Skip to main content

Fractional Derivative Approach in Modeling of a Nonlinear Coil for Ferroresonance Analyses

  • Conference paper
  • First Online:
Non-Integer Order Calculus and its Applications (RRNR 2017)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 496))

Included in the following conference series:

Abstract

The article presents the results of the computations performed for a ferroresonant circuit. Two models for the coil with a ferromagnetic core were used in the simulations. The conventional parallel model and one applying a fractional derivative. Calculations of applied model parameters were obtained through estimations based on measured and recorded steady-state waveforms of currents and voltages of the particular circuit components. The experiment was conducted over a wide range of levels of the supply voltage. During the experiment, the coil worked in the saturation conditions of the magnetic core, but intentionally without reaching the point where ferroresonance occurs. Measurements and recordings were made using the digital interference recorder RZ-1 developed by Kared (Gdansk). Parameter estimations and simulations were performed in Matlab.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Majka, Ɓ., Paszek, S.: Mathematical model parameter estimation of a generating unit operating in the Polish National Power System. Bull. Pol. Acad. Sci. Tech. Sci. 64(2), 409–416 (2016)

    Google Scholar 

  2. Ferracci, Ph.: Ferroresonance. Schneider-Electric Technical Book, vol. 190. Schneider’s Group Technical Collection (1998)

    Google Scholar 

  3. IEEE working group on modeling and analysis of systems transients, modeling and analysis guidelines for slow transients – part III: the study of ferroresonance. IEEE Trans. Power Delivery 15(1), 255–265 (2000)

    Google Scholar 

  4. Corea-Araujo, J.A., Gonzalez-Molina, F., Martinez-Velasco, J.A., Barrado-Rodrigo, J.A., Guasch-Pesquer, L.: Tools for characterization and assessment of ferroresonance using 3-D bifurcation diagrams. IEEE Trans. Power Delivery 29(6), 2543–2551 (2014)

    Article  Google Scholar 

  5. Ali Z.: Development of numerical algorithms for ferroresonance monitoring. Doctoral thesis. The University of Manchester, Faculty of Engineering and Physical Science (2015)

    Google Scholar 

  6. Milicevic, K., Lukacevic, I., Flegar, I.: Modeling of nonlinear coil in a ferroresonant circuit. Electr. Eng. (Archiv fur Elektrotechnik) 91, 51–59 (2009)

    Google Scholar 

  7. Schafer I., Kruger K.: Modelling of coils using fractional derivatives. J. Magn. Magn. Mater. 307, 91–98 (2006)

    Google Scholar 

  8. Nana, B., Yamgoue, S.B., Tchitnga, R., Woafo, P.: Simple mathematical model for ferromagnetic core inductance and experimental validation. Am. J. Electric. Electron. Eng. 3(2), 29–36 (2015)

    Google Scholar 

  9. Schafer, I., Kruger, K.: Modelling of lossy coils using fractional derivatives. J. Phys. D: Appl. Phys. 41 (2008). https://doi.org/10.1088/0022-3727/41/4/045001

  10. Lei, Z.-M., Liu, Z.-J., Sun, H.-X., Chang, H.-J.: Research on the control and application of chaos in an electrical system. In: Advances in Machine Learning and Cybernetics. LNAI, vol. 3930, pp. 142–148. Springer, Berlin (2006)

    Google Scholar 

  11. Sowa, P., Ɓuszcz, K.: Symulacja chaosu ferrorezonansowego za pomocą programu. MicroTran. Electr. Rev. 90(8), 116–121 (2014)

    Google Scholar 

  12. Seker, S., Akinci, T.C., Taskin, S.: Spectral and statistical analysis for ferroresonance phenomenon in electric power systems. Electr. Eng. 94(2), 117–124 (2012)

    Article  Google Scholar 

  13. Milicevic, K., Nyarko, E.K., Biondic, I.: Chua’s model of nonlinear coil in a ferroresonant circuit obtained using Dommel’s method and grey box modelling approach. Nonlinear Dyn. 86, 51–63 (2016)

    Article  Google Scholar 

  14. KolaƄska-PƂuska, J., Grochowicz, B.: Modelling of a non-linear coil with loss in iron using the Runge-Kutta methods. Arch. Electr. Eng. 65(3), 527–539 (2016)

    Google Scholar 

  15. Amar, F.B., Dhifaoui, R.: Study of the periodic ferroresonance in the electrical power networks by bifurcation diagrams. Int. J. Electr. Power Energy Syst. 33(1), 61–85 (2011)

    Article  Google Scholar 

  16. Moradi, M., Gholami, A.: Harmonic balance based stability domain analysis of period-1 ferroresonance. Electr. Power Compon. Syst. 39(12) (2011)

    Google Scholar 

  17. Visintin, A.: Differential Models of Hysteresis. Applied Mathematical Science. Springer, New York (1994)

    Book  MATH  Google Scholar 

  18. Biondic, I., Topalovic, R., Milicevic, K.: Comparison of basic ferromagnetic coil hysteresis models. In: Papers of 33rd International Scientific Conference: Science in Practice

    Google Scholar 

  19. Cundeva, S.: A transformer model based on the jiles-atherton theory of ferromagnetic hysteresis. Serb. J. Electr. Eng. 5(1), 21–30 (2008)

    Article  Google Scholar 

  20. Chwastek, K., SzczygƂowski, J.: Estimation methods for the Jiles-Atherton model parameters - a review. Electr. Rev. 84(12), 145–148 (2008)

    Google Scholar 

  21. Benabou, A., Clenet, S., Piriou, F.: Comparison of Preisach and Jiles-Atherton models to take into account hysteresis phenomenon for finite element analysis. J. Magn. Magn. Mater. 261(1–2), 139–160 (2003)

    Article  MATH  Google Scholar 

  22. Carnevale, D., Nicosia, S., Zaccarian, L.: Generalized constructive model of hysteresis. IEEE Trans. Magn. 42(12), 3809–3817 (2006)

    Article  Google Scholar 

  23. Voros, J.: Modeling and identification of hysteresis using special forms of the Coleman-Hodgdon model. J. Electr. Eng. 60(2), 100–105 (2009)

    Google Scholar 

  24. Noel, J.P., Esfahani, A.F., Kerschen, G., Schoukens, J.: A nonlinear state-space approach to hysteresis identification. Mech. Syst. Signal Process. 84, 171–184 (2017)

    Google Scholar 

  25. Bastos, J.P.A., Sadowski, N., Leite, J.V., Jhoe Batistela, N.J., Hoffmann, K., Meunier, G., Chadebec, O.: A differential permeability 3-D formulation for anisotropic vector hysteresis analysis. IEEE Trans. Magn. 50(2), 341–344 (2014)

    Article  Google Scholar 

  26. Milicevic, K., Vinko, D., Emin, Z.: Identifying ferroresonance initiation for a range of initial conditions and parameters. Nonlinear Dyn. 66, 755–762 (2011)

    Article  Google Scholar 

  27. Majka, Ɓ.: Measurement based inductor modeling for the purpose of ferroresonance analyses. In: Proceedings of International Conference on AMTEE, Trebic, Czech Republic, pp. V–3 (2015)

    Google Scholar 

  28. Majka, Ɓ.: Measurement verification of the nonlinear coil models. In: Proceedings of the 39th International Conference on IC-SPETO, UstroƄ, pp. 89–90 (2016)

    Google Scholar 

  29. Majka, Ɓ.: Measurements and simulation for a ferroresonance circuit. In: Proceedings of the 40th International Conference on IC-SPETO, UstroƄ, pp. 47–48 (2017)

    Google Scholar 

  30. Caputo, M.: Linear models of dissipation whose Q is almost frequency independent-ii. Geophys. J. Roy. Astron. Soc. 13(5), 529–539 (1967)

    Article  MathSciNet  Google Scholar 

  31. http://www.kared.com.pl/Products/11/48/Cyfrowy-rejestrator-zaklocen-RZ-1.html

  32. Powell, M.J.D.: A fortran subroutine for solving systems of nonlinear algebraic equations. In: Numerical Methods for Nonlinear Algebraic Equations, Chap. 7 (1970)

    Google Scholar 

  33. https://www.mathworks.com/help/matlab/

  34. Sowa, M.: A subinterval-based method for circuits with fractional order elements. Bull. Pol. Acad. Sci., Tech. Sci. 62(3), 449–454 (2014)

    Google Scholar 

  35. Sowa M.: Application of SubIval, a method for fractional-order derivative computations in IVPs. In: Babiarz, A., Czornik, A., Klamka, J., Niezabitowski, M. (eds.) 8th Conference on Non-integer Order Calculus and Its Applications. Theory and Applications of Non-Integer Order Systems, Zakopane, Poland, pp. 489–499. Springer, Berlin (2017)

    Google Scholar 

  36. Sowa, M.: Application of SubIval in solving initial value problems with fractional derivatives. Appl. Math. Comput. 319, 86–103 (2018)

    MathSciNet  Google Scholar 

  37. http://msowascience.com/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ɓukasz Majka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Majka, Ɓ. (2019). Fractional Derivative Approach in Modeling of a Nonlinear Coil for Ferroresonance Analyses. In: Ostalczyk, P., Sankowski, D., Nowakowski, J. (eds) Non-Integer Order Calculus and its Applications. RRNR 2017. Lecture Notes in Electrical Engineering, vol 496. Springer, Cham. https://doi.org/10.1007/978-3-319-78458-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78458-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78457-1

  • Online ISBN: 978-3-319-78458-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics