
HAL Id: hal-01699813
https://hal.science/hal-01699813

Submitted on 2 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Complexity of Weak Consistency
Gaoang Liu, Xiuying Liu

To cite this version:
Gaoang Liu, Xiuying Liu. The Complexity of Weak Consistency. the 12th International Frontiers of
Algorithmics Workshop, May 2018, Guangzhou, China. �hal-01699813�

https://hal.science/hal-01699813
https://hal.archives-ouvertes.fr

The Complexity of Weak Consistency

Gaoang Liu1,2 and Xiuying Liu2,3

1 State Key Laboratory of Computer Science,
Institute of Software, Chinese Academy of Science

2 University of Chinese Academy of Sciences
Gaoang@ios.ac.cn

3 Wispirit Technology Ltd
Liuxiuying@66nao.com

Abstract. Weak consistency is a memory model that is frequently considered for shared
memory systems. Its most distinguishable feature lies in a category of operations in two
types: data operations and synchronization operations. For highly parallel shared memory
systems, this model offers greater performance potential than strong models such as
sequential consistency by permitting unconstrained optimization on updates propagation
before synchronization is invoked. It captures the intuition that delaying updates produced
by data operations before triggering a synchronization operation does not typically affect
the program correctness.
To formalize the connection between concrete executions and the corresponding specification,
we propose in this work a new approach to define weak consistency. This formalization,
defined in terms of distributed histories abstracted from concrete executions, provides an
additional perception of the concept and facilitates automatic analysis of system behaviors.
We then investigate the problems on verifying whether implementations have correctly
implemented weak consistency. Specifically, we consider two problems: (1) the testing
problem that checks whether one single execution is weakly consistent, a critical problem
for designing efficient testing and bug hunting algorithms, and (2) the model checking
problem that determines whether all executions of an implementation are weakly consistent.
We show that the testing problem is NP-complete, even for finite processes and short
programs. The model checking problem is proven to be undecidable.

1 Introduction

Many modern computer architectures and multi-core processors support shared memory in
hardware, a design that facilitates fast access and provides user-friendly programming perspective
to memory. A shared memory system permits concurrent accesses from multiple processes to a
single shared address space. To avoid undesirable behaviors, memory consistency must be properly
maintained. Informally, a memory consistency specifies the guarantees that a system makes on
the value of read operations from the shared memory. Strong models such as atomic consistency
(also known as linearizability) [1] and sequential consistency (SC) [2] are intuitively composed
but restrictive in performance as they would severely restrict the set of possible optimization,
such as pipelining write accesses and caching write operations. Also, implementing these strong
consistency criteria in message-passing system is very expensive. For better performance, in the
past several decades many weaker consistency models, for example weak consistency (WC) [3],
causal consistency (CC) [4] and PRAM consistency [5], have been proposed, explored and revised
as various attempts.

Weak consistency was first proposed by Dubois et al. as weak ordering [3]. The motivation
for designing this model is to tackle with the logical problems of memory accesses buffering
stemmed from multiprocessor systems, especially in the cache-based systems or systems with

a distributed global memory. Adve and Hill generalized weak consistency to the order strictly
necessary for programmers with “SC for DRF” [6], which was re-specified and served as the
cornerstone for Java memory model [7] and C++ [8]. A weak consistent system distinguishes two
types of variables: shared program variables that are visible to all processes; and synchronizing
variables for concurrent executions synchronization. The latter can be recognized by instructions
such as TEST AND SET (TAS), COMPARE AND SWAP (CAS), or special LOAD and STORE
instructions. In the Java memory model, for example, to allow synchronization races but not data
races, variables having potential to race must be tagged as synchronization, using keywords such
as volatile or atomic. Programmers can also create synchronization locks implicitly with Java’s
monitor-like synchronized methods.

Based on the type of variable it accesses, an operation in a weakly consistent system is
either a data operation and a synchronization operation. The latter works in a way similar to
fence instructions, whose initiation suggests all previous references to the shared variables have
completed and all future references have to wait. The idea of exploiting fence operations to achieve
synchronized concurrency is also widely adopted by many commercial models. For example, the
Power model [9] implemented by IBM PowerPC is similar in spirit to weak consistency by utilizing
varieties of fences to synchronize concurrently executing processes. PowerPC uses an instruction
called Hwsync to keep all writes in a consistent total order, it can also achieve sequentially
consistent behaviors if Hwsync is used together with address dependencies and message passing
[10]. In addition to PowerPC, another commercial example implementing a model that relies
heavily on proper synchronization is ARM multiprocessor [11]. Similarly, ARM has multiple
flavors of fences, including one data memory barrier that can order all memory accesses.

Generally, developing distributed implementations to satisfy a relaxed consistency model is
very challenging because of the complicated issues related to communication. At different stages of
development, the developers need to exploit different testing and verification techniques to validate
the system they have built so far. This highlights the need for more research on the feasibility and
efficiency of algorithms that are utilized during the development. We thus investigate in this paper
two fundamental problems: (1) the testing problem that asks whether one given execution of an
implementation is weakly consistent, and (2) the model checking problem (or verifying problem)
that asks whether all the executions of an implementation are weakly consistent. The behaviors
of implementations we consider in this study are restricted to the setting of read/write memory
(RWM) abstraction, which is at the base of many distributed data structures used in practice.

We start by presenting in this work a new approach to formalize weak consistency in terms of
distributed histories. This formalization associates a concrete execution of an implementation
with its abstract description — a sequence that conforms to the specification for RWM, in
our case. A specification is simply a characterization of admissible behaviors in the sequential
setting. For a consistency model, a good characterization should, first of all, precisely captures
the subtle behaviors of programs running under the model, and also be formal and convenient for
developers to automatically analyze and verify their codes. Previous work [3, 6] on weak consistency
elaborated on the concept with great details, but the definitions presented in both work are either
too informal or excessively convoluted to be directly applied to automatic verification. This makes
our new formalization a necessity, with which we show the complexity of the testing problem
is NP-complete. The result is achieved by reducing the serialization problem, a NP-complete
problem for database transactions to a restricted version of the testing problem, TWC-read
problem. We also investigate the problems with limited accesses per process and limited processes
in an instance. Both problems are proven to be NP-complete, even when the access number is
limited to two and the process number to three. For the TWC-read problem restricted to two
processes, we prove there exists a polynomial algorithm. We then prove that the model checking
problem is undecidable by a reduction from the Post Corresponding Problem (PCP). The idea is

to relate each PCP instance to a WC implementation, such that the instance has a valid witness
exactly when the implementation is weakly consistent.

The remainder of this paper is organized as follows. Section 2 presents the notion of distributed
history and the specification for read/write memory. Section 3 briefly reviews the intuition
behind WC and then shows how to formalize this concept. We present in section 4 and section
5 the complexity results for the testing problem. The decidability result of the model checking
problem is proved in Section 6. Section 7 discusses the related work. Finally, section 8 concludes
the paper.

2 Preliminaries

2.1 Sets, Relations and Labeled Posts.

Given a set E and a relation R ⊆ E× E, we denote by e1 ≺R e2 the fact that (e1, e2) ∈ R. We
write (R)+ to denote the transitive closure of R. A relation is a strict partial order if it is transitive
and irreflexive.

A poset is a pair (E,≺) where ≺ is a strict partial order. Given a set Σ, a Σ labeled poset ρ is
a tuple (E,≺, ι) where (E,≺) is a poset and ι : E→ Σ is the labeling function.

We introduce a relation on labeled posets, denoted B. Let σ = (E,≺, ι), σ′ = (E,≺′, ι′) be two
posets labeled by the same set Σ. We denote by σ B σ′ the fact that σ imposes less constraints
on operations in E. Formally, σ B σ′ if ≺⊆≺′ and ι = ι′, i.e., for all operation e ∈ E, ι(e) = ι′(e).

2.2 Histories and Specifications

A distributed system is a composition of a set of processes/participants invoking methods on
shared objects (registers, queues, etc.). An object implements a programming interface (API)
defined by a set of methods M with input and output from a data domain D. The behaviors of a
system can be characterized by a set of executions. Each execution is a labeled poset consist of a
collection of events, representing operation invocations by different participants, and a relation
on events, describing abstractly how the system processes the corresponding operations. The
characterization of distributed executions are what we call distributed histories. Formally,

Definition 1. A distributed history is a poset H = {E,≺PO, ι} labeled by M× D× D, where E
is a countable set of events; ≺PO⊂ (E × E) is a strict partial order called program order; and
ι : E→ (M× D× D) is a labeling function.

The labeling function ι maps each event to its corresponding operation that invoke a method
from M. To model events that return no value, we use a value ⊥∈ D, which is often omitted for
better readability.

Example 1. For the read/write memory, M = {r, w} is the set of operations reading and writing
variables. Let the variables set be V, the domain D is therefore (V× (N] {⊥}))] V] N] {⊥}.
A labeling function ι maps each write event ew to a tuple 〈w, (v, n),⊥〉 (abbreviated as w(v, n))
and each read er to 〈r, (v,⊥), n〉 (r(v)/n).

The consistency of shared objects is a criterion that links the distributed executions to a
particular specification, which characterizes the admissible behaviors for a program that uses the
objects. For an object defined by a method set M and data domain D, the specification S can be
specified by a set of sequences labeled by M× D× D.

Generally, specifications can be defined with posets of events (as in a way used in [12] instead
of sequences of events that are total ordered. The former provides a more general and precise
way to model conflict resolution policies. In this work, however, we focus on the read/write

memory, as illustrated in Example 1. A sequential specification is enough to meet our needs for
the modeling purpose. We define the specification Sr/w as a set of sequences where each value
read matches the most recent write. Formally, it is the smallest set of sequences by inductively
adopting the following rules:

− ε ∈ Sr/w,
− σ · w(v, d) ∈ Sr/w if σ ∈ Sr/w,
− σ · r(v, 0) ∈ Sr/w if σ ∈ Sr/w and σ contains no write on v,
− σ · r(v, d) ∈ Sr/w if σ ∈ Sr/w and the last write on v in σ is w(v, d),

where v ∈ V, d ∈ D and ε is the empty sequence.

3 Weak Consistency

3.1 Weak Consistency: Informal Description

Many consistency models have been proposed to specify shared memory. Strong consistency
models such as SC [2] and linearizability [1] are intuitively composed but restrictive in performance
as they would severely restrict possible optimization such as pipelining write accesses. Besides,
implementing strong consistency criteria in message-passing systems are strikingly expensive. For
example, the duration of reads or writes in SC systems has to be linear with the latency of the
network [5]. To increase efficiency, researchers explored a variety of weak consistency criteria
[3, 13, 4, 5].

Among these consistency models, WC is distinguishable from many of its counterparts by
its category of memory accesses. Based on the type of accesses, it imposes different ordering
constraints. For example, in the case of data operations, buffered requests (to memory) may
be allowed to pass each other in the buffer. This is referred to as jockeying [3], which is often
permitted between requests for different memory locations. On the other hand, the synchronization
operations are requested to be strongly ordered [3], and the jockeying with data operations is
forbidden. The purpose of synchronization operations is, as the name suggests, to sync updates
between different processes by propagating local updates outward and bring in all updates from
other processes. Before a subsequent synchronization is initiated, the propagation of local updates
can be arbitrarily postponed. Informally, weak consistency ensures that reordering memory
operations to shared data between synchronization operations does not typically affect program
correctness.

Dubois et al. presented in [3] the first description of WC by enforcing on storage accesses the
following constraints :

Definition 2. In a multiprocessor system, storage accesses are weakly ordered if (1) accesses to
synchronizing variables are strongly ordered, (2) no access to a synchronizing variable is allowed
to be performed until all previous writes have completed everywhere, and (3) no data access (read
or write operation) is allowed to be performed until all previous accesses to synchronizing variables
have been performed everywhere.

The idea of supporting jockeying to add efficiency has also been exploited by many other
models, such as the “write to read” relaxation, which corresponds to the Total Store Order (TSO)
model. Apart from jockeying, another important feature of WC is that it enforces consistency on
a group of operations, rather than on individual reads or writes. For memory accesses to different

locations, absent of any barriers or dependencies, the behavior can be unconstrained. This is best
illustrated by the following example.

Example 2. History (a) in Figure 3.1 is weakly consistent while (b) is not. Because of jockeying,
it is possible for P3 in (a) to read the initial value of x even when a previous read on y returns
the latest value. In (b), however, the sync operation forces out all previous updates to P2, making
the read r(x, 0) impossible.

P1:

P2:

P3:

w(x, 1) w(y, 1)

r(y, 1) SYNC r(x, 1)

r(y, 1) r(x, 0)

(a) (b)

P2:

P1: w(x, 1) SYNC w(y, 1)

r(y, 1) r(x, 0)

Fig. 3.1. The visualization of WC, where SYNC represents a synchronization operation on a variable
other than x and y. Initially, x = y = 0.

3.2 Weak Consistency: A Formal Definition

We now present an approach to characterize concrete executions of concurrent systems employing
a weakly consistent model. This characterization links each execution to a set of sequences, among
which there is at least one can provide a reasonable explanation as to why the execution is weakly
consistent.

Given a history H with an event set E, we denote by ES the set of synchronization events and
ED the set of data events. Two events from different processes can be ordered only if there exists an
intervening synchronization between them. To capture this property, we introduce happen-before
relations for events in any history. Two types of relation are considered: program order ≺PO, and
synchronization order ≺SO. Formally, let eu and ev be any two operations occurring in H. Then:

– eu ≺PO ev iff eu occurs before ev in the same process.
– eu ≺SO ev iff eu, ev ∈ ES ∧ var(eu) = var(ev) and eu is performed before ev,

where var(e) ∈ V is the variable accessed by e. The concept of performed is borrowed from [6],
where a read is said to be performed at a point in time when no subsequent write, from the same
or another process, can affect the value returned. Similarly, a write is said to be performed when
all subsequent reads return the written value until another write to the same memory location is
performed. For a synchronization operation, it is performed also means all preceding updates of
data operations are propagated outward.

Definition 3 (Weak Order). A weak order ≺WO of a history H is the irreflexive transitive
closure of program order and synchronization order, that is ≺WO= (≺PO ∪ ≺SO)+. The set of
events happening before e w.r.t. the ≺WO is denoted by bec = {e′ ∈ E : e′ ≺WO e}.

Intuitively, bec is the weak past of e, i.e., the set of operations whose effects are visible to
e. To associate any weakly consistent history to the sequential specification, we need to define
a way to explain how events on a history are generated. For example, it should explain which
write is responsible for a read that is accessing the same variable. This is achieved by defining
a function, called observation function below, that links each event to an event set, which, if
considered together with ≺WO, will be sufficient to explain why the history is admissible by the
specification Sr/w.

Definition 4. Given a history H, a function τ : E → 2E is an observation function on E, if
∀e ∈ E, τ(e) = {e} ∪ bec ∪ Ce for some set Ce ⊆ E whose elements are concurrent events of e.
The set τ(e) is called an observation set of e.

The observation set τ(e) is acctually a snapshot of updates observed by e and, hence, should
not deviate from the constraints imposed by WC. Apart from the constraints required by ≺WO, it
should also respect what we call update inheritance — updates observed by one event are inherited
to its successors. Specifically, if an event e observes updates happened before a synchronization,
then all events observed e should too have observed those updates. Formally, for two events
eu, ev ∈ E, if

(a) eu ∈ τ(ev) and at least one of eu, ev belongs to ES , or
(b) eu ∈ ES ∧ ∃ew.(ew ∈ τ(ev) ∧ eu ∈ τ(ew)), (*)

then τ(eu) ⊆ τ(ev). We call such a function a observation closed function (OCF).

Definition 5. A history H is weakly consistent with respect to Sr/w if there exists an OCF τ
such that for any e ∈ E, there exists a sequence σe ∈ Sr/w such that (τ(e),≺WO, ι) B σe.

Example 3. To illustrate, the history in Figure 3.1(b) has no OCF τ for its event set. For otherwise
we have ew(x,1) ∈ τ(eSYNC) and τ(eSYNC) ⊆ τ(er(x,1)), and by the condition (*) the observation
set τ(er(x,0)) will contain ew(x,1), implying the update on x is observable to er(x,0), whose return
value should thus be 1 instead of 0.

4 The Testing Problem of Weak Consistency

We first investigate the testing problem of weak consistency (TWC), which is relevant for instance
in the context of testing a given distributed object. We prove that this problem is NP-complete.
This is achieved by a reduction from the serializability problem for database histories. The
membership in NP can be easily proved, following from the fact that, for any given instance
(history) H, one can guess an observation function τ , and a sequence σe ∈ Sr/w for each event e,
and then check in polynomial time whether τ is an OCF and the relation B in Definition 5 holds.

To prove the NP-hardness, we first define a restricted version of the TWC problem and reduce
the restricted problem to the serializability problem. We consider the case in which for each read,
it is known precisely which write was responsible for the value read. We call this the TWC-read
problem. The function mapping each read to the responsible write is called a read-mapping.

The serializability problem for database transactions is one exploring the existence of a
schedule that is equivalent to one that executes the transactions serially in some order. One major
type of the problem is view serializability [14], in which we are given a history, a total order on a
set of reads and writes, where each read or write is associated with a particular transaction. The
problem asks if there is a total order on the transactions that preserves the reads-from mapping of
the original history. The view serializability problem is NP-complete [14]. TWC-read is a problem
more general than view serializability by permitting solutions in which the accesses for a processor
(transaction) are in order but may not be consecutive. To illustrate, the instance in Figure 4.1
is a “yes” instance for TWC-read problem, but a “no” instance for view serializability, because
both P = P1P2 and P = P2P1 have reads-from violations.

Lemma 1. The TWC-read problem is NP-complete.

P1 : w(x, 0), w(y, 1), r(x, 1)

P2 : r(y, 1), w(x, 1)

Fig. 4.1. A “yes” instance of the TWC-read problem

Proof. Given H, an instance of a view serializability problem, we construct an instance of TWC-
read as follows. Let v be a variable not accessed by any operation in H, and #α a synchronization
operation on a variable α. Let Pi be the sequence of operations inH for transaction i (i ∈ {1, .., n}),
where each write in a transaction is assigned a unique value to write, and each read is assigned
the value of the closest previous write to the same address in H.

For all transactions i, let P ′i = w(v, i)#αPi#αr(v, i). Our TWC-read instance is H′ =‖i∈{1,..,n}
P ′i . The intervening #α guarantees the update to v is observed by other transactions before Pi
initiates and updates from other transactions were brought in before reading v. This construction
ensures that for each P ′i once the write w(v, i) starts, the remainder (i.e. #αPi#αr(v, i)) must
be scheduled consecutively. If two transactions P ′i , P

′
j interleaves, then at least one of them, say

P ′i , will return for its last read a value other than i, and thus violates the read-from relation. It
follows that H′ is in TWC-read if and only if H is view serializable.

The above result on TWC-read implies that the general TWC problem is at least NP-hard,
since the problem is also in P, we have the following theory.

Theorem 1. Checking whether a distributed history H is weakly consistent with respect to Sr/w

is NP-complete.

5 Restricted TWC Problems

The previous section shows that the TWC problem is generally NP-complete. In this section, we
investigate two restricted versions of TWC that consider only instances with limited number of
accesses or processes. Such problems are interesting because many multiprocessors have only a
small number of processors, e.g., 8, 16 or 32; and when it comes to testing, the size of instances
are usually small.

