Skip to main content

Solutions of Circuits with Fractional, Nonlinear Elements by Means of a SubIval Solver

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 496))

Abstract

The work concerns the application of a solver based on SubIval (the subinterval-based method for computations of the fractional derivative in initial value problems). A general form of a system of equations is considered. The system is one that can be formulated for a circuit with fractional elements, nonlinear elements and elements that are both fractional and nonlinear. A few details are given on the computations that need to be performed in each time step. An example with fractional, nonlinear elements is introduced to display the usefulness of the solver. The results obtained through the solver are compared with ones obtained through a harmonic balance methodology (steady state solution). Finally, a measure of the accuracy of the results is introduced and computed for the selected example.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Oprzȩdkiewicz, K.: Accuracy estimation of digital fractional order PID controller. In: Theory and Applications of Non-integer Order Systems, pp. 265–275 (2017)

    Google Scholar 

  2. Zagórowska, M.: Analysis of performance indicators for tuning non-integer order controllers. In: Theory and Applications of Non-Integer Order Systems, pp. 307–317 (2017)

    Google Scholar 

  3. Spałek, D.: Synchronous generator model with fractional order voltage regulator PI\(^{b}\)D\(^{a}\). Acta Energetica 2(23), 78–84 (2015)

    Google Scholar 

  4. Mercorelli, P.: A discrete-time fractional order PI controller for a three phase synchronous motor using an optimal loop shaping approach. In: Theory and Applications of Non-Integer Order Systems, pp. 477–487 (2017)

    Google Scholar 

  5. Bauer, W., Kawala-Janik, A.: Implementation of bi-fractional filtering on the arduino uno hardware platform. In: Theory and Applications of Non-Integer Order Systems, pp. 419–428 (2017)

    Google Scholar 

  6. Kawala-Janik, A., Podpora, M., Gardecki, A., Czuczwara, W., Baranowski, J., Bauer, W.: Game controller based on biomedical signals. In: 2015 20th International Conference on Methods and Models in Automation and Robotics (MMAR), pp. 934–939 (2015)

    Google Scholar 

  7. Garrappa, R., Maione, G.: Fractional prabhakar derivative and applications in anomalous dielectrics: a numerical approach. In: Theory and Applications of Non-Integer Order Systems, pp. 429–439 (2017)

    Google Scholar 

  8. Mescia, L., Bia, P., Caratelli, D.: Fractional derivative based FDTD modeling of transient wave propagation in Havriliak-Negami media. IEEE Trans. Microw. Theory Tech. 62(9), 1920–1929 (2014)

    Article  Google Scholar 

  9. Litak, G., Ducharne, B., Sebald, G., Guyomar, D.: Dynamics of magnetic field penetration into soft ferromagnets. J. Appl. Phys. 117(24), 243907 (2015)

    Article  Google Scholar 

  10. Brociek, R., Słota, D., Wituła, R.: Reconstruction robin boundary condition in the heat conduction inverse problem of fractional order. In: Theory and Applications of Non-Integer Order Systems, pp. 147–156 (2017)

    Google Scholar 

  11. Sierociuk, D., Skovranek, T., Macias, M., Podlubny, I., Petras, I., Dzielinski, A., Ziubinski, P.: Diffusion process modeling by using fractional-order models. Appl. Math. Comput. 257, 2–11 (2015)

    Google Scholar 

  12. Žecová, M., Terpák, J.: Heat conduction modeling by using fractional-order derivatives. Appl. Math. Comput. 257, 365–373 (2015)

    MathSciNet  MATH  Google Scholar 

  13. Fouda, M.E., Elwakil, A.S., Radwan, A.G., Allagui, A.: Power and energy analysis of fractional-order electrical energy storage devices. Energy 111, 785–792 (2016)

    Article  Google Scholar 

  14. Schäfer, I., Krüger, K.: Modelling of lossy coils using fractional derivatives. Phys. D Appl. Phys. 41, 1–8 (2008)

    Article  Google Scholar 

  15. King, A., Agerkvist, F.T.: State-space modeling of loudspeakers using fractional derivatives. Audio Engineering Society Convention 139. Audio Engineering Society (2015)

    Google Scholar 

  16. Gómez Aguilar, J.F., Hernández, M.M.: Space-time fractional diffusion-advection equation with caputo derivative. Abstr. Appl. Anal. 2014, 8 p. (2014)

    Google Scholar 

  17. Katugampola, U.N.: A new approach to generalized fractional derivatives. Bull. Math. Anal. Appl. 6(4), 1–15 (2014)

    MathSciNet  MATH  Google Scholar 

  18. Caputo, M.: Linear models of dissipation whose Q is almost frequency independent - II. Geophys. J. Int. 13(5), 529–539 (1967)

    Article  MathSciNet  Google Scholar 

  19. Munkhammar, J.D.: Riemann-Liouville fractional derivatives and the Taylor-Riemann series. UUDM Project Rep. 7, 1–18 (2004)

    Google Scholar 

  20. Abdeljawad, T.: On Riemann and Caputo fractional differences. Comput. Math. Appl. 62, 1602–1611 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ruszewski, A.: Stability analysis for the new model of fractional discrete-time linear state-space systems. In: Theory and Applications of Non-Integer Order Systems, pp. 381–389 (2017)

    Google Scholar 

  22. Klamka, J., Czornik, A., Niezabitowski, M., Babiarz, A.: Controllability and minimum energy control of linear fractional discrete-time infinite-dimensional systems. In: 11th IEEE International Conference Control & Automation (ICCA), pp. 1210–1214 (2014)

    Google Scholar 

  23. Kaczorek, T., Rogowski, K.: Fractional Linear Systems and Electrical Circuits. Springer, New York (2014)

    MATH  Google Scholar 

  24. Mitkowski, W., Skruch, P.: Fractional-order models of the supercapacitors in the form of RC ladder networks. Bull. Pol. Acad. Tech. 61(3), 580–587 (2013)

    Google Scholar 

  25. Kaczorek, T.: Stability analysis for the new model of fractional discrete-time linear state-space systems. In: Theory and Applications of Non-Integer Order Systems, pp. 45–55 (2017)

    Google Scholar 

  26. Momani, S., Noor, M.A.: Numerical methods for fourth order fractional integro-differential equations. Appl. Math. Comput. 182, 754–760 (2006)

    MathSciNet  MATH  Google Scholar 

  27. Pirkhedri, A., Javadi, H.H.S.: Solving the time-fractional diffusion equation via Sinc–Haar collocation method. Appl. Math. Comput. 257, 317–326 (2015)

    MathSciNet  MATH  Google Scholar 

  28. Luo, W.-H., Huang, T.-Z., Wu, G.-C., Gu, X.-M.: Quadratic spline collocation method for the time fractional subdiffusion equation. Appl. Math. Comput. 276, 252–265 (2016)

    MathSciNet  Google Scholar 

  29. Lubich, C.: Fractional linear multistep methods for Abel-Volterra integral equations of the second kind. Math. Comput. 45, 463–469 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  30. Cui, M.: Compact finite difference method for the fractional diffusion equation. J. Comput. Phys. 228, 7792–7804 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sowa, M.: A subinterval-based method for circuits with fractional order elements. Bull. Pol. Acad. Tech. 62(3), 449–454 (2014)

    MathSciNet  Google Scholar 

  32. Sowa, M.: Application of SubIval in solving initial value problems with fractional derivatives. Appl. Math. Comput. 319, 86–103 (2017). (in press)

    MathSciNet  Google Scholar 

  33. http://msowascience.com

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Sowa .

