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Abstract. In this paper, an iterative algorithm is designed to compute the sparse 

graphs for traveling salesman problem (TSP) according to the frequency quadri-

laterals so that the computation time of the algorithms for TSP will be lowered. 

At each computation cycle, the algorithm first computes the average frequency 

𝑓̅(𝑒) of an edge e with N frequency quadrilaterals containing e in the input 

graph G(V,E). Then the 1/3|E| edges with low frequency are eliminated to gen-

erate the output graph with a smaller number of edges. The algorithm can be it-

erated several times and the original optimal Hamiltonian cycle is preserved 

with a high probability. The experiments demonstrate the algorithm computes 

the sparse graphs with the O(nlog2n) edges containing the original optimal 

Hamiltonian cycle for most of the TSP instances in the TSPLIB. The computa-

tion time of the iterative algorithm is O(Nn2).  

Keywords: Traveling Salesman Problem, Probability Model, Frequency Quad-

rilateral, Iterative Algorithm, Sparse Graph.  

1 Introduction  

Traveling Salesman Problem (TSP) is a well-known NP-hard problem in combinato-

rial optimization. Given the complete graph Kn on the n vertices {1, 2, · · · , n}, there 

is a distance function d(u, v) > 0 between any pairwise vertices u, v ∈{1, 2, · · · , n}. 

For the symmetric TSP, we have d(u, v) = d(v, u). The objective of TSP is to find such 

a permutation σ = (σ1, σ2, · · · , σn) of the n vertices σk ∈{1, 2, · · · , n}(1 ≤ k ≤ n) where 

the total distance d(σ) = d(σ1,σn) + ∑ 𝑑(𝜎𝑘, 𝜎𝑘+1)𝑛−1
𝑘=1  is the minimum. Namely, the 

cycle σ = (σ1, σ2, · · · , σn) with the minimum distance d(σ) is the optimal Hamiltonian 

cycle (OHC) and the other cycles σs are called the Hamiltonian cycles (HC). TSP has 

been proven to be NP-complete [1] and there are no exact polynomial-time algorithms 

unless P = NP.  

TSP is the ultimate model of many complex discrete optimization problems, such as 

the network optimization, VLSI, and machine scheduling, etc. The methods for TSP 

are usually referred to resolve these complicate problems. Thus, TSP is extensively 

studied in combinatorics, operation research and computer science, etc. The algo-

rithms for TSP [2] have become one of the prosperous branches in the research. The 
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research illustrated that the exact algorithms generally need O(a
n
) time to resolve TSP 

where a > 1. For example, the time complexity of dynamic programming for TSP is 

O(n
2
2

n
) owing to Held and Karp [3], and independently Bellman [4]. The state-of-art 

branch and bound [5] or cutting plane methods [6, 7] are feasible for TSP with thou-

sands of vertices. Due to the exponential number of constraints, the exact methods for 

TSP often need long-time computation to resolve the big scale of TSP instances.  

Since the computation time of the exact algorithms is hard to reduce, some research-

ers turn to the approximation algorithms or heuristics for TSP. The approximation 

algorithms mainly depend on the good properties of some special computation mod-

els, such as special graphs or trees, to reduce the computation time. The minimum 

spanning tree-based algorithm [8] and Christofide’s algorithm [9] spend the O(n
2
) and 

O(n
3
) time to produce the 2-approximation and 1.5-approximation for metric TSP, 

respectively. The computation time of the approximation algorithms usually have 

close relationships with the approximation ratio. The nearer the approximation ap-

proaches the optimal solution, the longer the computation time of the approximation 

algorithms will require [2]. The experiments illustrated that the Lin−Kernighan heu-

ristics (LKH) was competitive to generate the approximation [10] within 5% of the 

optimal solution in nearly O(n
2.2

) time. One sees the heuristic algorithms are efficient 

to compute the approximations. On the other hand, they cannot guarantee to find the 

optimal solution, especially for the large scale of TSP.  

Besides the above methods for TSP on the Kn, some researchers pursue the methods 

for TSP on the sparse graphs. The sparse graphs include a small number of edges so 

that the search space of the OHC is greatly reduced. For example, the TSP on the 

bounded degree graphs can be resolved in time O((2 − ε)
n
) [11] where ε relies on the 

maximum degree of a vertex. In the research of approximation algorithm, Gharan and 

Saberi [12] proposed the polynomial-time approximation schemes based upon the 

bounded genus graphs where the constant factor is 22.51(1 + 
1

𝑛
) for the planar TSP. 

For the metric TSP with bounded intrinsic dimension, Bartal, Gottlieb and 

Krauthgamer [13] have designed the randomized polynomial-time algorithm that is 

able to compute a (1 + ε)-approximation to the optimal solution where ε>0. For the 

TSP on the Kn, there are no such good results. Whether one pursues the optimal solu-

tion or explores the approximations for the TSP, he or she will get the better results on 

the sparse graphs than those on the complete graph Kn. The question is how to reduce 

the TSP on the Kn to the TSP on the sparse graphs.  

This topic is the research of this paper. Given the TSP on the Kn, our objective is to 

eliminate the number of the irrelevant edges as most as possible and lose the number 

of the OHC edges as least as possible. After many irrelevant edges are trimmed, the 

sparse graphs will be obtained. If the sparse graph contains the original OHC, the 

exact or approximation algorithms will consume less time to find the OHC or approx-

imations in the sparse graphs. Otherwise, if the sparse lose a few OHC edges, the 

exact or approximation algorithms will find the approximations in the sparse graphs.  

To eliminate the edges out of the OHC, the difference between the OHC edges and 

the other edges will be explored. According to the k−opt moves, Hougardy and 

Schroeder [14] proved some edges cannot belong to the OHC. They presented a three-

stage combinatorial algorithm to trim a lot of irrelevant edges. The experiments 



3 

showed the Concorde TSP solver was speeded up 11 times to resolve the Euclidean 

TSP instance d2103 on the sparse graph.  

Our work computes a sparse graph for TSP according to the frequency graph. In pre-

vious work [15, 16, 17], we compute the frequency graph with a set of the optimal 4-

vertex paths with given endpoints where the frequency of the OHC edges is much 

higher than the average frequency of all the edges. The results benefit from the good 

property of these specific optimal paths which have many intersections of edges with 

the OHC. Since the frequency of the OHC edges are much bigger than that of most of 

the other edges, the minimum frequency of the OHC edge can be taken as the fre-

quency threshold to eliminate the other edges with low frequency so that it is possible 

to compute a sparse graph for TSP.  

In a following paper [18], Wang and Remmel computed the frequency graphs with 

the frequency quadrilaterals rather than the specific optimal 4-vertex paths. They 

listed the six frequency quadrilaterals for a weighted quadrilateral ABCD in the Kn. 

Based on the six frequency quadrilaterals, they formulated a binomial distribution 

model to derive the lower bound of the frequency of the OHC edge e as ⌊(
7

3
+

4

3(𝑛−3)
) 𝑁⌋ where N represents the number of the frequency quadrilaterals containing 

e. The probability that an OHC edge has the minimum frequency  ⌊(
7

3
+

4

3(𝑛−3)
) 𝑁⌋ 

tends to zero for big N and n. In average case, the event that an OHC edge e has the 

frequency above ⌊(3 +
2

𝑛−2
) 𝑁⌋ has the maximum probability. It means that the fre-

quency of the OHC edges will be bigger than ⌊(3 +
2

𝑛−2
) 𝑁⌋ in most cases. The exper-

iments showed that the actual minimum frequency of the OHC edge was bigger than 

⌊(3 +
2

𝑛−2
) 𝑁⌋  for most TSP instances. Moreover, the minimum frequency of the 

OHC edges increases according to n. Therefore, it is feasible to compute a residual 

graph using the frequency 3N as a frequency threshold.  

Given the Kn, we first compute the corresponding frequency graph with the frequency 

quadrilaterals in Kn. After we eliminate the edges with low frequency according to the 

minimum frequency of the OHC edge, we will obtain the first preserved graph G1 

containing the OHC. A natural idea is that we can repeat the procedure for the edges 

in the G1 if the edges in the G1 are included in many quadrilaterals. That is, we com-

pute the frequency graph of G1 and trim the edges with lower frequency according to 

the other minimum frequency of the OHC edge. Furthermore, if the preconditions in 

the preserved graphs are sufficient, this procedure can be iterated several times until 

the final preserved graph is sparse enough. Based on the sparse graphs, the computa-

tion time of the algorithms for TSP will be greatly reduced. Once the sparse graph has 

the good properties, such as planarity, k-edge connected, bounded degree, bounded 

tree-width or genus, etc., the complexity of TSP will be lowered. A first question is 

how many possible edges we should eliminate at each computation cycle according to 

the minimum frequency of the OHC edge? The second question is how many cycles 

we can run the procedure to guarantee the preserved graphs to contain the OHC. Since 

the answers to the first question only concerns the number of the deleted edges at each 
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computation cycle, the stop computation cycle must be given to terminate the compu-

tation procedure to output the sparse graph for TSP.  

The outline of this paper is given as follows. In section 2, we shall briefly introduce 

the frequency quadrilaterals and the probability model for the OHC edges. A criterion 

is derived to eliminate how many possible edges whereas the OHC edges are kept 

intact. In section 3, we shall introduce the iterative algorithm to compute a sparse 

graph based on the frequency quadrilaterals. The maximum computation cycle and 

the stop computation cycle are also given. The iterative algorithm is tested with tens 

of real-world TSP examples in section 4. The preserved graphs in the computation 

process will be shown. The conclusions and possible future research are given in the 

last section.   

2 The frequency quadrilaterals 

The frequency quadrilateral is a kind of special frequency graph Ki where i = 4 [18]. 

The frequency quadrilateral is computed with the six optimal 4-vertex paths in one 

corresponding quadrilateral. Here we only consider the frequency quadrilaterals de-

rived from the general weighted quadrilaterals K4. Each weighted quadrilateral just 

includes 6 optimal 4-vertex paths (OP
4
) and one OHC. The OP

4
s with given end-

points in a quadrilateral ABCD is computed as follows.  

Given a quadrilateral ABCD in Kn, it includes six edges (A, B), (A, C), (A, D), (B, 

C), (B, D) and (C, D). The distances of the six edges are d(A, B), d(A, C), d(A, D), 

d(B, C), d(B, D) and d(C, D), respectively. Appoint two endpoints, such as A and B, 

there are two 4-vertex paths P1=(A, C, D, B) and P2=(A, D, C, B) containing the four 

vertices A, B, C and D. Their distances are computed as d(P1)= d(A, C) + d(C, D) + 

d(B, D) and d(P2)= d(A, D) + d(C, D) + d(B, C).  We assume the distances of the two 

paths are unequal, i.e., 𝑑(𝑃1) ≠ 𝑑(𝑃2). One path must be shorter than the other one. 

We take the shorter path P1 or P2 as the OP
4
 for the two end vertices A and B. Since 

we have six pairs of endpoints according to the four vertices A, B, C and D, there are 

six OP
4
s in the quadrilateral ABCD. According to the distances of edges, the 6 OP

4
s 

are computed with the four-vertex and three-line inequality array [19].  

 

                
(a)                                               (b)            (c) 

Fig. 1. The  quadrilateral ABCD (a), the inequality array and the six OP4s (b), and the frequen-

cy quadrilateral ABCD (c) 

For example in Fig. 1, Fig. 1 (a) is the quadrilateral ABCD where the OHC = (A, C, 

B, D, A). Fig. 1 (b) is the inequality array d(A, D) + d(B, C) < d(A, C) +d(B, D) < d(A, 

B) + d(C, D) according to the distances of edges and the six OP
4
s derived based on 

the inequality array. Fig. 1 (c) is the frequency quadrilateral ABCD computed with the 
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6 OP
4
s. It is clear that the 4 edges (A, D), (A, C), (B, C) and (B, D) with the top fre-

quencies 5, 5, 3 and 3 belong to the OHC = (A, C, B, D, A).  

In a frequency quadrilateral ABCD, the pairwise non-adjacent edges have the same 

frequency 5, 3 or 1. For example in Fig. 1, the edges (A, D)&(B, C) have the frequen-

cy 5, the edges (A, C)&(B, D) have the frequency 3, and the edges (A, B)&(C, D) have 

the frequency 1, respectively. It is the distances of the pairwise non-adjacent edges 

that conclude their frequencies. The bigger the summed distance of the two non-

adjacent edges is, the smaller their frequency will be. For example in Fig. 1, the 

summed distances of the three pairs of non-adjacent edges (A, D)&(B, C), (A, C)&(B, 

D) and (A, B)&(C, D) are 4.0, 8.5 and 11.8, respectively. However, their frequencies 

are 5, 3 and 1, respectively.  

The distances of the edges in a quadrilateral ABCD are various. According to the 

three summed distances of the three pairs of non-adjacent edges, they will produce six 

inequality arrays. Each inequality array determines a set of six OP
4
s and a corre-

sponding frequency quadrilateral. Thus, six distinct frequency quadrilaterals ABCD 

are computed and shown in Fig. 2 (a)-(f) [18]. The summed distance array of the 

quadrilateral ABCD is listed below the corresponding frequency quadrilateral ABCD.  

 

Fig. 2. The six frequency quadrilaterals ABCD for a quadrilateral ABCD 

Although there are a number of weighted quadrilaterals, they are classified into six 

kinds according to the six frequency quadrilaterals in Fig.2. For each kind of quadri-

laterals ABCD, the distances of the six edges conform to the same inequality array. In 

addition, their OHC is determined by the corresponding inequality array. Let’s ana-

lyze the six frequency quadrilaterals for a quadrilateral ABCD. Firstly, the frequency 

of the six edges in each frequency quadrilateral is f=5, 3 and 1. The frequency of edg-

es in the frequency quadrilaterals composes a stable frequency space {1, 3, 5}. For the 

three adjacent edges containing a vertex, such as AB, AC and AD, they have the dif-
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ferent frequency. Therefore, the difference between adjacent edges can be clearly 

characterized by their frequency. In addition, the two adjacent edges containing a 

vertex with the big frequency 5 and 3 are included in the OHC whereas another adja-

cent edge with the frequency 1 is not. Next, the two non-adjacent edges have the 

equal frequency. If one edge belongs to the OHC, the opposite edge must be in the 

OHC and vice versa. If we find two adjacent OHC edges in a quadrilateral, the other 

two OHC edges are also concluded.  

Secondly, we see the frequency of an edge in the six frequency quadrilaterals. For 

an edge e ∈ {(A, B), (A, C), (A, D), (B, C), (B, D), (C, D)}, it has the frequency f=5, 3 

and 1 twice in the six frequency quadrilaterals, respectively. If the frequency f ∈ {5, 3, 

1} of e is taken as a random variable, we see the probability p that e has the frequency 

f= 5, 3 and 1 is equal to 1/3 based on the six frequency quadrilaterals. We note the 

probability p(f = 5) = p(f = 3) = p(f = 1) = 1/3  for e whose frequency f= 5, 3 and 1 in a 

random frequency quadrilateral containing the e.  

Given a TSP with n vertices, there are (𝑛
4

) weighted quadrilaterals. Each quadrilat-

eral includes six edges. Thus, every edge is included in (𝑛−2
2

) quadrilaterals. For an 

edge e in each of these corresponding frequency quadrilaterals, the possible frequency 

of e may be 5, 3 or 1. Given a random frequency quadrilateral containing e, we as-

sume the frequency quadrilateral has the equal probability to be one of the six fre-

quency quadrilaterals in Fig.2. Thus, the probability p(f = 5) = p(f = 3) = p(f =1) = 1/3 

that e has the frequency 5, 3 and 1 in the frequency quadrilaterals. When we compute 

the frequency F(e) of e with N frequency quadrilaterals containing e, the frequency 

F(e) = (5p(f = 5) + 3p(f = 3) + p(f = 1))N =3N. It is the average frequency of all edges.  

For the OHC edges, there are some special frequency quadrilaterals where their 

frequency f = 5, 3 rather than 1. In the Kn, each two adjacent OHC edges are included 

in n − 3 quadrilaterals and each two opposite OHC edges are contained in a quadrilat-

eral. In the corresponding frequency quadrilateral containing two opposite OHC edg-

es, the frequency of the two OHC edges are 5 or 3. Otherwise, the two opposite OHC 

edges will be replaced by the other two non-adjacent edges in the quadrilateral. Ac-

cording to the observations, Wang and Remmel [18] constructed the n-3 frequency 

quadrilaterals for an OHC edge e where its frequency is 3 or 5. In the rest frequency 

quadrilaterals, they assume the frequency 1, 3 and 5 of e has the equal probability 1/3. 

Thus, they gave the probability that 𝑒 ∈ 𝑂𝐻𝐶 has the frequency 1, 3 and 5 in a fre-

quency quadrilateral as p(f = 5) = p(f = 3) = 
1

3
+

1

3(𝑛−2)
 and p(f = 1) = 

1

3
−

2

3(𝑛−2)
. When 

we compute the frequency of e∈ OHC with N random frequency quadrilaterals con-

taining e, the expected frequency F(e) = 3N+ 
2𝑁

𝑛−2
. One sees the expected frequency of 

an edge e ∈ OHC computed with N random frequency quadrilaterals is bigger than the 

expected frequency 3N of a common edge.  

According to the probability p(f = 5) = p(f = 3) = 
1

3
+

1

3(𝑛−2)
  and p(f = 1) = 

1

3
−

2

3(𝑛−2)
, we know that the probability p(f= 3, 5)> 

2

3
 for an OHC edge e in a fre-

quency quadrilateral in Kn. When we compute the frequency of an edge with N fre-

quency quadrilaterals containing e, the total frequency of an OHC edge will be bigger 

than 3N. Certainly, the average frequency 𝑓̅(𝑒)  of the OHC edge e will be bigger 
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than 3. Therefore, it is necessary to consider the edges e with the frequency F(e) > 3N 

or 𝑓 ̅(e) > 3 for TSP. We are interested in how many edges with the frequency F(e) > 

3N or 𝑓 ̅(e) > 3 when each of them is computed with N frequency quadrilaterals.  

Given an edge e in the six frequency quadrilaterals in Fig.2, there are four frequen-

cy quadrilaterals where e has the frequency 3 and 5. Thus, the probability p(f≥3) of 

the case f≥3 for an edge e is equal to 2/3, i.e., p(f≥3)= 2/3. It says the e has the prob-

ability 2/3 that its frequency is bigger than the expected frequency 3 in a random fre-

quency quadrilateral. When we choose N random frequency quadrilaterals containing 

e, there will be [
2𝑁

3
] frequency quadrilaterals where the frequency is above 3 and [

𝑁

3
] 

frequency quadrilaterals where the frequency is below 3. If we take 3 as the frequency 

threshold to eliminate the edges with smaller frequency, the edge e will be preserved 

[
2𝑁

3
] times. Thus, the probability that e is preserved is 

2

3
 when we take f=3 as the fre-

quency threshold to eliminate the edges with lower frequency. In this case, the total 

frequency F(e) = 3N and average frequency 𝑓 ̅(e) = 3. If we take the total frequency F 

= 3N or average frequency 𝑓 ̅= 3 as the frequency threshold, the edges e with the 

probability p(f≥3) ≥2/3 in each frequency quadrilateral will be preserved. Consider-

ing the (𝑛
2

) edges in the Kn, we will preserve at most 
2

3
(𝑛

2
) edges with the big frequen-

cy for TSP. Since the OHC edge e has the big frequency F(e) > 3N or 𝑓 ̅(e) > 3, the 

OHC edges will be preserved with a big probability.  In fact, an OHC edge e has the 

probability p(f≥3) ≥2/3 in each frequency quadrilateral so it is preserved.  

It mentions that we will preserve some edges with the probability p(f≥3)<2/3 

when we take F = 3N or 𝑓 ̅= 3 as the frequency threshold. For example, the edges 

have the probability p(f=5)>1/2 and p(f=3) + p(f=5) < 2/3. Thus, more irrelevant edg-

es with the big frequency F(e) > 3N and average frequency 𝑓 ̅(e) > 3 will be pre-

served. If the edges in the preserved graph are contained in many frequency quadrilat-

erals, it is necessary to iterate the computation process to eliminate these edges in the 

next computation cycles. In the following section, we will give the iterative algorithm 

to trim these edges step by step until a sparse graph for TSP is computed.  

3 The iterative algorithm 

We fist give the iterative algorithm and then discuss the stop computation cycle. Giv-

en an original graph G0(V0, E0), | V0| = n and |E0| =(𝑛
2

) in general. When the frequen-

cy of every edge is computed with N frequency quadrilaterals in G0(V0, E0), we 

choose  [
2

3
|𝐸0|]  edges with top frequency to compose a second graph G1(V0, E1) for 

TSP according to the probability p(f = 5) = p(f = 3) = 
1

3
+

1

3(𝑛−2)
  and p(f = 1) = 

1

3
−

2

3(𝑛−2)
 . After that, if N is big for the edges in G1(V0, E1), we can use the same 

method to compute a third graph G2(V0, E2) with an even smaller number of edges 

where |E2| = [(
2

3
)

2

|𝐸0|]. Furthermore, if N is still big for the edges in Gk(V0, Ek) 

where k > 2, we can keep executing the computation until a sparse graph containing  



8 

[(
2

3
)

𝑘

|𝐸0|] edges is generated. We expect the final sparse graph to include O(nlog2n) 

edges so that the better polynomial-time algorithms or polynomial-time approximate 

schemes are designed for TSP based on these sparse graphs. It notes that N should be 

sufficiently big for the edges in Gk(V0, Ek) at each computation cycle where k ≥ 0. 

Otherwise, the probability p5(e) and p3(e) of the OHC edges will be much smaller 

than the p(f = 5) = p(f = 3) = 
1

3
+

1

3(𝑛−2)
  and smaller than that of the other edges. One 

will wonder the probability p(f = 5), p(f = 3) of the OHC edges will become smaller in 

the preserved graphs and they will be eliminated in the computation process. We will 

explore the change of the probability p(f = 5), p(f = 3) and p(f = 1)  for the OHC edges 

in the computation process in another paper. Here we will focus on the algorithm to 

compute the sparse graphs for TSP. In the next section, we will see the OHC edges 

usually have the bigger average frequency than that of the 1/3|𝐸𝑘| edges to be elimi-

nated in the preserved graphs for the TSP instances. Under the assumption, we give 

the iterative algorithm in Table (2).  

Table 1.   The iterative algorithm to compute a sparse graph for TSP 

Step The pseudo codes of the iterative algorithm 

1 Input the initial graph Gk(V0, Ek) where k:= 0, |V0| = n and |E0| = (𝑛
2

). 

2 Do{  

3         For each edge e ∈ Ek{ Compute the average frequency 𝑓 ̅(e) of e with N fre-

quency quadrilaterals containing e.} 

4        Order the |Ek| edges according to their 𝑓 ̅(e)s from big to small values.   

5         Preserve the previous   [
2

3
|𝐸𝑘|] edges to the next graph Gk +1(V0, Ek +1).  

6         Replace Gk(V0, Ek) with Gk +1(V0, Ek +1) and assign k := k + 1.  

7         }While(|Ek +1| ≥ cn). 

8      Output the sparse graph with cn edges.  

 

The first step is to input an initial weighted graph G0(V0, E0) with n vertices and |E0| 

edges. Generally, |V0| = n and |E0| = (𝑛
2

). Assign the initial value of computation cycle 

k = 0. In the following steps, the iterative algorithm generates a sparse graph with less 

than cn edges where c≈ [𝑙𝑜𝑔2𝑛]. At the k
th

 computation cycle where k ≥ 0, the algo-

rithm begins with a input graph Gk(V0, Ek) and outputs the next preserved graph 

Gk+1(V0, Ek+1) with |Ek+1|= [(
2

3
)

𝑘+1

|𝐸0|] edges according to the average frequency of 

edges in the Gk(V0, Ek). We use the average frequency of edges instead of their total 

frequency to avoid bias to some edges since the edges will be contained in different 

number of frequency quadrilaterals in the in Gk(V0, Ek). The average frequency 𝑓 ̅(e) 

of every edge e in Gk(V0, Ek) is computed as follows. Firstly, the N quadrilaterals con-

taining the edge e are chosen and the frequency f(e) of e is enumerated from the 6 

OP
4
s in each of the quadrilaterals. Given the frequency of e is fj(1 ≤ j ≤ N) in the j

th
 

frequency quadrilateral, the average frequency of e is computed as  𝑓(̅e) = 
1

𝑁
∑ 𝑓𝑗

𝑁
𝑗=1 . 

In the iterative computation process, the number of the frequency quadrilaterals con-

taining every edge in Gk(V0, Ek) will not be equal. It is fair to compare the average 
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frequency of edges rather than their total frequency in Gk(V0, Ek). Therefore, it is ra-

tional to keep the  [
2

3
|𝐸𝑘|] edges with the big average frequency for TSP.  

After the average frequency 𝑓(̅𝑒)s of the |Ek| edges are computed, we order them 

from big to small values to form a frequency sequence at step 4. Given the average 

frequency of the j
th

 edge is 𝑓𝑗̅ (1 ≤ j ≤ |Ek|), we note the frequency sequence as 

(𝑓1̅,𝑓2̅, · · · , 𝑓|̅𝐸𝑘|) where 𝑓1̅ is the maximum frequency and  𝑓|̅𝐸𝑘|is the minimum fre-

quency. At the 5
th

 step, the previous  [
2

3
|𝐸𝑘|] edges are chosen to compose the next 

graph Gk+1(V0, Ek+1). To continue the recursive computations, we replace the graph 

Gk(V0, Ek) with the graph Gk+1(V0, Ek+1) and assign k := k + 1. That is, the edge set Ek 

in the Gk is substituted with the edge set Ek+1 in Gk+1. The iterative algorithms will 

always be executed until the terminal condition |Ek+1|≤ cn is met. At last, it outputs 

the final sparse graph with less than cn edges.  

When we run the iterative algorithm based on the frequency quadrilaterals, the pre-

served graphs will have the smaller and smaller number of edges according to the 

computation cycle k. Given through k iterations, we will obtain a sparse graph with cn 

edges. The maximum iterations kmax is given as formula (1). Many researchers take 

the graphs with O(nlog2n) edges as the sparse graphs. The number O(nlog2n) increas-

es nearly in a linear way according to n. Thus, we take c = log2n for general TSP in-

stances. The maximum computation cycle becomes 𝑘𝑚𝑎𝑥 = ⌊𝑙𝑜𝑔2

3

(
2𝑙𝑜𝑔2𝑛

𝑛−1
)⌋ . At the 

𝑘𝑚𝑎𝑥
𝑡ℎ  computation cycle, the iterative algorithm will output a sparse graph with 

[nlog2n] edges for general TSP.  

 𝑘𝑚𝑎𝑥 = ⌊𝑙𝑜𝑔2

3

(
2𝑐

𝑛−1
)⌋ (1) 

If every K4 includes only one OHC and the six OP
4
s, the average frequency of the 

OHC edges will be bigger than the expected frequency 3 whereas the average fre-

quency some of the other edges will be below 3. In this case, we can eliminate 
1

3
 edges 

with small average frequency. This is the theoretical case. For real-world instances, 

some K4s in the Kn include more than six OP
4
s as they contain the equal-weight edg-

es. The selection of the right 6 OP
4
s becomes hard to compute a unique frequency 

quadrilateral. If the wrong OP
4
s in these K4s are used, the average frequency of some 

OHC edges in the Kn will become smaller. These OHC edges will be eliminated with 

a big probability. For general TSP, the iterative algorithm will work well to compute a 

sparse graph for TSP. Even though for the special TSP examples, the experiments 

showed that the iterative algorithm still works if we add the random small distances to 

the edges’ distances in advance [18].   

We are interested in how many OHC edges will be lost in the computation process. 

At the (k + 1)
th

 computation cycle, we will maintain  [
2

3
|𝐸𝑘|] edges in the preserved 

graph. In other words, we will throw away   [
1

3
|𝐸𝑘|] edges according to the average 

frequency of edges. In the graph Gk(V0, Ek), the probability that an edge e is aban-

doned is p(e∉ Ek+1) = 1/3. The OHC includes n edges. If we do not consider the fre-

quency of edges, the probability that an edge e ∈ OHC in Gk(V0, Ek) is p(e ∈ OHC) = 
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𝑛

|𝐸𝑘|
 where |E0| =(𝑛

2
). At the k

th
 (k ≥ 1) computation cycle, the number of the edges in 

the input graph Gk−1(V0, Ek−1) is [(
2

3
)

𝑘−1

|𝐸0|]. We assume the graph Gk−1(V0, Ek−1)  

includes the OHC so that the probability of an edge e ∈  OHC is p(e ∈  OHC) 

=
𝑛

(
2

3
)

𝑘−1
|𝐸0|

. Every edge has the probability 1/3 to be abandoned at the k
th

 computation 

cycle. Thus, the probability that the edge e ∈ OHC is abandoned in the next graph 

Gk(V0, Ek) is computed as formula (2).  

 𝑝(𝑒 ∈ 𝑂𝐻𝐶 ∧ 𝑒 ∉ 𝐸𝑘) =
1

3
×

𝑛

(
2

3
)

𝑘−1
|𝐸0|

 (2) 

If one or more OHC edges are lost at the k
th

 computation cycle, we have 𝑛𝑝(𝑒 ∈

𝑂𝐻𝐶 ∧ 𝑒 ∉ 𝐸𝑘) ≥ 1. Therefore, the formula (4) holds if |E0| =(𝑛
2

).  

 𝑘 ≥ 2 + ⌊𝑙𝑜𝑔2

3

(
𝑛

𝑛−1
)⌋ (3) 

As n → ∞, k ≥ 2. It means the iterative algorithm can be executed at least 2 times 

without losing the OHC edges. If m OHC edges are lost where m is a small constant, 

we can derive the computation cycles 𝑘 ≥ 2 + ⌊𝑙𝑜𝑔2

3

(
1

𝑚
)⌋. The computation cycle 

becomes bigger as m rises. It means that we can run the algorithm more times to com-

pute a sparse graph on condition that only a small number of the OHC edges are lost. 

For example, if m = 
9

4
, we can run the algorithm at least k = 4 times. However, we 

may lose only m < 3 OHC edges.  

In fact, the formula (2) is the average probability for an arbitrary edge e in any giv-

en n edges in Gk−1(V0, Ek−1). In our algorithm, we maintain the edges according to the 

frequency of edges rather than the random selection. For each of the edges in the 

OHC, their average frequency computed with the N frequency quadrilaterals in 

Gk−1(V0, Ek−1) will be bigger than the average frequency of all of the edges. In the 

frequency sequence (𝑓1̅,𝑓2̅, · · · , 𝑓|̅𝐸𝑘−1|), if the number of edges with the average fre-

quency below the 3 is bigger than  [
1

3
|𝐸𝑘−1|], the probability that the OHC edges will 

be maintained in Gk(V0, Ek) tends to 1 but not 2/3. Moreover, the probability that an 

OHC edge is neglected in Gk(V0, Ek) is small than 1/3 based on the frequency quadri-

laterals. Therefore, the edges in the OHC have a much bigger probability that they 

will be maintained to the Gk(V0, Ek) as N is big enough. According to the average 

frequency of edges, the probability 𝑝(𝑒 ∈ 𝑂𝐻𝐶 ∧ 𝑒 ∉ 𝐸𝑘) will be much smaller than 

that computed with the formula (2) based on the random selection. Thus, we can run 

the iterative algorithm more times than that restricted by formula (3) for general TSP. 

Meanwhile, we will obtain an even sparser graph containing the OHC for TSP.  

Many incomplete quadrilaterals will appear in the computation process because the 

[
2

3
|𝐸𝑘−1|] edges with small frequency are abandoned at the k

th
 computation cycle. 

These incomplete quadrilaterals contain less than 6 edges as well as less than 6 OP
4
s. 

If these incomplete quadrilaterals are used to compute the frequency of edges, the 
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average frequency of edges will not equal 3. The probability p(f = 5) = p(f = 3) = p(f = 

1) = 
1

3
 will not be right based on these incomplete frequency graphs. The probability 

that an edge e has the frequency above 3 is not equal to  
2

3
 in the various incomplete 

frequency quadrilaterals. Therefore, we should use a different ratio rather than 
1

3
 to 

discard the number of edges according to their average frequency, especially in the 

later computation stage.  

In the later computation process, most of edges in the preserved graphs will only 

be included in the incomplete quadrilaterals. According to various incomplete quadri-

laterals, it is hard to find a suitable ratio to delete the proper number of edges in 

Gk(V0, Ek). If we use the constant ratio  
1

3
  to abandon the edges with small frequency, 

some or many OHC edges will be neglected, too. To guarantee the OHC edges in the 

last preserved graph, we will find the stop computation cycle ks to terminate the itera-

tive algorithm.  

If N is big enough for an edge e ∈ OHC in Gk(V0, Ek), the average frequency of e 

will be bigger than the average frequency of the total |Ek| edges based on frequency 

quadrilaterals. Thus, the average frequency of e ∈ OHC will be bigger than 3 when it 

is computed with N frequency quadrilaterals. We enumerate the number of edges with 

the average frequency less than 3 and note it as 𝑁<𝑓̅. When we use the constant ratio 
1

3
 

to trim the 
1

3
|Ek| edges with small frequency, the OHC will be maintained in the pre-

served graph if 𝑁<𝑓̅ >
1

3
|𝐸𝑘|. It means we just eliminate the  

1

3
|𝐸𝑘| edges whose aver-

age frequency is below 3. However, we will eliminate some OHC edges if we meet 

𝑁<𝑓̅ ≤
1

3
|𝐸𝑘|in the graph Gk(V0, Ek). Therefore, the inequality 𝑁<𝑓̅ ≤

1

3
|𝐸𝑘| is taken 

as the restriction to determine the stop computation cycle ks and terminate the iterative 

algorithm. Given a TSP, the iterative algorithm can always run until it reaches the 

stop computation cycle. Once 𝑁<𝑓̅ ≤
1

3
|𝐸𝑘| , we should be careful to implement the 

iterative computation. Some OHC edges whose average frequency is above but near 

to the expected frequency 3 will be abandoned at this computation cycle.  

In the computation process, the number of edges with the average frequency below 

3 will become less and less according to k. On the other hand, the number of edges 

with average frequency above 3 will become relatively bigger according to k. There-

fore, we can always find such a preserved graph Gk(V0, Ek) where 𝑁<𝑓̅ ≤
1

3
|𝐸𝑘|. If the 

minimum average frequency of the OHC edge is still bigger than 3 or the average 

frequency of the OHC edges is further beyond that of the 
1

3
|Ek| edges with small fre-

quency, we may proceed the iterative algorithm one or a few more times even though 

the 𝑁<𝑓̅ ≤
1

3
|𝐸𝑘| . In this case, the computation cycle k will be close to kmax and the 

residual graph will be very sparse. However, we cannot guarantee to preserve all of 

the OHC edges in the following preserved graphs for the worst cases of TSP once k > 

ks. In the actual computation process, we enumerate the edges with the average fre-

quency below the expected frequency 3 simultaneously. Once 𝑁<𝑓̅ ≤
1

3
|𝐸𝑘| , it means 
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that we may throw away some OHC edges at this computation cycle. It is the time to 

stop the iterative algorithm and take the output graph with |Ek−1| edges for T SP.  

It mentions that many incomplete quadrilaterals will be generated in the computa-

tion process. Fig. 3 (a) and (b) shows two kinds of incomplete quadrilaterals we con-

sider in our algorithm, especially at the final stages of the algorithm. Their possible 

frequency quadrilaterals (1), (2) are shown on their right sides. These incomplete 

frequency quadrilaterals are computed with the OP
4
s in the two incomplete quadrilat-

erals. In the frequency quadrilaterals (1) and (2), the numbers on the edges are their 

frequency. Obviously, the probability 4/5 and 1 that we preserve the edges based on 

the two incomplete frequency quadrilaterals is bigger than 2/3 according to frequency 

quadrilaterals. It means we should throw away 
1

5
|Ek| and 0 edges according to their 

frequency or average frequency computed with the two kinds of incomplete frequency 

quadrilaterals. It suggests us to keep more edges in the computation process when we 

use a lot of such incomplete frequency quadrilaterals. In the later computation cycles, 

we will have many such incomplete quadrilaterals. In this case, we generally cannot 

use the constant ratio 
1

3
 to eliminate the 

1

3
|Ek| edges with low frequency to compute the 

next sparse graph for TSP.  

 

         
(a)                                           (1)                                               (2) 

     
(b)                                            (1) 

Fig. 3. Two kinds of incomplete quadrilaterals and their corresponding frequency graphs 

4 The experiments and analysis  

We use some TSP examples in TSPLIB [20] to verify the performance of the itera-

tive algorithm. Four families of TSP instances are used to test the iterative algorithm. 

They are the Euclidean, GEO, ATT and Matrix TSP in TSPLIB. The frequency quadri-

laterals are used to compute the frequency of every edge. At each computation cycle, 

we use all of the frequency quadrilaterals containing every edge in the input graph to 

compute their frequency. During the computation, the number of the frequency quad-

rilaterals containing every edge will not be equal due to the omission of edges. In this 

case, the bias will occur to the edges if we keep them according to their total frequen-

cy. To prevent such bias, the average frequency of every edge is computed for com-

parison and the edges with big average frequency will be maintained. For these in-

stances, we use the Online Concorde [21] to compute their OHCs first. The OHC is 

3      

3      

4      4      
1      

4      

4      

3      3      
1      

3      

3      

3      3      
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used to compute the number of the lost OHC edges in the preserved graphs at each 

computation cycle.  

Besides the K4s, the two kinds of incomplete quadrilaterals shown in Fig. 3 are also 

used to compute the frequency of edges. However, these incomplete quadrilaterals are 

not used until the computation cycle 𝑘 ≥ ⌊
2

3
𝑙𝑜𝑔2

3

(
2

𝑛−1
)⌋. Before the ⌊

2

3
𝑙𝑜𝑔2

3

(
2

𝑛−1
)⌋ 

computation cycles, most of the preserved edges are included in many K4s, especially 

for the OHC edges. On the other hand, the preserved edges will be included in many 

incomplete quadrilaterals after ⌊
2

3
𝑙𝑜𝑔2

3

(
2

𝑛−1
)⌋ computation cycles. In this case, these 

incomplete frequency quadrilaterals are used to compute the average frequency of the 

preserved edges. Since the average frequency of an edge is computed with the differ-

ent numbers of complete and incomplete frequency quadrilaterals, the probability that 

we preserve the edges are changing in the computation process. To simplify the com-

putation, we preserve the 
2

3
|Ek| edges with the big average frequency at each computa-

tion cycle. Although the incomplete frequency quadrilaterals are used, the average 

frequency of the OHC edges will still be bigger than that of the edges to be eliminated 

in most of the preserved graphs. Thus, the iterative algorithm can be executed several 

more times and the even sparser graphs will be computed.  

In the experiments, we execute the algorithm 𝑘𝑚𝑎𝑥 = ⌊𝑙𝑜𝑔2

3

(
2

𝑛−1
)⌋ times for each 

TSP instance where c=1. Some vertices will be isolated in the computation process. 

For an isolated vertex, we add the two associative edges with the maximum average 

frequency in the last computation cycle to guarantee the connectivity of the preserved 

graphs. Thus, the number of the edges in the preserved graphs does not decrease accu-

rately in proportion to the factor 2/3 according to k in the last computation stages.  

The results are shown in Tables 2, 3 and 4, respectively. The first column is the 

TSP name and the number in the name is the scale (or size) n of TSP. For each TSP 

instance, we recorded the number of the preserved edges and the number of the lost 

OHC edges according to the computation cycles k. The number of the lost OHC edges 

is noted behind the number of edges in the preserved graphs. There is a slash between 

the two numbers. We only illustrate the results where the number of the lost OHC 

edges is less than 13 for the examples in the Tables 2 and 3 according to the computa-

tion cycles k. In the Table 4, we show the preserved graphs where more OHC edges 

are lost for the big size of TSP instances. Since the preserved graphs in the first sever-

al computation cycles contain the OHC, we give the results from the 3
rd

 computation 

cycle for the small size of instances in Table 2, from the 5
th

 computation cycle for the 

medium size of instances in Table 3 and from the 8
th

 computation cycle for the big 

size of instances in Table 4. In the last, we use the preserved graphs losing at most 

one OHC edge in Tables 2, 3 and the preserved graphs losing at most 2 OHC edges in 

Table 4 to compute the parameter 𝑐 =
|𝐸𝑘|

𝑛
 for every example. The average degree of 

each sparse graph is computed as 𝑑 = [
2|𝐸𝑘|

𝑛
] with the same preserved graph.  
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Table 2. The computational results of some TSP instances: 1st Table.  

TSP\k 3 4 5 6 7 8 9 c d 

gr17 43 30/1 23/5     1.765  4 

gr21 64 43 32/1     1.524  3 

gr24 83 57/1 54/1     2.25  5 

fri26 97 65 45 37/2    1.730  4 

bayg29 121 81/1 56/2 44/6    2.793  6 

dantzig42 257 172 115 81/4    2.738  6 

att48 338 226 152 103/3 79/10   3.167  6 

gr48 335 221 148 99/2 76/8   3.1  6 

hk48 336 224 150 102/2 73/10   3.125  6 

eil51 382 256 172 116 90   1.765  4 

berlin52 396 267 180 123 92/6   2.365  5 

brazil58 491 325 217 146    2.517  5 

st70 717 479 320 215/2 149/6   4.571  9 

eil76 848 568 380 255 173/2 128/9  3.355  7 

pr76 848 566 379/1 254/3 172/5 126/12  4.987  10 

gr96 1355 905 606 406 277 187/4 176/10 2.885  6 

rat99 1441 962 644 431 291/1 198/7  2.939  6 

kroA100 1470 982 656 439 294 210/3 159/9 2.940  6 

kroB100 1470 982 656 439 294/1 208/3 194/7 2.940  6 

kroC100 1470 982 656 439 295 210/5 158/10 2.950  6 

kroD100 1470 982 656 439 296 204/7 198/8 2.960  6 

rd100 1470 982 657 440 295/5 204/10  4.40 9 

eil101 1500 1002 670 448 300 202/4  2.970  6 

lin105 1622 1082 725 485/1 326/3 325/5 167/9 4.619  9 

pr107 1684 1122 748 500 336/3 232/8  4.673  9 

gr120 2117 1411 939 627 419 287/7  3.491  7 

pr124 2263  1510  1008/1  676/1  452/1  307/3  216/9 3.645  7 

bier127 2374  1584  1058  707  474  320/1  224/12  3.732  7 

ch130 2488  1660  1109  741  496  333/3  249/13  3.815  8 

pr136 2724  1818  1215  812  543  367  263/11  2.699  5 

gr137 2764  1844  1231  822  550  373/2  259/7  4.015  8 

pr144 3054  2038  1360  907  606  409/4  287/12  4.208  8 

ch150 3315  2212  1476  985  658  440  311/10  2.933  6 

kroA150 3315  2212  1478  988  660  442/1  314/5  2.947  6 

kroB150 3315  2212  1476  986  659  442/4  311/10   4.393 9 

Pr152 3404  2271  1514  1010/1  675/3  454/3  314/10  6.645  13 

u159 3726  2486  1659  1108 4  740   495/2 335/5 4.65 9 

si175 4515  3011  1996  1300  869/4   7.429  15 

brg180 4777  3186/1  2124/5     17.70  35 

rat195 5608         3740 2494 1668 1114 745 504/1 2.585 5 

d198 5782     3856 2572 1718 1147/1 766/1 513/11 3.869 8 
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Table 3.  The computational results of some TSP instances: 2nd Table.  

TSP\k 5 6 7 8 9 10 11 c d 

kroA200     2625 1752 1170  783 527/5   3.915  8 

kroB200 2625  1752  1170  782/1  536/5    3.910 8 

gr202 2678  1787  1193  802  539/3    3.970  8 

ts225 3323  2217  1480  988/1  662/4    4.391  9 

tsp225 3323  2219  1481  990  666/1    2.960  6 

pr226 3352  2228  1487  993/3  669/4    6.580  13 

gr229 3442      2296 1532 1023 685/3 475/11  4.467  9 

pr264 4576  3053  2038/1  1360/1  913/6  614/10   5.152  10 

a280 5148  3434  2291  1529  1021/1  693/8   3.646  7 

pr299 5871  3916  2614  1745  1165/3  786/11   5.836  12 

lin318 6642  4430  2955  1972  1317/3  882/11   6.201  12 

rd400 10513  7010  4676  3119  2081/2  1392/4   7.798  16 

fl417 11426  7617  5077  3387  2260  1508/8   5.420  11 

gr431 12207  8140  5428  3620  2416  1615/1  1085/9  3.747  7 

pr439 12665  8445  5633  3757  2506/1  1684/2  1126/10 4.683  9 

pcb442 12838  8560  5708  3807  2541  1697/3 1160/9  5.749  11 

d493 15975  10652  7103    4737 3161 2111/1  1418/12 4.282  9 

att532 18604  12404  8271  5513  3677  2452/1  1646/8  4.609  9 

ail535 18813  12543  8363  5576  3718  2480/3   6.949  13 

si535 18788  12455  8180  5309/6  3542/12    15.290  31 

pa561 20688  13791  9192  6124  4084  2724/2  1829/11  7.280  15 

u574 21660  14442  9630  6419  4281  2855/1  1908/11  4.974  10 

rat575 21736  14492  9663  6444  4298  2867  1913/2  4.986  10 

p654 28123  18748  12498  8332  5556  3706/5  2472/13  8.495  17 

d657 28382  18923  12617  8412  5610  3743  2497/7 5.697  11 

gr666 29166  19446  12966  8651  5770  3848/1  2568/4 5.778  12 

We observed the results from the experimental datum: (1) A sparse graph with cn 

edges is computed in polynomial-time where c≪n. For most TSP instances, c < 

log2(n) except for a few examples. The average degree of vertices d = O(log2(n)) in 

these residual graphs. (2) For most of the examples, the sparse graphs will lose a few 

OHC edges when k is close to ⌊𝑙𝑜𝑔2

3

(
2

𝑛−1
)⌋, such as 𝑘 = ⌊𝑙𝑜𝑔2

3

(
2

𝑛−1
)⌋ − 2. At this 

time, the residual graphs have become very sparse and most of the preserved edges is 

only included in a few incomplete quadrilaterals. Therefore, most of TSP instances 

are reduced to a TSP on the sparse graphs. (3) The number of edges in the preserved 

graphs decreases in proportion to the factor 2/3 according to computation cycles k. 

The computation cycle k is less than ⌊𝑙𝑜𝑔2

3

(
2

𝑛−1
)⌋ to compute a sparse graph with 

O(nlog2(n))  edges. (4) All the preserved graphs include the OHC for these examples 

as k ≤ 3. When k = 4, only the brg180 begins losing the OHC edges whereas the pre-

served graphs of the other examples still include the OHC. (5) In the last two compu-

tation cycles when 𝑘 ≥ ⌊𝑙𝑜𝑔2

3

(
2

𝑛−1
)⌋ − 2, quite a few OHC edges are lost in the pre-
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served graphs (not shown in the Tables 2, 3 and 4) because the preserved edges are 

seldom included in the complete quadrilaterals. Thus, we cannot eliminate the edges 

according to their frequency since most of them are zero. We generally cannot com-

pute a residual graph with n edges with the iterative algorithm.  

Table 4. The computational results of some TSP instances: 3rd Table. 

TSP\k 8 9 10 11 12 13 14 c d 

u724 10216 6812 4544 3031/1 2054/8   4.186  8 

rat783 11950 7968 5314 3547 2378/6   4.530  9 

pr1002 19569  13047  8699  5800/1  3868/4    5.788  12 

u1060 21903  14603  9736  6491  4335/8    6.124  12 

vm1084 22903  15269  10180  6787/2  4526/7    6.261  13 

pcb1173 26822  17882  11922  7949/1  5300/2  3538/13   4.518  9 

d1291 32491  21659  14440/1  9627/1  6422/3  4338/10   7.457  15 

rl1304 33150  22100  14734/2  9825/9  6551/22   11.316  23 

rl1323 33150  22100  14734/2 9825/9 6741/18   11.316  23 

fl1400 38209  25471  16981  11322/1  7551/18    8.087  16 

u1432 39979  26652  17769  11847  7899  5270/3   5.516  10 

fl1577 48487  32322  21549  14367/2  9579/10    9.110  18 

d1655 53406  35605  23737  15825  10551/2  7036/19   6.375  13 

vm1748 59577  39717  26476  17651  11768  7848/6   6.732  13 

u1817 64376  42917  28612  19075  12717  8479  5714/13  4.666  9 

rl1889 69580  46387  30924/1  20617/3  13745/6  13745/17   10.914  21 

u2152 90309  60207  40139  26760  17841  11896/2  7948/9  5.528  11 

pr2392 111580  74387  49592  33062  22042  14695  9798/4  6.143  12 

A graph with O(nlog2(n)) edges is commonly considered to be sparse. The experi-

mental results in Tables 2, 3 and 4 show us the preserved graphs with O(nlog2(n)) 

edges contain the OHC. The comparisons between the number Nk of edges in the pre-

served graph containing the OHC and [nlog2(n)] are shown in Table 5 where k is the 

computation cycle. We choose the Nks from Tables 2, 3 and 4 where the number of 

the lost OHC edges is at most 1 in the corresponding preserved graphs. For the pre-

served graph excluding only one OHC edge, we can find the optimal path OP
n
 in the 

preserved graph and it is equal to the OHC once its two end vertices are connected. In 

view of these Nks and [nlog2(n)]s, we find [nlog2(n)] is bigger than Nk for most TSP 

instances except for a few other instances, such as brg180 and si535. Even though Nk 

≥ [nlog2(n)] for a few examples, the Nk is close to [nlog2(n)] in values. One sees the 

value 
𝑁𝑘

𝑛𝑙𝑜𝑔2𝑛
 is very small. For example brg180 and si535, 

3186

180𝑙𝑜𝑔2180
< 2.362  and 

8180

535𝑙𝑜𝑔2535
< 1.687. The factors 2.362 ≪180 and 1.687≪535. For these special exam-

ples, the [nlog2(n)] is less than two or three times of Nk. It means we can compute a 

sparse graph with cn = [nlog2(n)] edges which includes the OHC for most TSP in-

stances. Otherwise, we multiply nlog2(n) by a small number, such as 1.5 or 2.5, and 

keep such number of edges with big frequency in the preserved graph for TSP. Final-

ly, the algorithm outputs a sparse graph with O(nlog2(n))  edges for TSP.  
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Table 5. The comparisons between the number Nk of edges containing the OHC and nlog2(n) 

where k is the computation cycle.  

TSP gr17  gr21  gr24  fri26  bayg29  dantzig42 gr48  hk48  brazil58  

k 4  5  5 5  4  5  5  5  6  
Nk 30  32  54  45  81  115  149  150  146  

[nlog2n] 69  92  110  122  141  226  268  268  340  

TSP att48  eil51 st70 eil76 pr76 berlin52 gr96 rat99 kroA100 

k 5  7  5 6  5  6 7  7  7 
Nk 152  90  320 255  379  123 277  291  294 

[nlog2n] 268  289  429 475  475  296 632  656  664 

TSP rd100 eil101 lin105 kroB100  kroC100 kroD100 pr107  pr124  bier127 
k 6 7 6 7  7 7 6  7  8 

Nk 440 300 485 294  295 296 500  452  320 

[nlog2n] 664 672 704 664  664 664 721  862  887 

TSP ch130  pr136  gr137 pr144  kroA150  kroB150 ch150 pr152  u159 
k 7 8 7 7 8 7 8 6 7 

Nk 496  367  550 606 442  659 440 1010 740 

[nlog2n] 912  963  972 1032 1084  1084 1084 1101 1163 

TSP si175  brg180  rat195  d198 kroA200  kroB200  gr202 ts225  tsp225 

k 6 4 9 8 8 8 8 8 9 

Nk 1300  3186  504  766 783  782  802  988  666 
[nlog2n] 1304  1349  1483  1511 1529  1529  1547  1758  1758 

TSP pr226  gr229  pr264  a280  pr299 lin318  rd400  fl417  gr431 

k 7 8 8 9 8 8 8 9 10 

Nk 1487  1023  1360  1021  1745 1972  3119  2260  1615 
[nlog2n] 1767  1795  2124  2276  2459 2643  3458  3630  3772 

TSP pr439  d493  si535 att532 pcb442 pa561 u574  rat575  p654 

k 9 10 7 10 9 9 10 10 9 

Nk 2506 2111 8180 2542 2541 4084 2855  2867  5556 

[nlog2n] 3854 4410 4848 4817 3884 5123 5260  5271  6117 

TSP d657  gr666 u724 pr1002 u1060 vm1084 rat783 gr120 ail535 
k 10  10  11 11  11 10 11 7 9 

Nk 3743  3848  3031 5800  6491  10180 3547 419 3718 

[nlog2n] 6149  6247  6878 9989  10653  10929 7527 829 4849 

TSP rl1304  rl1323  fl1400 fl1577 pcb1173  d1291  u1432  d1655  u1817 
k 9 9 11 10 11  11  12  11  13 

Nk 22100  22747  11322 21549 7949  9627  7899  15825  8479 

[nlog2n] 13471  13719 14632 16752 11960  13342  15013  17696  19673 

TSP vm1748  rl1889 u2152  pr2392  

k 12  10  12  13   

Nk 11768  30924 17841  14695  
[nlog2n] 19269  20559 23826  26848  

 

It mentions that some TSP examples contain many equal-weight edges. If there are 

no improvements for the equal-weight edges, our iterative algorithm cannot prove to 

compute a sparse graph for these special TSP examples. Given a quadrilateral ABCD, 

it has more than 6 OP
4
s and the corresponding frequency quadrilaterals ABCD are not 

unique. In this case, it is difficult to compute the right frequency quadrilateral for 

ABCD because the six OP
4
s are hard to choose. In our experiments, we select the 

OP
4
s in ABCD according to the lexicographic orders of vertices. For example in 

quadrilateral ABCD, if the two paths OP
4
s (A, B, C, D) and (A, C, B, D) for two end-

points A and D have the equal distance, we choose the path (A, B, C, D) as the OP
4
 

and neglect the other path (A, C, B, D). The method to choose the OP
4
s guarantees us 
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to compute the 6 OP
4
s for the quadrilateral ABCD. On the other hand, some OP

4
s 

may not be right to compute the frequency of edges, especially for some OHC edges 

in Kn. When many wrong OP
4
s are used to compute the frequency quadrilaterals, the 

frequency of edges computed with these frequency quadrilaterals do not conform to 

the binomial distribution model [18], which leads to the smaller frequency of some 

OHC edges in Kn. Thus, we may eliminate these OHC edges according to their fre-

quency in the computation process.  

Through computation, we found some examples, such as lin105, pr124, pr152, 

si175, brg180, d198, pr264, si535, pr1002, d1291, rl1304, rl1323 and rl1889, have 

many equal-weight edges. Moreover, they have many equal OP
4
s (A, B, C, D) and (A, 

C, B, D) in the quadrilaterals ABCD. For example if A = 0 and D = 1 for rl1304, there 

are 101 pairs such OP
4
s (0, B, C, 1) and (0, C, B, 1). For the other two endpoints, they 

also have many pairs of such equal OP
4
s. In this case, it is difficult to choose the right 

OP
4
s to compute the frequency of the OHC edges. Many wrong OP

4
s will be chosen 

to compute the frequency quadrilaterals and the smaller frequency of the OHC edges 

are computed with these frequency quadrilaterals. Thus, these OHC edges will be 

eliminated according to their small average frequency at a small computation cycle.  

In paper [18], the authors suggested to adding random small distances to the dis-

tances of equal-weight edges so that the special TSP will become the general TSP. 

Because the random distances are much smaller than the distances of edges, they 

generally do not change the OHC edges in the Kn. After finding the OHC edges based 

on the frequency graphs, we can compute the distance of the OHC with the actual 

distances of the edges in the Kn. In Tables 2 and 3, we use the method for the three 

special TSP si175, brg180 and si535. Before the execution of the iterative algorithm, 

we add random small distances rd ∈ [0, 1] to the distances for all of edges. Then we 

run our iterative algorithm based on the new distances of edges. Although this method 

cannot guarantee to change the worst case into the best case every time, it usually 

changes the special TSP into a general TSP with a high probability in many experi-

ments. The experiments in paper [18] have proven the function of the random small 

distances so that our probability model can works for the special TSP.   

According to the experimental results, we cannot execute the iterative algorithms  

⌊𝑙𝑜𝑔2

3

(
2

𝑛−1
)⌋ times to compute a sparse graph with n edges for TSP. There are two 

reasons. One reason is that there exist the special TSP instances with many equal-

weight edges. The average frequency of the OHC edges does not conform to the 

probability model unless they are transformed into the general TSP. The second rea-

son is when the number N of quadrilaterals containing every edge becomes very 

small, our probability model does not work efficiently. Therefore, we should stop the 

iterative algorithm before the maximum computation cycle  ⌊𝑙𝑜𝑔2

3

(
2

𝑛−1
)⌋ . For general 

TSP, the average frequency of the OHC edges will be bigger than the average fre-

quency of all of edges in the preserved graphs in the previous computation cycles. 

When we abandon the  
1

3
|Ek −1| edges at each computation cycle, we expect the proba-

bility of all edges meet the probability condition P(f ≤ 3) >1/3 at each computation 

cycle. Thus, we take the P(f ≤ 3) < 1/3 as a restrictive condition to terminate the com-
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putation process. In application, we will execute the iterative algorithm until the fre-

quency of edges in the preserved graph meets the probability P(f ≤ 3) ≤ 1/3. The last 

computation cycle where P(f ≤ 3) ≥ 1/3 to compute the residual graph is taken as the 

stop cycle ks. At the stop computation cycle, we will obtain a sparse graph with 

[(
2

3
)

𝑘𝑠
(𝑛

2
)] edges for the TSP.  

To verify the feasibility of the terminal condition, we did the experiments for the 

TSP instances in Tables 2, 3 and 4 to analyze the corresponding sparse graphs at the 

ks
th

 computation cycle. In these experiments, we add random small distances rd ∈ [0, 

1] to all of edges for every example. For the special TSP instances, the equal-weight 

edges will be greatly reduced.  

Meanwhile, the results will be a little different from those in Tables 2, 3 and 4 due 

to the effect of the random small distances. In these experiments, we recorded the stop 

computation cycle ks and the number of edges |𝐸𝑘𝑠
| in the corresponding preserved 

graphs. The number of edges with average frequency less than 3 in 𝐸𝑘𝑠−1 is computed 

and noted as |𝐸𝑓<3|. The values [
1

3
|𝐸𝑘𝑠−1|] is computed for comparison. The parame-

ters c and average degree d of the sparse graphs are computed according to |𝐸𝑘𝑠
|. The 

number of the lost OHC edges is also recorded as lohc. If lohc = 1, we assume this 

sparse graph owns the OHC. The results for these examples are shown in Table 6.  

At the ks
th

 cycle, the preserved graphs include the OHC for almost all of the TSP 

instances. It is obvious that the preserved graphs include the OHC for these instances 

before the stop computation cycle ks. According to the results in Tables 2, 3 and 4, a 

few more iterations can be executed after the ks
th

 computation cycle and another even 

sparser graph with the OHC will be generated for most of these instances. For exam-

ple rat783, the preserved graph still contains the OHC at the 11
th

 computation cycle 

whereas the stop computation cycle is 8.  

Moreover, we see that the stop computation cycle ks increases according to the 

scale of TSP n. In general case, the larger the scale n of TSP is, the bigger the stop 

computation cycle is. It means we can iterate the algorithm several more times for 

larger scale of TSP and find a sparse graph for them. Since the number of edges in the 

preserved graphs decreases in proportion to 2/3, we will compute a further sparser 

graph if the iterative algorithm is executed a few more times.  

In addition, we see that some TSP instances have the same stop cycle ks when their 

scales do not have much difference or in one interval. For the instances pr144 and 

gr229, their kss is equal to 6 but their scales are 144 and 229, respectively. At the 

same stop cycle ks, the preserved graph of the bigger TSP will have the bigger param-

eters c and d. It seems for the bigger TSP we cannot compute the residual graph as 

sparse as that for a smaller TSP. For different scale of TSP instances, it mentions that 

the difference between |Ef<3| and  
1

3
|Ek −1| becomes bigger and bigger according to n at 

the same stop cycle ks. It means that the number of edges with the average frequency 

less than 3 increases according to n at the same stop cycle ks. Originally, we should 

throw away more edges rather than 
1

3
|Ek −1| edges for larger scale of TSP at the same 

computation cycle. To eliminate more number of edges with the average frequency 

less than 3 in Ek −1, the algorithm has to run more computation cycles for the larger 
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TSP instances. Thus, an even sparser graph than that computed at the stop computa-

tion cycle will be generated. For example pr144 and gr229 in Table 2 and 3, the algo-

rithm iterates two more times for gr229 whereas it runs one more time for pr144 after 

the stop computation cycle. At last, in the two final preserved graphs of pr144 and 

gr229, the parameters c and d are nearly equal. When the scale of TSP is beyond an 

appointed value, the stop computation cycle ks will increase accordingly. For example 

pr264, the stop computation cycle ks becomes 7.  

We are interested in the other problem: does the preserved graphs include the OHC 

once 
1

3
|Ek −1| is bigger than |Ef<3| in the computation process? We discuss the question 

because we compute the frequency of edges with the incomplete frequency quadrilat-

erals at the late stage. Although the average frequency of the OHC edges will be less 

than 3, we hope they are bigger than that of the 1/3 edges to be eliminated. If the pre-

served graph includes the OHC, we could execute the iterative algorithm at least one 

more time after the stop computation cycle to generate the sparser graph for TSP. 

Here we use a ratio computed as 𝜌 =
1

3
|𝐸𝑘𝑠|−|𝐸𝑓<3|

1

3
|𝐸𝑘𝑠|

 to show the difference between  

1

3
|𝐸𝑘𝑠

|  and |𝐸𝑓<3| . We will execute the iterative algorithm once when we meet  
1

3
|𝐸𝑘𝑠

| > |𝐸𝑓<3|  for the first time. Meanwhile, the computation cycle and ρ are com-

puted. The number of the lost OHC edges are also recorded in the corresponding re-

sidual graph. The results are given in Table 7. Comparing with the results in Table 6, 

we see most of these preserved graphs still include the OHC at the (ks + 1)
th
 computa-

tion cycle. It means we can execute the iterative algorithm one more time after the 

stop computation cycle ks even though  
1

3
|𝐸𝑘𝑠

| > |𝐸𝑓<3|. Meanwhile, a further sparser 

graph is generated for TSP. We also find for some special TSP instances, such as 

si175, brg180 and si535, the value ρ is near to 1 at the (ks+1)
th

 computation cycle. It 

says the  
1

3
|𝐸𝑘𝑠

|  is much bigger than |𝐸𝑓<3|. Therefore, many edges with the average 

frequency bigger than 3 will be eliminated at this computation cycle. The residual 

graphs will lose several or quite a few OHC edges. For the special TSP instances with 

many equal-weight edges, we suggest the sparse graphs computed at the stop compu-

tation cycle ks are more suitable for TSP.  

We have two counter examples brg180 and si535. The preserved graphs lose quite 

a few OHC edges at the stop cycle. The main reason is that the brg180 and si535 have 

many equal-weight edges. Given a set of k vertex, there are more than one OHCs and 

(𝑘
2
) optimal k-vertex paths. For brg180, we use the previous 10 vertices and the corre-

sponding distances to construct a small TSP. It finds the small TSP has 128 OHCs. 

Even though we add random small distances to brg180 and si535, the random dis-

tances cannot ensure the edges in the OHC to have the big frequency in the corre-

sponding frequency quadrilaterals. After all, the random small distances only play the 

average effect to compute the frequency for all of edges. Moreover, we cannot guar-

antee the OHC edges to have a big frequency in one experiment. In our experiments, 

some OHC edges may have a small frequency in their frequency quadrilaterals. 

Therefore, these OHC edges will be abandoned before the stop computation cycle. If 

we did several or many experiments, the better result would be computed.  
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Table 6.  The computational results at the stop computation cycle 

TSP ks 1

3
|𝐸𝑘𝑠

|

/|𝐸𝑓<3| 

lohc c/d TSP ks 1

3
|𝐸𝑘𝑠

|

/|𝐸𝑓<3| 

lohc c/d 

gr17  3 21/23  0  2.529/5  gr202  6  891/1852  0  8.832/18 

gr21  3  31/37 0  3.048/6  ts225  6  1106/2459  0  9.840/20 

gr24  3  41/47  0  3.458/7  tsp225 6  1106/2275  0  9.840/20 

fri26  3  48/94  0  3.731/7  pr226  6  1116/1854  1  9.845/20 

bayg29 3  60/119  0  4.172/8  gr229  6  1146/2373  0  10.013/20 

dantzig42  3  128/251  0  6.095/12  pr264  7  1016/2194  1  7.701/15 

gr48  4 111/221 0  4.625/9  a280  7  1143/2410  0  8.168/16 

hk48  4  112/228  0  4.667/9  pr299  7  1304/2732  0  8.716/17 

att48  4  112/217  0  4.667/9  lin318  7  1475/3060  0  9.296/19 

eil51  5  85/85  0  3.373/7  rd400  7  2336/4841  0  11.683/23 

berlin52  4  131/265  0  5.077/10  fl417  7  2538/5051  0  12.177/24 

brazil58  4  163/326  0  5.603/11  gr431  7  2712/5645  0  12.587/25 

st70  4  239/494  0  6.843/14  pr439  7  2814/5818  0  12.822/26 

eil76  4  282/567  0  7.434/15  pcb442  7  2852/5891  0  12.907/26 

pr76  4 282/585  0  7.421/15  d493  8  2366/4896  0  9.602/19 

gr96  5  301/630  0  6.302/13  att532  8  2756/5696  0  10.359/21 

rat99  5  320/660  0  6.475/13  ail535  8  2787/5921  0  10.422/21 

kroA100  5  326/669  0  6.530/13  si535  8  2727/6059  8  9.907/20 

kroB100  5  327/686  0  6.560/13  pa561  8  3063/6396  0  10.906/22 

kroC100 5  326/672  0  6.530/13  u574  8  3208/6711  0  11.179/22 

kroD100  5  326/655  0  6.530/13  rat575  8  3220/6611  0  11.200/22 

rd100  5  326/655  0  6.540/13  p654  8  4165/8579  0  12.737/25 

eil101  5  333/662  0  6.604/13  d657  8  4205/8805  0  12.802/26 

lin105  5 359/737  0  6.876/14  gr666     8 4321/9118 0 12.977/26 

pr107   5 373/775 0 6.972/14 u724 8 5106/10625 0 14.108/28 

gr120   5 470/934 0 7.825/16 rat783 8 5973/12297 0 15.258/31 

pr124    5 502/1060 1 8.105/16 pr1002 9 6523/13653 0 13.380/27 

bier127  5 527/1099 0 8.307/17 u1060 9 7301/15243 0 13.776/28 

ch130   5 552/1143 0 8.508/17 vm1084 9 7634/15733 0 14.086/28 

pr136    5 605/1206 0 8.904/18 pcb1173 9 8940/18494 0 15.245/30 

gr137    5 613/1260 0 8.964/18 d1291 9 10830/22808 0 16.777/33 

pr144    6 452/990 0 6.285/13 rl1304 9 11050/24286 0 16.974/34 

ch150      6 491/1014 0 6.553/13 rl1323 9 11374/24631 1 17.193/34 

kroA150  6 491/1009 0 6.560/13 fl1400 9 12736/26223 0 18.193/36 

kroB150  6 491/1004 0 6.553/13 u1432 9 13326/27704 0 18.612/37 

pr152    6 503/1072 0 6.632/13 fl1577 9 16162/34902 0 20.496/41 

u159    6 552/1147 0 6.950/14 d1655 10 11868/25141 0 14.343/29 

si175    6 665/1447 0 7.434/15 vm1748 10 13239/27647 0 14.841/30 

brg180         6 707/1513 19 7.133/14 u1817 10 14305/29859 0 15.746/31 

rat195    6 831/1639 0 8.528/17 rl1889 10 15462/34122 1 16.370/33 

d198  6 856/1759 0 8.657/17      

kroA200       6 874/1798 0 8.745/17 u2152 10 20069/42176 0 18.652/37 

kroB200      6 874/1795 0 8.745/17 pr2392 10 24795/52301 0 20.732/41 
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Table 7. The computational results when  
1

3
|𝐸𝑘𝑠

| > |𝐸𝑓<3| for the first time 

TSP k 1

3
|𝐸|/|𝐸𝑓<3| 

lohc d TSP k 1

3
|𝐸|/|𝐸𝑓<3| 

lohc d 

gr17        4 14/14 1 4 gr202 7 594/399  0 12 

gr21       4 21/19 0  4 ts225 7 738/149 0 13 

gr24         4 27/24 1 5 tsp225 7 738/582 0 13 

fri26        4 32/28 0 5 pr226 7 741/428 3 13 

bayg29         4 40/35 1 5 gr229 7 764/535 0 13 

dantzig42         5 57/45 0 5 pr264 8 677/304 1 10 

gr48         5 74/60 0 6 a280 8 762/454 0 11 

hk48     5 74/71 0 6 pr299 8 869/592 1 12 

att48        5 74/65 0 6 lin318 8 985/556 0 12 

eil51        6 57/ 43 1 5 rd400 8 1557/1169 0 16 

berlin52         5 88/64 0 7 fl417 8 1692/1041 0 16 

brazil58       5 108/59 0 7 gr431 8 1808/1325  0 17 

st70 5 159/134 0 9 pr439 8 1876/1152 0 17 

eil76    5 188/186 0 10 pcb442 8 1901/1488 0 17 

pr76 5 188/157 1 10 d493 9 1578/1080 0 13 

gr96           6 201/133 0 8 att532 9 1837/1250 0 14 

rat99 6 213/182 0 9 ail535 9 1858/826 0 14 

kroA100       6 217/159 0 9 si535 9 1766/57  13 13 

kroB100 6 218/164 0 9 pa561 9 2039/603 0 15 

kroC100         6 217/159 1 9 u574 9 2139/1429 0 15 

kroD100 6 217/163 0 9 rat575 9 2146/1706 0 15 

rd100            6 218/168 0 9 p654 9 2776/1612 0 17 

eil101 6 222/185 0 9 d657 9 2803/1926 0 17 

lin105            6 240/166 1 9 gr666 9 2881/1718 0 17 

pr107 6 248/188 0 9 u724 9 3404/2661 0 19 

gr120  6  314/206 0  10  rat783  9  3982/3348  0  20 

pr124  6  335/222  1  11  pr1002  10  4349/2853  0  17 

bier127 6  351/245  0  11  u1060  10  4867/3259  0  18 

ch130  7  246/183 1  8  vm1084  10  5089/3895  0  19 

pr136  7  269/205 0  8  pcb1173  10  5960/4518  1  20 

gr137  7  273/190  0  8  d1291  10  7219/4265  1  22 

pr144  7  301/92  0  8  rl1304  10  7366/3843  2  23 

ch150  7  327/211  0  9  rl1323  10  7582/4301  5  23 

kroA150  7  328/230  0  9  fl1400  10  8490/4957  0  24 

kroB150  7  327/238  0  9  u1432  10  8884/7391  0  25 

pr152  7  336/129 3  9  fl1577  10  10774/4315 0  27 

u159  7  368/249  0  9  d1655  11  7912/4826  0  19 

si175  7  434/33  3  10  vm1748  11  8825/6184  0  20 

brg180  7  431/11  21  10  u1817  11  9537/69323  0  21 

rat195  7  554/477 0  11  rl1889  11  10308/4632  3  22 

d198  7  571/363  1  12      

kroA200  7  583/424  0  12 u2152  11  13379/10368  0  25 

kroB200  7  583/413  0  12  pr2392  11  16530/11978  0  28 
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5 Conclusions 

We design a heuristic algorithm based on the frequency quadrilaterals to compute the 

sparse graph for TSP. When the frequency of an edge e is computed with N frequency 

quadrilaterals containing e, the frequency of the OHC edges will be bigger than the 

average frequency 3N of all of edges when N is big enough. The probability model 

shows it is likely [
2

3
|𝐸|] edges whose frequency is above the average frequency 3. 

Thus, we can eliminate [
1

3
|𝐸|]  edges with low frequency so as to compute a pre-

served graph for TSP. We iterate the elimination process until a sparse graph is ob-

tained for TSP as N is big enough in the preserved graphs. In an ideal case, a sparse 

graph with cn edges is computed at the ⌊𝑙𝑜𝑔2

3

(
2𝑐

𝑛−1
)⌋

𝑡ℎ

 computation cycles where 

𝑐 = 𝑙𝑜𝑔2𝑛. We tested the algorithm with tens of various TSP instances. The experi-

mental results showed that our probability model works well for general TSP instanc-

es. The sparse graphs with O(nlog2(n)) edges are computed for these instances. It says 

the average frequency of the OHC edges is bigger than that of the 1/3 edges to be 

eliminated not only in the Kn, but also in the preserved graphs that the algorithm com-

putes. Thus, the OHC edges are always preserved in the computation process until the 

stop computation cycle is arrived.  

In the near future, the properties of the residual graphs will be analyzed. We expect 

the sparse graphs have the good properties, such as bounded degree, genus, tree-width 

and planarity, etc. so that we can design the polynomial-time algorithms or polynomi-

al-time approximation algorithms for TSP based on the sparse graphs. In addition, the 

other terminal conditions will be explored to compute the sparse graphs with good 

properties.  
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