We show that these restricted problems remain NP-complete, even when the number of
accesses per process is limited to two and the number of processes to three. These results imply
the testing problem of weak consistency is intrinsically hard. For a very rare case of this problem,
in which only two processes are involved and a read-mapping is provided, we prove there exists a
polynomial algorithm.

5.1 Restricting the number of accesses

We now investigate the restricted problem in which each process has at most two data operations
and each data variable is written to at most twice. We show this problem is NP-complete.

The result is generated from a reduction from 3SAT. Let F denote a 3SAT instance. For a
literal li in a clause, we use the notation B(li) to represent T (True) if li is a positive literal (i.e.,
a variable), and F (False) otherwise. We need to simulate the logical connectives (i.e., an OR
and an AND), as well as an assignment of variables that remains in effect until the formula is
evaluated. We observe that (1) a read must wait for its responsible write to occur, (2) the second
access at a process must wait for the first. Then the assignment to vi can be simulated as follows
(each column represents a sequence):

w(vi, T) r(x, 1) w(vi, F) r(x, 1)
#α #α

r(vi, T) r(vi, F),

where x is initially 0 and #α represents a synchronization operation on variable α. A single write
w(x, 1) (shown below) occurs only after the satisfiability of F has been simulated. Then one and
only one write to vi occurs before w(x, 1), ensuring that the initial assignment to each vi must
remain in effect until the satisfiability of F has been simulated.

An OR is simulated by separating the literals of a clause into three reads, whose executions
determine the truth value of that clause. For each clause, Ci = lp ∨ lq ∨ lr, we have four sequences:

r(lp,B(lp)) r(lq,B(lq)) r(lr,B(lr)) r(di, T)
w(di, T) w(di, T) w(ci, T) w(ci, T)

By the two observations above, this ensures that Ci is not set to T unless clause i is satisfied
by the guessed truth assignment.

The AND of the clauses can be easily simulated by a sequence r(c1, T), r(c2, T), ..., r(cm, T),
w(x, 1). But this sequence involves m+ 1 > 2 data operations. In order to have only two accesses
per process, we separate this sequence into m+ 1 sequence: a single write w(x, 1) and m sequences
ending with a read r(x, 0):

w(x, 1) r(c1, T) r(c2, T) ... r(cm, T)
#α #α ... #α

r(x, 0) r(x, 0) ... r(x, 0)

This ensures that x is not set to 1 unless all clauses have been satisfied by the guessed
assignment.

Lemma 2. Let F be an instance of 3SAT, and W the instance of the TWC problem constructed
as described above. Then W is weakly consistent if and only if F is satisfiable.

Proof (sketch). Assume there is a satisfying assignment for F . We can construct a corresponding
schedule for W such that it can be sequentially ordered by that schedule. That is W is sequen-
tially consistent and, hence, weakly consistent. Conversely, if W is weakly consistent, the first
value written to each variable vi forms the satisfying assignment. (A full proof is deferred to
Appendix A.1).

By this result, the following theory is straightforward.

Theorem 2. The TWC problem, restricted to instance in which each sequence contains at most
two data operations and each data variable occurs in at most two write operations, is NP-complete.

5.2 Restricting the number of processes

We have shown that the TWC problem is NP-complete with O(n) processes (n is the number of
data variables). In this problem, the number of processes per instance grows proportionally with
the number of variables, this raises another question: what is the complexity for TWC problems
with a fixed small number of processes. This question is answered by the theory below, showing
that the problem remains NP-complete even when the number of processes per instance is limited
to three.

To simulate an instance of 3SAT, the proof of Lemma 2 constructs a disjoint set of processes
for each variable. This strategy can not be transferred here as the number of processes is limited.

We consider to analyze the problem with a reduction from one-in-three 3SAT problem, a variant
of 3SAT where the input instance is the same, but the question is to determine whether there
exists a satisfying assignment so that exactly one literal in each clause is set to true. This problem
is known to be NP-complete. A monotone version of this problem, positive one-in-three 3SAT,
where each clause contains only positive literals, remains NP-complete. Our strategy is, for a
given positive one-in-three 3SAT instance F , we construct an instance W of the TWC problem,
using only three processes, such that F has a satisfying assignment exactly when W is weakly
consistent. The TWC instance W for each F is depicted in Figure 5.1.

The synchronization parts (as illustrated by # in the figure) separate the construction into
m+ 1 stages. The key idea behind this construction is to use the value at the end of the (INIT)
stage as the assignment. The history is weakly consistent if every stage is weakly consistent. For
each clause, each of the three processes is satisfied by a particular assignment. The subtle part is
the writes highlighted in blue. Once a way of satisfying a clause is settled, the writes free up the
other two processes by negating variables, and then return all variables to their initial setting (for
the next stage). Conversely, for any assignment of F that does not satisfy this clause, there is no
way to prove the weak consistency of this stage.

P1 P2 P3

w(v1, F)
...
w(vn, F)

w(u, 1)

#α

r(u, 3)

r(vx1 , T)

r(vy1 , F)

r(vz1 , F)

w(vx1 , F)

w(vy1 , T)

...

...

...

w(v1, T)
...
w(vn, T)

w(u, 2)

#α

r(u, 3)

r(vy1 , T)

r(vz1 , F)

r(vx1 , F)

w(vy1 , F)

w(vz1 , T)

...

...

...

r(u, 1)
r(u, 2)
#α

w(u, 3)

r(vz1 , T)

r(vx1 , F)

r(vy1 , F)

w(vz1 , F)

w(vx1 , T)

...

...

...

(INIT)

(C1)

(#)

(#)

(Cm)

Fig. 5.1. Transfroming an instance of positive one-in-three 3SAT to an instance of TWC. The 3SAT
instance contains n variables v1, ..., vn and m clauses: C1, ..., Cm, where Ci = (vxi ∨ vyi ∨ vzi) for some
xi, yi, zi ∈ [1..n].

Theorem 3. The TWC problem restricted to three processes is NP-complete.

In the above reduction, each clause of the 3SAT instance requires at least three processes for
the simulation procedure. This is the simplest reduction we are aware of, leaving open the TWC

problem restricted to two processes. Nevertheless, we prove below there is a polynomial algorithm
for TWC-read problem restricted to two processes.

5.3 TWC-read problem with two processes is in P

For an instance H of two-processes TWC-read problem, every read in H knows precisely its
responsible write, which means if two write w(v, d1), w(v, d2) are accessing the same location
v, then d1 and d2 must differ. To sovle the two processes TWC-read problem, we begin by
constructing an OCF, τ , capturing all events been observed by each access. The instance H is
in TWC-read exactly when there exists a witness OCF that respects certain constraints, and
involves none of the anomalous forms (as defined in the proof for Lemma 3). Constructing this
OCF and checking whether certain conditions are met can be done in polynomial time. That
is, there is a polynomial algorithm to solve this problem in two steps: (1) constructing for an
instance a witness OCF, (2) checking whether this OCF meets required conditions. The proof for
the following lemma is deferred to Appendix A.3.

Lemma 3. The TWC-read problem restricted to two processes is in P.

6 Undecidability of Verifying Weak Consistency

We consider in this section the model checking problem of weak consistency, i.e., the problem
of deciding whether a given implementation has correctly implemented weak consistency. For
systems maintaining memory coherence, weak consistency implies sequential consistency if every
data operation is synchronized by the same sync variable [15]. This implies the model checking
problem of WC because the same problem of SC is generally undecidable [16]. However, here
we offer another proof, which may provide some additional insight into the reason why verifying
weak consistency is undecidable. For the proof, we assume the implementations are regular and
specification is restricted to Sr/w with a fixed number of variables whose domain sizes are fixed,
such that this specification corresponds to a particular regular language. We then reduce PCP to
the model checking problem.

Definition 6. Let Σ be an alphabet with at least two letters. An instance of PCP is given by two
sequences U = {u1, ..., un} and V = {v1, ..., vn} of words over Σ. The problem is to determine
whether there is a sequence (i1, ..., ip) with ij ∈ {1, ..., n} and p > 1 such that ui1 · · ·uip =
vi1 · · · vip .

Theorem 4. [17] The Post Correspondence Problem is undecidable.

A pair of words 〈u, v〉 ∈ 〈Σ∗×Σ∗〉 is a witness of a PCP instance P if they can be decomposed
into u = ui1 · ui2 · · ·uip and v = vi1 · vi2 · · · vip such that ui = U [i] and vi = V [i]. If there is
also u = v, we call such a pair a valid witness, which corresponds to a positive answer to the
PCP problem. Our goal is to build an implementation I that is not weakly consistent with
respect to the read/write memory if and only if the instance P has a valid witness. That is the
implementation I produces, for each pair of words 〈u, v〉, an execution Huv that is not weakly
consistent if and only if 〈u, v〉 forms a valid witness. The construction of each history Huv relies
on ten processes and seven variables (six data variable and one synchronization variable). To
conserve space, details of proof are given in Appendix A.4.

Theorem 5. Given an implementation I as a regular language, checking whether all executions
of I are weakly consistent with respect to Sr/w is undecidable.

7 Related Work

For the testing problem of relaxed memory consistency models, Wei et al. [18] proved that
complexity of testing PRAM consistency is NP-complete. Bouajjani et al. [19] studied the
complexity of verifying causal consistency for one history. It was proved that the problem is
NP-complete for all the three variations of CC (causal consistency, causal convergence and causal
memory). A recent work by Furbach et al. [20] showed that the testing problem for any criterion
weaker than sequential consistency and stronger than slow consistency is NP-complete. This
range covers many relaxed memory consistency models, including (a weaker variation of) CC,
TSO, PSO and PRAM consistency, but it does not cover WC. It is easy to construct executions
that conform to WC but violate slow consistency.

The model checking problem for linearizability, quasi-linearizability and SC have been ex-
tensively studied. It was shown that verifying linearizability is EXPSPACE-complete when the
number of processes is bounded and undecidable otherwise [21]. Alur et al. [16] proved that
checking sequential consistency is in general undecidable. The same conclusion holds for systems
with only four objects. Wang et al. [22] studied the model checking problem of quasi-linearizability
and proved that it is undecidable. For consistency criteria weaker than sequential consistency,
eventual consistency has been shown to be decidable [12], and causal consistency was proved to
be undecidable [19] in general.

The method we used to formalize weak consistency in terms of distributed histories is inspired
by the work of [23], which extends the definition of CC to all abstract data types. Their work uses
transition systems to specify sequentially abstract data types, which is modeled as transducers, a
model that is very similar to Mealy machines [24]. Their approach for CC, however, does not easily
transfer here. For WC, we have to consider the different roles played by data and synchronization
operations, while causal consistency does not distinguish memory access categories.

8 Conclusion

This paper explores the complexity of deciding whether an execution of a shared memory system
is weakly consistent. We prove that the TWC problem is NP-complete, even for systems with
only three processes or programs in which each process is permitted to have only two memory
(data) accesses. We show the TWC-read problem is also NP-complete, which implies tagging
each read with the identity of the responsible write does not reduce the complexity. However, for
TWC-read, if we restrict the process number to two, then a polynomial algorithm exists.

A new approach is proposed to formalize weak consistency. This new formalization, unlike
those from previous work [6, 3], is given in terms of distributed histories abstracted from concrete
executions, making possible a direct application of this formalization into automatic verification.
We have also explored the model checking problem of weak consistency. Generally, deciding
whether an implementation has correctly implemented the read/write memory is undecidable,
even when the implementation and specification are both regular. These results on TWC and the
model checking problem suggest that reasoning about weak consistency is intrinsically hard.

Although the read-mapping does not help with reducing the complexity, it would be interesting
to investigate the TWC and model checking problem for implementations under certain constraints,
such as data independence, a property ensuring the system behaviors are independent to particular
data values stored at particular memory locations. These investigations remain future work.
Moreover, as release consistency [25] is a consistency model that refines weak consistency by
slitting synchronization into two types, the results presented in this work may well be applicable
(with minor adaptations) to release consistency.

References

[1] Herlihy, M.P., Wing, J.M.: Linearizability - a correctness condition for concurrent objects.
Acm Transactions on Programming Languages and Systems 12(3) (1990) 463–492

[2] Lamport, L.: How to make a multiprocessor computer that correctly executes multiprocess
programs. Ieee Transactions on Computers 28(9) (1979) 690–691

[3] Dubois, M., Scheurich, C., Briggs, F.: Memory access buffering in multiprocessors. In: ACM
SIGARCH Computer Architecture News. Volume 14., IEEE Computer Society Press (1986)
434–442

[4] Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Communications
of the ACM 21(7) (1978) 558–565

[5] Lipton, R.J., Sandberg, J.S.: PRAM: A scalable shared memory. Princeton University,
Department of Computer Science (1988)

[6] Adve, S.V., Hill, M.D.: Weak ordering - a new definition. In: ACM SIGARCH Computer
Architecture News. Volume 18., ACM (1990) 2–14

[7] Manson, J., Pugh, W., Adve, S.V.: The Java memory model. Volume 40. ACM (2005)
[8] Boehm, H.J., Adve, S.V.: Foundations of the c++ concurrency memory model. In: ACM

SIGPLAN Notices. Volume 43., ACM (2008) 68–78
[9] IBM: Power ISATM Version 2.06 Revision B. (2010)

[10] Sarkar, S., Sewell, P., Alglave, J., Maranget, L., Williams, D.: Understanding power multi-
processors. ACM SIGPLAN Notices 46(6) (2011) 175–186

[11] Alglave, J., Fox, A., Ishtiaq, S., Myreen, M.O., Sarkar, S., Sewell, P., Nardelli, F.Z.: The
semantics of power and arm multiprocessor machine code. In: Proceedings of the 4th
workshop on Declarative aspects of multicore programming, ACM (2009) 13–24

[12] Bouajjani, A., Enea, C., Hamza, J.: Verifying eventual consistency of optimistic replication
systems. In: ACM SIGPLAN Notices. Volume 49., ACM (2014) 285–296

[13] Goodman, J.R.: Cache consistency and sequential consistency. University of Wisconsin-
Madison, Computer Sciences Department (1991)

[14] Papadimitriou, C.: The theory of database concurrency control. (1986)
[15] Gharachorloo, K.: Memory consistency models for shared-memory multiprocessors. PhD

thesis, Stanford University (1995)
[16] Alur, R., McMillan, K., Peled, D.: Model-checking of correctness conditions for concurrent

objects. 11th Annual Ieee Symposium on Logic in Computer Science, Proceedings (1996)
219–228

[17] Post, E.L.: A variant of a recursively unsolvable problem. Bulletin of the American
Mathematical Society 52(4) (1946) 264–268

[18] Wei, H., De Biasi, M., Huang, Y., Cao, J., Lu, J.: Verifying pram consistency over read/write
traces of data replicas. arXiv preprint arXiv:1302.5161 (2013)

[19] Bouajjani, A., Enea, C., Guerraoui, R., Hamza, J.: On verifying causal consistency. In: Pro-
ceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages,
ACM (2017) 626–638

[20] Furbach, F., Meyer, R., Schneider, K., Senftleben, M.: Memory-model-aware testing: A
unified complexity analysis. ACM Transactions on Embedded Computing Systems (TECS)
14(4) (2015) 63

[21] Bouajjani, A., Emmi, M., Enea, C., Hamza, J.: Verifying concurrent programs against
sequential specifications. Programming Languages and Systems 7792 (2013) 290–309

[22] Wang, C., Lv, Y., Liu, G., Wu, P.: Quasi-linearizability is undecidable. In: Asian Symposium
on Programming Languages and Systems, Springer (2015) 369–386

[23] Perrin, M., Mostefaoui, A., Jard, C.: Causal consistency: beyond memory. In: Proceedings
of the 21st ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
ACM (2016) 26

[24] Mealy, G.H.: A method for synthesizing sequential circuits. Bell System Technical Journal
34(5) (1955) 1045–1079

[25] Gharachorloo, K., Lenoski, D., Laudon, J., Gibbons, P., Gupta, A., Hennessy, J.: Memory
consistency and event ordering in scalable shared-memory multiprocessors. Volume 18. ACM
(1990)

A Appendix

A.1 TWC problem with restricted accesses

Lemma A.1. Let F be an instance of 3SAT, andW the instance of the TWC problem constructed
as described above. Then W is weakly consistent if and only if F is satisfiable.

Proof (sketch). We show that if F is satisfiable, we can construct a schedule by which W is
sequentially consistent, which impliesW is weakly consistent. Conversely, ifW is weakly consistent,
the first value written to each variable vi is the satisfying assignment.

Assume, without loss of generality, F is satisfiable with an assignment A in which every
variable vi is set to be true. We construct a schedule S as follows: Firstly, the writes w(vi, T)
are executed, which are followed by the reads of positive literals r(li,B(li)) in each clause Cj ,
while the reads of negative literals and the following writes on di and ci are postponed to the
end. This ensures at least one w(ci, T) occurs before each pair of r(ci, T) and r(x, 0). The write
w(x, 1) is then executed, which is followed by the sequences with r(vi, T) (the sequence order
does not matter). When every r(vi, T) is executed, the sequences with r(vi, F) start to execute.
It is not hard to prove that W can be sequentially ordered by the schedule S described above,
which implies W is weakly consistent.

Now assume W is weakly consistent. The synchronization #α before r(x, 0) ensures w(x, 1)
can not occur until all reads r(ci, T) are done. Since w(x, 1) is the only source for r(x, 1), then
one and only one write to vi occurs before w(x, 1) and before each r(ci, T). Then the first value
written to each vi constitutes the satisfying assignment. Take the clause Ci = lp ∨ lq ∨ lr for
example. Because w(di, T) is the only source for each read r(vi, T), and in order for w(di, T) to
happen, at least one of the three reads r(lp,B(lp)), r(lq,B(lq)), r(lr,B(lr)) will have to occur
before w(di, T) and thus before r(di, T). Assume it is r(lq,B(lq)) where lq = ¬vk, then assign
vk to be false (i.e., by executing w(vk, F)) will make the clause Ci true. Other clauses can be
analyzed along the same line.

A.2 TWC problem with restricted processes

Theorem A.1. The TWC problem restricted to three processes is NP-complete.

Proof. We show that the instance of TWC in Figure 5.1 is weakly consistent exactly when its
corresponding one-in-three 3SAT instance F has a satisfying assignment. The sufficiency of this
theorem can be easily validated. Assume F has a satisfying assignment, and C1 is satisfied with
(vx1 , vy1 , vz1) = (T, F, F). During the (C1) stage of the construction, process P1 executes first,
which is followed by P2 and then P3. This forms a sequential schedule for the operations during
this stage, therefore (C1) is weakly consistent. As each stage ends with restoring all variables
(vx1

, vy1 , vz1) to their original values. Then the stage (C2), as well as (C3, ..., Cm), can be analyzed
along the same line.

For the necessity, assume W is weakly consistent. An immediate inference is that every
(sequence) segment on the stage Ci is weakly consistent. At the start of each stage Ci, only one
variable is true, while the other two be false. This is because only in this way, there is a schedule
by which all of the three processes can proceed. The variable values on each stage will be restored
to their initial values when the stage ends. Thus, we construct an assignment A as one in which
the value of the literals be the value at the end of stage (INIT). Obviously, this assignment A is
the desired assignment for the instance F .

A.3 TWC-read problem restricted to two processes

Lemma A.2. The TWC-read problem restricted to two processes is in P.

Proof. We now describe a polynomial algorithm that determines whether a given instance H is
weakly consistent. We assume: (a) every read in H has a responsible write; and (b) no read in H
returns 0 (the initial value of variables). These assumptions are only made to simplify the proof
and have no influence over the validity of this lemma. The algorithm starts with constructing a
cover function τ as: ∀o ∈ O, τ(o) = boc.

Denote by f the read-mapping that maps each read to the identifier of the responsible write,
we then upgrade the cover function to a witness OCF with the following procedures:

AddWrite For each access o, if a read r belongs to τ(o), then we upgrade τ(o) to be τ(o)∪{f(r)}.
ObsClosed For any two accesses u and v,

– if one of them is a synchronization, and u ∈ τ(v), then τ(v) = τ(v) ∪ τ(u),
– if u is a synchronization, and there is another access w ∈ τ(v) such that u ∈ τ(w), then
τ(v) = τ(v) ∪ τ(u).

A typical OCF returns for each access a self-contained set, in which every read can find its
corresponding write. This property is achieved with the procedure AddWrite. The procedure
ObsClosed meets the constraints imposed by OCF as in Definition 4. Our algorithm repeats the
above procedures until τ is fixed, which finishes in O(n4) (O(n) for AddWrite and O(n3) for
ObsClosed for n accesses in H). Once an OCF is generated, the next step is to check whether
the weak order is preserved, that is verifying: For any two accesses, u and v, if u ∈ τ(v), then v
can not happen before u w.r.t. the weak order. This checking process can be done in O(n2).

A failure of passing the check suggests that no OCF is available to satisfy Definition 5, that
is the instance H is not in TWC-read. However, even if the check is passed, it is still possible
that H is not weakly consistent, since the OCF can not guarantee every τ(o) will be reasonably
explained. The algorithm continues with checking if there is a set τ(o) involves one of the following
anomalous forms:

ReadStaleUpdate A read r observes two write w1, w2 accessing the same location, the respon-
sible write is w1 but w1 happens before w2 w.r.t. the weak order.

LateWrite An access w is the responsible write for r, but r happens before w w.r.t. the weak
order.

ReadStaleUpdate can be verified within O(n3) for each read, therefore the whole time
required is O(n4). The form LateWrite cam be verified within O(n3). An OCF is anomalous
forms free implies every τ(o) can be unfolded into a sequence residing in Sr/w. Lemma A.3
validates this fact: Every τ(o) is anomalous forms free iff H is in TWC-read, a result, combined
with the above analysis, supplies us the algorithm that can solve the two processes TWC-read
problem in polynomial time.

Given H, we denote by Υ : τ → {0, 1} a function such that for any τ ∈ τ , Υ (τ) = 1⇔ ∀o ∈
O,∃σ ∈ H|τ(o)∩D ∩ Sr/w.

Lemma A.3. Let τb be the OCF generated from the aforementioned procedures, then there exists
an OCF τ such that Υ (τ) iff Υ (τb).

Proof. (⇐). This direction is trivial by letting τ = τb.
(⇒). From the construction of τb, it is easy to observe that every OCF τ is a super-function of

τb in the way that ∀o ∈ O, τb(o) ⊆ τ(o). We now prove Υ (τ)⇒ Υ (τb). For an access o, we use σ to

denote a sequence such that σ ∈ H|τ(o)∩D ∩ Sr/w, we write σb = σ|τb(o) as the sub sequence of σ
restricted to τb(o). The sub-sequence σb respects the weak order since σ does, then σb ∈ H|τb(o)∩D.
Since every read r in σb has a responsible write that happens before r, then σb is LateWrite free.
Also, as σ is ReadStaleUpdate free, then σb is ReadStaleUpdate free (otherwise there is at least
one read in σ that returns a stale value), which means σb ∈ Sr/w. Therefore, σb ∈ H|τb(o)∩D∩Sr/w,
that is Υ (τb) = 1.

A.4 The Decidability of Verifying Weak Consistency

Theorem A.2. Given an implementation I as a regular language, checking whether all executions
of I are weakly consistent with respect to Sr/w is undecidable.

Proof. Let Σ = {a, b} and P be an instance of PCP. The pair of sequences that defines P is:
U = {u1, ..., un}, V = {v1, ..., vn}. For a letter vi ∈ V , we use ṽi to denote b if vi = a, and a if
vi = b. We use the term ζ(ξ(x, d)) to denote a sequence of operations w(x, 0) · ξ(x, d) · w(xS ,#)
for a x ∈ X and d 6= 0, where xS is a synchronization variable, ξ is either a read or a write
operation, and X is a finite set of variables. The synchronization used here ensures that at each
time a process executes ζ(ξ(x, d)), all local updates of the current history are propagated outward
and updates occurred elsewhere are brought in, in this way all processes are synchronized.

Let 〈u, v〉 be a valid witness of P. This history Huv is constructed in a way as illustrated
in Figure A.4. For the sake of convenience, we will use [e] to refer to the name of the event
that follows it in the history. We call a read operation r(x, d) reads from a write w(x, d), when
w(x, d) is the value provider. The integers m,n, k and |v| used in the history have the relation:
m+n+k = 2|v|, where |v| is the length of sequence the v. We now prove the following equivalence:
(1) Huv is weakly consistent; (2) u 6= v.

(1⇒ 2) Assume Huv is weakly consistent. Assume by contradiction that u = v. Thus, |u| = |v|
and for all i ∈ {1, ..., |v|}, ui = vi. We prove that there is at least one [vi0] that has to read from
[ui0]. Then, since ui 6= ṽi for all i ∈ {1, .., |v|}, [ui0] can not be the value provider for [vi0].

In order to return 1 for the read operation [rT], one of the three write operations [wiT](i = 1, 2, 3)
has to happen before [rT]. Assume the value provider is [w1

T], then [h1] is overwritten by [v0]
since each synchronization operation works as a fence. Now there are 2|v|+ 3 read operations on
object o in process pv while only 2|v|+ 2 writes are available on the writer processes and helper
processes. This implies there is at least one read operation [vi] will have to read from [uj] on pu
for some j ∈ {1, ..., |u|}. We now show that it can only read from [ui] but not from [uj] for i 6= j.

We start by proving that the read operation in [ti] can only read value from [si]. To accomplish
this, we need to prove that [ti] can not read value from [zj] in process paux2

. Observe that [wq]
(and all the subsequent events) has to wait until [v|v|+3] is globally performed, otherwise the
value written on xq will be visible to pv and event [rq] is impossible. Assume by contradiction
that there is a [ti] reading value from [zj] for some j, then [rq] (and all preceding operations
on pv) will certainly happen before [ti], [rp] and [wp]. By the definition of ζ(r(xA, 1)), each read
operation involved in [fi] needs a unique value provider because all previous write operations on
xA is overwritten by a leading write in ζ(·), then the write operations that are available for read
operations in [fi] are insufficient. Therefore the read operation in [ti] can not read value from [zj].
Notice that pu contains |u|+ 1 read operations on xB, and pv contains |u|+ 1 write operations on
xB. Each read operation in [ti] exactly corresponds to [si].

