Skip to main content

Fractional Linear Systems with Memory Deficiency and Their State-Space Integer-Order Approximation

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 496))

Abstract

The current state vector in non-integer order systems depends on large number of previous states, i.e. on the memory efficiency of the system. If a memory impairment occurs, the current fractional order system switches to the system with another behavior. In the paper some non-integer order models of biological-like systems with memory deficiency are defined and a state-space integer-order approximation of such models is introduced. Some numerical examples of such approximation are shown.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Domek, S.: Fractional Order Differential Calculus in Model Predictive Control. West Pomeranian University of Technology. Academic Press, Szczecin (2013)

    MATH  Google Scholar 

  2. Domek, S.: Piecewise affine representation of discrete in time, non-integer order systems. In: Mitkowski, W., Kacprzyk, J., Baranowski, J. (eds.): Advances in the Theory and Applications of Non-integer Order Systems. LNEE, vol. 257, pp. 149–160. Springer (2013)

    Google Scholar 

  3. Domek, S.: Model-plant mismatch in fractional order model predictive control. In: Domek, S., Dworak, P. (eds.): Theoretical Developments and Applications of Non-Integer Order Systems. LNEE, vol. 357, pp. 281–291. Springer (2016)

    Google Scholar 

  4. Domek, S.: Approximation and stability analysis of some kinds of switched fractional linear systems. In: Mitkowski, W., Kacprzyk, J., Oprzędkiewicz, K., Skruch, P. (eds.) Trends in Advanced Intelligent Control, Optimization and Automation, KKA 2017. AISC, vol. 577, pp. 442–454. Springer (2017)

    Google Scholar 

  5. Fang, L., Lin, H., Antsaklis, P.J.: Stabilization and performance analysis for a class of switched systems. In: Proceedings of 43rd IEEE Conference on Decision Control, Atlantis, pp. 1179–1180 (2004)

    Google Scholar 

  6. Ionescu, C., Lopes, A., Copot, D., Machado, J.A.T., Bates, J.H.T.: The role of fractional calculus in modeling biological phenomena: a review. Commun. Nonlinear Sci. Numer. Simulat. 51, 141–159 (2017)

    Article  MathSciNet  Google Scholar 

  7. Kaczorek, T.: Selected Problems of Fractional Systems Theory. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  8. Lin, H., Antsaklis, P.J.: Stability and stabilizability of switched linear systems: a survey of recent results. IEEE Trans. Autom. Control 54(2), 308–322 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Macias, M., Sierociuk, D.: An alternative recursive fractional variable-order derivative definition and its analog validation. In: Proceedings of the International Conference on Fractional Differentiation and its Applications (ICFDA), Catania, pp. 1–6 (2014)

    Google Scholar 

  10. Maciejowski, J.M.: Multivariable Feedback Design. Addison-Wesley, Wokingham (1989)

    MATH  Google Scholar 

  11. Mäkilä, P.M., Partington, J.R.: On linear models for nonlinear systems. Automatica 39, 1–13 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Monje, C.A., Chen, Y.Q., Vinagre, B.M., Xue, D., Feliu, V.: Fractional Order Systems and Controls. Springer, London (2010)

    Book  MATH  Google Scholar 

  13. Moore, B.: Principal component analysis in linear systems: controllability, observability and model reduction. IEEE Trans. Autom. Control 26(1), 17–32 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mozyrska, D., Ostalczyk, P.: Generalized fractional-order discrete-time integrator. Complexity, 11 pages (2017). https://doi.org/10.1155/2017/3452409

  15. Ostalczyk, P.: The non-integer difference of the discrete-time function and its application to the control system synthesis. Int. J. Syst. Sci. 31(12), 1551–1561 (2000)

    Article  MATH  Google Scholar 

  16. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  17. Rydel, M., Stanisławski, R., Bialic, G., Latawiec, K.J.: Modeling of discrete-time fractional-order state space systems using the balanced truncation method. In: Domek, S., Dworak, P. (eds.) Theoretical Developments and Applications of Non-Integer Order Systems. LNEE, vol. 357, pp. 119–127. Springer (2016)

    Google Scholar 

  18. Safonov, M.G., Chiang, R.Y.: A Schur method for balanced model reduction. IEEE Trans. Automat. Contr. AC-2(7), 729–733 (1989)

    Google Scholar 

  19. Stanisławski, R., Latawiec, K.L., Łukaniszyn, M., Gałek, M.: Time-domain approximations to the Grünwald-Letnikov difference with application to modeling of fractional-order state space systems. In: Proceedings of the 20th International Conference on Methods and Models in Automation and Robotics, Międzyzdroje, Poland, pp. 579–584 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Domek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Domek, S. (2019). Fractional Linear Systems with Memory Deficiency and Their State-Space Integer-Order Approximation. In: Ostalczyk, P., Sankowski, D., Nowakowski, J. (eds) Non-Integer Order Calculus and its Applications. RRNR 2017. Lecture Notes in Electrical Engineering, vol 496. Springer, Cham. https://doi.org/10.1007/978-3-319-78458-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78458-8_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78457-1

  • Online ISBN: 978-3-319-78458-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics