·D[i] using equation (7).

Privacy follows from the following observations:

• When D[i] = 0, the joint distribution of w′,mA, r[iH ] can be simulated from D, i without
knowing µ. This is due the security of 2-party CDS for INDEX[GKW15].

• The messages from the first k/2 parties together with mD can be determined by (w′, jL): the
messages from the first k/2 parties all bits in w′; and mD =

∑
j w′[j].

• The messages from the following k/2 parties can be simulated from (r[jH ], jH): sample
rk/2+1, . . . , rk such that

∑
t rt[j

H ] = r[jH ]; the t-th party sends rt[j] for all j ∈ [ k
√
N ]k/2 such

that jt−k/2 = it.
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CDS for INDEXk+1
N

Input of Pt (1 ≤ t ≤ k): it ∈ [ k
√
N ] and µ ∈ {0, 1}.

Input of Pk+1 (Alice): D ∈ {0, 1}
√
N×
√
N .

Shared Randomness: w, rk/2+1, . . . , rk ∈ {0, 1}
√
N

The protocol proceeds as follows.

• For 1 ≤ t ≤ k/2, the t-th party sends w[j] for all j ∈ [ k
√
N ]k/2 such that jt 6= it.

• For k/2 + 1 ≤ t ≤ k, the t-th party sends rt[j] for all j ∈ [ k
√
N ]k/2 such that

jt−k/2 = it.

• Pk+1 (Alice) sends mA := Dw +
∑

t rt.

• In addition, one of parties sends mD := µ+
∑

j w[j].

• Charlie computes w′ := w + µeiL by the following:
For every j 6= iL, w′[j] = w[j] and w[j] is sent by one of the first k/2 parties. And
w′[iL] := mD −

∑
j 6=iL w′[j].

• Charlie outputs 1 if eiH ·D ·w′−mA[iH ] +
∑

t rt[i
H ] = 1, and outputs 0 otherwise.

Figure 2: (k + 1)-party linear CDS for INDEXk+1
N , when k is even.

Theorem 7.2. There is a linear non-monotone secret-sharing for the family of all access functions
F : {0, 1}n → {0, 1} with share size O(2n/2) bits for each party.

Proof. (Sketch) Use Lemma 6.3 to construct non-monotone secret sharing from multi-party CDS
for ALL, with the observation that the transformation in Lemma 6.3 preserves linearity.
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A Private Simultaneous Message for Branching Program over Com-
mutative Rings

We sketch the PSM schemes from [IK02, CFIK03] for branching programs over commutative rings.

PSM for AFFINEk
m

t-th Party’s Input: xt ∈ Rn.
Shared Input: Affine function f : Rnk → R such that

fy1,...,yk,c(z1, . . . , zk) := 〈z1,y1〉+ . . .+ 〈zk,yk〉+ c

Shared Randomness: r1, . . . , rk−1 ∈ R.

• The t-th party (for 1 ≤ t < k) sends mt := 〈xt,yt〉+ rt

• The k-th party sends mk := 〈xk,yk〉+ c−
∑k−1

t=1 rt,

• Charlie outputs
∑k

t=1mt.

Figure 3: The log |R|-bit PSM protocol for AFFINEk.

Theorem A.1 (folklore). There is a PSM scheme (Figure 3) for AFFINEk over commutative
ring R such that every party sends one ring element.

Proof. The correctness is straight-forward,

k∑
t=1

mt =

k−1∑
t=1

(〈xt,yt〉+ rt) + 〈xk,yk〉+ c−
k−1∑
t=1

rt =

k∑
t=1

〈xt,yt〉+ c = f(x1, . . . ,xk).

Privacy follows from the following observations:

• the joint distribution of m1, . . . ,mk−1 is uniformly random, since we are using (r1, . . . , rk−1)
is one-time pads;

• mk is determined by m1, . . . ,mk−1 and f(x1, . . . ,xk) as mk = f(x1, . . . ,xk)−
∑k−1

t=1 mt.
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PSM for BPk

t-th Party’s Input: xt ∈ Rn.
Shared Input: Affine functions Fi,j : Rnk → R for 1 ≤ i ≤ j ≤ m.
Shared Randomness: {L1,j}mj=2 ∈ Rm−1, {Ri,j}1≤i<j≤m ∈ Rm(m−1)/2

and randomness for 1
2m(m+ 1) nested PSM runs for AFFINEk

• Define matrix L,R such that

Li,j =


1, if i = j

L1,j , if 1 = i < j

0, otherwise

Ri,j =


1, if i = j

Ri,j , if i < j

0, if i > j

(10)

Each of the k parties independently computes affine functions F ′i,j : Rnk → R for
1 ≤ i ≤ j ≤ m defined as

F ′(z1, . . . , zn) = L · F (z1, . . . , zn) ·R

where F ′ : Rnk → Rm×m is defined as

(
F ′(z1, . . . , zk)

)
i,j

=


F ′i,j(z1, . . . , zk), if 1 ≤ i ≤ j ≤ m
−1, if i = j + 1

0, if i > j + 1

• Charlie learns C = F ′(x1, . . . ,xk): For each 1 ≤ i ≤ j ≤ m, Charlie learns Ci,j =
F ′i,j(x1, . . . ,xk) via a PSM scheme (Figure 3) for AFFINEk.

• Charlie outputs detC

Figure 4: The (1
2m(m+ 1) log |R|)-bit PSM protocol for BPk

m.

Putting the two together, we can simulate Charlie’s view given just f(x1, . . . ,xk).

Lemma A.2 ([IK02]). For any matrix M ∈ Rm×m such that Mi,j = −1 for i = j+1 and Mi,j = 0
for i > j + 1, there exist matrix L,R ∈ Rm×m satisfying (10) such that

M =


1 L1,2 · · · L1,m

1
. . .

1

︸ ︷︷ ︸
L

·


detM

−1
. . .

−1

 ·


1 R1,2 · · · R1,m

1
. . .

...
. . . Rm−1,m

1

︸ ︷︷ ︸
R
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Lemma A.3 ([IK02]). For any matrix M ∈ Rm×m such that Mi,j = −1 for i = j+1 and Mi,j = 0
for i > j+ 1, the distribution of L ·M ·R is determined by detM , where L,R ∈ Rm×m are random
matrices satisfying (10).

Proof. Let LM , RM be the matrices implied by Lemma A.2 such that LM , RM are upper triangular

matrices with 1’s in their diagonal, L
(M)
i,j = 0 for 1 < i < j ≤ m and

M = LM ·


detM

−1
. . .

−1

 ·RM
L ·M ·R can be written as

L ·M ·R = L · LM︸ ︷︷ ︸
same distribution as L

·

 detM
−1

. . .
−1

 · RM ·R︸ ︷︷ ︸
same distribution as R

The joint distribution of (L · LM , RM ·R) is the same as (L,R), thus detM determines the distri-
bution of L ·M ·R.

Theorem A.4. There is a PSM scheme (Figure 4) for BPk
m over commutative ring R such that

every party sends m(m+1)
2 ring elements.

Proof. Correctness is straight-forward, as

detC = detF ′(x1, . . . ,xk) = detL · detF (x1, . . . ,xk) · detR = detF (x1, . . . ,xk).

Privacy follows from the following observations:

• The distribution of C = L ·F (x1, . . . ,xk) ·R is determined by detF (x1, . . . ,xk) (Lemma A.3);

• For each 1 ≤ i ≤ j ≤ m, Charlie learns Ci,j in an independent nested PSM scheme, the
corresponding messages can be simulated given C.

Thus Charlie’s view can be simulated by first sampling C given detF (x1, . . . ,xk), then simulating
the messages using C and the simulator of the underlaying PSM.
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