Similarly, we can prove that the read operation in [fi] can only read value from [ei]. Now,
assume that [vi] uses a write [uj] with i < j, which means its following [fi] will have to use [ek] for
j ≤ k, which is impossible based on the previously demonstrated property. Similarly, if [vi] uses a
write [uj] with i > j, then [tj] need to read value from [sk] for k > i, which is also impossible.

This concludes the proof that there is at least one read operation [vi0] that has to read from [ui0],
but not from [uj] for i0 6= j.

(2 ⇒ 1) To prove that the converse is true, we need to consider three cases: |u| = |v|, |u| < |v|
and |u| > |v|, and prove that Huv is weakly consistent under all cases. And in order to show
that Huv is weakly consistent, we need to guarantee that every read operation has a reasonable
explanation for the value it returns.

Case 1: |u| = |v| but ui0 6= vi0 for some i0 ∈ {1, .., |v|}. Because ui0 6= vi0 implies ui0 = ṽi0 ,
the write operation [ui0] can provide value to [vi0]. Also, [w3

T] provides value to [rT], [h1] to
[v|v|+1], [h2] to [v|v|+2], and [ck] to [v|v|+3]. The remaining read operation [vi], [wi] ([vi0] excluded)
can be explained by executing {[a1], ..., [am], [b1], ..., [bn], [c1], ..., [ck−1]} sequentially. Finally, the
operations [ei] provides value to the read operation in [fi], and [si] to the read operation in [ti]
for i ∈ {1, ..., |v|+ 1}.

Case 2: |u| < |v|. The write operation [u|u|+1] can provide value to [v|u|+1]. This case is
different with the above one in the way that the process pu itself can not provide enough write
operations on xA that are needed by the read operations in [fi] on process pv. However, this can
be assisted by process paux1

. It causes no trouble for the read operation [rp] because the process
pH1

can wait until all operations on pu are performed.
The value returned by each read operation can be explained in the following way:

– [ei] provides value to the read operation in [fi] for i ∈ {1, ..., |u|}
– [si] provides value to [ti] for i ∈ {1, ..., |u|}
– [yi] provides value to [ti+|u|] for i ∈ {1, ..., |v| − |u|}
– [ai] provides value to to [vi] for i ∈ {1, ..., |v|} ∧ ṽi = a
– [bi] provides value to to [vi] for i ∈ {1, ..., |v|} ∧ ṽi = b
– [u|u|+1] provides value to [v|u|+1]
– [ci] provides value to to [wi] for i ∈ {1, ..., |v|, |v|+ 3}\{|u|+ 1}
– [h1] provides value to [v|v|+1]
– [h2] provides value to [v|v|+2]

Case 3: |u| > |v|. Similar to the previous case except that [u|u|+1] is used to provide values to
[v|v|+3].

Now we have established the equivalence between (non) weak consistency of a history and the
validity of its corresponding witness. The last thing is to describe how to define I as a regular
language, such that I produces, for each witness 〈u, v〉, an execution whose history is Huv.

For an execution of I, the helper processes execute their operations, which is followed
by the auxiliary processes executing their first operations. The process pv then chooses non-
deterministically a pair 〈ui, vi〉 from the instance P . Then pv and pu execute operations based on
the symbols on vi and ui, the writer and auxiliary processes behave accordingly. For example, if
〈ui, vi〉 = 〈a, b〉, then pu do operations [ui, ei, ti], pv do operations [vj , wj , fj , sj], the writer process
pa does a write operation w(0, a). The auxiliary process do an operation [yi], [zi], respectively.
This procedure may repeat for an arbitrary times, depending on the structures of u and v.

At the time that the above procedure terminates, pu, pv and the auxiliary processes will
execute their rest operations, as detailed in Figure A.4. By the structure of operations [ti] and
[fi], all processes synchronize after each choice of witness 〈ui, vi〉(actually, they synchronize after
every symbol), I thus can be described by a regular language. ut

pa :

(writer process a)

[a1] : w(o, a)

[a2] : w(o, a)

· · ·
[am] : w(o, a)

pb :

(writer process b)

[b1] : w(o, b)

[b2] : w(o, b)

· · ·
[bn] : w(o, b)

pc :

(writer process c)

[c1] : w(o, Z)

[c2] : w(o, Z)

· · ·
[ck] : w(o, Z)

pH1 :

(helper process 1)

[h1] : w(o, a)

[w1
T] : w(T, 1)

pH2 :

(helper process 2)

[h2] : w(o, b)

[w2
T] : w(T, 1)

pH3 :

(helper process 3)

[h3] : w(o, Z)

[w3
T] : w(T, 1)

paux1 :

[wp] : w(xp, 1)

[y1] : w(xA, 1)

· · ·
[y|v|+1] : w(xA, 1)

pu :

[u1] : w(o, u1)

[e1] : w(xA, 1)

[t1] : ζ(r(xB, 1))

[u2] : w(o, u2)

[e2] : w(xA, 1)

[t2] : ζ(r(xB, 1))

· · ·

[u|u|] : w(o, u|u|)

[e|u|] : w(xA, 1)

[t|u|] : ζ(r(xB, 1))

[u|u|+1] : w(o, Z)

[e|u|+1] : w(xA, 1)

[t|u|+1] : ζ(r(xB, 1))

[rp] : r(xp, 0)

pv :

[rT] : ζ(r(T, 1))

[v0] : w(o, Z)

[v1] : r(o, ṽ1)

[w1] : r(o, Z)

[f1] : ζ(r(xA, 1))

[s1] : w(xB, 1)

[v2] : r(o, ṽ2)

[w2] : r(o, Z)

[f2] : ζ(r(xA, 1))

[s2] : w(xB, 1)

· · ·

[v|v|] : r(o, ṽ|v|)

[w|v|] : r(o, Z)

[f|v|] : ζ(r(xA, 1))

[s|v|] : w(xB, 1)

[v|v|+1] : r(o, a)

[v|v|+2] : r(o, b)

[f|v|+1] : ζ(r(xA, 1))

[s|v|+1] : w(xB, 1)

[v|v|+3] : r(o, Z)

[rq] : r(xq, 0)

paux2 :

[wq] : w(xq, 1)

[z1] : w(xB, 1)

· · ·
[z|u|+1] : w(xB, 1)

Fig.A.1. The history Huv that corresponds to each pair of witness 〈u, v〉.