Editor information

Editors and Affiliations

A Formulation of State Equations

A Formulation of State Equations

The vector of state variables takes the form:

$$\begin{aligned} \varvec{x}(t) = [ \begin{array}{l l l l} u_\kappa (t)&i_L(t)&q(t)&\psi (t) \end{array} ]^\mathrm {T}, \end{aligned}$$
(12)

with the derivative orders:

$$\begin{aligned} \varvec{\alpha } = [ \begin{array}{l l l l} \kappa&1&\beta&\gamma \end{array} ]^\mathrm {T}. \end{aligned}$$
(13)

The vector of additional variables is given by:

$$\begin{aligned} \varvec{y}(t) = [ \begin{array}{llll llll llll} V_1(t)&V_2(t)&V_3(t)&V_4(t)&u_\mathrm {NL}(t)&u_L(t)&u_q(t)&u_\psi (t)&i_\mathrm {NL}&i_\kappa (t)&i_q(t)&i_\psi (t) \end{array} ]^\mathrm {T}. \end{aligned}$$
(14)

The vector of source time functions is:

$$\begin{aligned} \varvec{v}(t) = [ \begin{array}{ll} E(t)&J(t) \end{array} ]^\mathrm {T}. \end{aligned}$$
(15)

The current balances contribute to the matrices marked by \(\varvec{M}_\mathrm {I}\), \(\varvec{M}_\mathrm {II}\) and \(\varvec{T}\). For the node with the potential \(V_1\):

$$\begin{aligned} \begin{array}{l} \varvec{M}_{\mathrm {I} \; 1, 1} = \frac{1}{R_1}+\frac{1}{R_2}, \\ \varvec{M}_{\mathrm {I} \; 1, 2} = -\frac{1}{R_2}, \\ \varvec{M}_{\mathrm {I} \; 1, 11} = 1, \\ \varvec{T}_{1, 1} = \frac{1}{R_1}, \end{array} \end{aligned}$$
(16)

for the \(V_2\) node:

$$\begin{aligned} \begin{array}{l} \varvec{M}_{\mathrm {I} \; 2, 2} = \frac{1}{R_2}+\frac{1}{R_3}, \\ \varvec{M}_{\mathrm {I} \; 2, 1} = -\frac{1}{R_2}, \\ \varvec{M}_{\mathrm {I} \; 2, 3} = -\frac{1}{R_3}, \\ \varvec{M}_{\mathrm {I} \; 2, 9} = 1, \\ \varvec{M}_{\mathrm {I} \; 2, 12} = 1, \end{array} \end{aligned}$$
(17)

while for the node marked by \(V_3\):

$$\begin{aligned} \begin{array}{l} \varvec{M}_{\mathrm {I} \; 3, 3} = \frac{1}{R_3}, \\ \varvec{M}_{\mathrm {II} \; 3, 2} = 1, \\ \varvec{M}_{\mathrm {I} \; 3, 10} = 1, \\ \varvec{T}_{3, 2} = -1 \end{array} \end{aligned}$$
(18)

and for the \(V_4\) node:

$$\begin{aligned} \begin{array}{l} \varvec{M}_{\mathrm {I} \; 4, 4} = \frac{1}{R_4}, \\ \varvec{M}_{\mathrm {II} \; 4, 2} = -1. \end{array} \end{aligned}$$
(19)

The relations between the marked voltages and the node potentials contribute to \(\varvec{M}_\mathrm {I}\) and \(\varvec{M}_\mathrm {II}\). From the relation between \(V_1\) and \(u_q\):

$$\begin{aligned} \begin{array}{l} \varvec{M}_{\mathrm {I} \; 5, 7} = -1, \\ \varvec{M}_{\mathrm {I} \; 5, 1} = 1, \end{array} \end{aligned}$$
(20)

between \(V_2\) and \(u_\mathrm {NL}\)

$$\begin{aligned} \begin{array}{l} \varvec{M}_{\mathrm {I} \; 6, 5} = -1, \\ \varvec{M}_{\mathrm {I} \; 6, 2} = 1, \end{array} \end{aligned}$$
(21)

between \(V_2\) and \(u_\psi \)

$$\begin{aligned} \begin{array}{l} \varvec{M}_{\mathrm {I} \; 7, 8} = -1, \\ \varvec{M}_{\mathrm {I} \; 7, 2} = 1, \end{array} \end{aligned}$$
(22)

while for \(u_L\) and its terminal potentials:

$$\begin{aligned} \begin{array}{l} \varvec{M}_{\mathrm {I} \; 8, 6} = -1, \\ \varvec{M}_{\mathrm {I} \; 8, 3} = 1, \\ \varvec{M}_{\mathrm {I} \; 8, 4} = -1 \end{array} \end{aligned}$$
(23)

and for the relation between \(u_\kappa \) and \(V_3\):

$$\begin{aligned} \begin{array}{l} \varvec{M}_{\mathrm {II} \; 9, 1} = -1, \\ \varvec{M}_{\mathrm {I} \; 9, 3} = 1. \end{array} \end{aligned}$$
(24)

The nonlinear dependency \(i_\mathrm {NL}(u_\mathrm {NL})\) describing the response of the nonlinear resistor \(R_\mathrm {NL}\) is given in \(\varvec{F}_\mathrm {NL}(\varvec{w}(t))\) by:

$$\begin{aligned} f_\mathrm {NL\;1}( w_{(\varvec{i}_\mathrm {arg})_1} ) = i_\mathrm {NL}(u_\mathrm {NL}), \end{aligned}$$
(25)

hence the index of this nonlinear function’s argument:

$$\begin{aligned} (\varvec{i}_\mathrm {arg})_1 = 5. \end{aligned}$$
(26)

The left-hand side of this equation introduces:

$$\begin{aligned} \varvec{M}_{\mathrm {I} \; 10, 9} = 1. \end{aligned}$$
(27)

In the same manner the nonlinear function of \(C_q\) introduces:

$$\begin{aligned} f_\mathrm {NL\;2}( w_{(\varvec{i}_\mathrm {arg})_2} ) = u_q(q), \end{aligned}$$
(28)

with:

$$\begin{aligned} (\varvec{i}_\mathrm {arg})_2 = 15 \end{aligned}$$
(29)

and:

$$\begin{aligned} \varvec{M}_{\mathrm {I} \; 11, 7} = 1. \end{aligned}$$
(30)

For the nonlinear function of \(L_\psi \) one obtains:

$$\begin{aligned} f_\mathrm {NL\;3}( w_{(\varvec{i}_\mathrm {arg})_3} ) = \psi (i_\psi ), \end{aligned}$$
(31)

with:

$$\begin{aligned} (\varvec{i}_\mathrm {arg})_3 = 12 \end{aligned}$$
(32)

and:

$$\begin{aligned} \varvec{M}_{\mathrm {I} \; 12, 16} = 1. \end{aligned}$$
(33)

The differential equation describing the fractional capacitor \(C_\kappa \) introduces:

$$\begin{aligned} \varvec{M}_{\mathrm {III} \; 1, 10} = -\frac{1}{C_\kappa }, \end{aligned}$$
(34)

for the coil L:

$$\begin{aligned} \varvec{M}_{\mathrm {III} \; 2, 6} = -\frac{1}{L}, \end{aligned}$$
(35)

while for the fractional, nonlinear capacitor \(C_q\):

$$\begin{aligned} \varvec{M}_{\mathrm {III} \; 3, 11} = -1 \end{aligned}$$
(36)

and for the fractional, nonlinear coil \(L_\psi \):

$$\begin{aligned} \varvec{M}_{\mathrm {III} \; 4, 8} = -1. \end{aligned}$$
(37)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sowa, M. (2019). Solutions of Circuits with Fractional, Nonlinear Elements by Means of a SubIval Solver. In: Ostalczyk, P., Sankowski, D., Nowakowski, J. (eds) Non-Integer Order Calculus and its Applications. RRNR 2017. Lecture Notes in Electrical Engineering, vol 496. Springer, Cham. https://doi.org/10.1007/978-3-319-78458-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78458-8_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78457-1

  • Online ISBN: 978-3-319-78458-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics