Skip to main content

Grünwald-Letnikov-Laguerre Modeling of Discrete-Time Noncommensurate Fractional-Order State Space LTI MIMO Systems

  • Conference paper
  • First Online:
Non-Integer Order Calculus and its Applications (RRNR 2017)

Abstract

In this paper, a multivariable version of the Grünwald-Letnikov noncommensurate fractional-order difference (FD) is defined and approximated with a powerful Grünwald-Letnikov-Laguerre (GLL) combination of finite fractional difference (FFD) and finite Laguerre-based difference (FLD) to obtain finite fractional/Laguerre-based difference (FFLD). The multivariable FFLD is effectively employed to model noncommensurate fractional-order state-space LTI MIMO systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Podlubny, I.: Fractional Differential Equations. Academic Press, Orlando (1999)

    MATH  Google Scholar 

  2. Monje, C., Chen, Y., Vinagre, B., Xue, D., Feliu, V.: Fractional-order Systems and Controls: Fundamentals and Applications. Series on Advances in Industrial Control. Springer, London (2010)

    Book  MATH  Google Scholar 

  3. Chen, Y., Vinagre, B., Podlubny, I.: A new discretization method for fractional order differentiators via continued fraction expansion. In: Proceedings of DETC 2003, ASME Design Engineering Technical Conferences, Chicago, IL, vol. 340, pp. 349–362 (2003)

    Google Scholar 

  4. Maione, G.: On the Laguerre rational approximation to fractional discrete derivative and integral operators. IEEE Trans. Autom. Control 58(6), 1579–1585 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Baeumer, B., Kovacs, M., Sankaranarayanan, H.: Higher order Grünwald approximations of fractional derivatives and fractional powers of operators. Trans. Am. Math. Soc. 367(2), 813–834 (2015)

    Article  MATH  Google Scholar 

  6. Gao, Z.: Improved Oustaloup approximation of fractional-order operators using adaptive chaotic particle swarm optimization. J. Syst. Eng. Electron. 23(1), 145–153 (2012)

    Article  Google Scholar 

  7. Gao, Z., Liao, X.: Rational approximation for fractional-order system by particle swarm optimization. Nonlinear Dyn. 67(2), 1387–1395 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Khanra, M.: Rational approximation of fractional operator—a comparative study. In: International Conference on Power, Control and Embedded Systems (ICPCES), Allahabad, India, pp. 1–5 (2010)

    Google Scholar 

  9. Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ditzian, Z.: Fractional derivatives and best approximation. Acta Mathematica Hungarica 81(4), 323–348 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Tseng, C.C.: Design of variable and adaptive fractional order FIR differentiators. Sig. Process. 86(10), 2554–2566 (2006)

    Article  MATH  Google Scholar 

  12. Stanisławski, R., Latawiec, K.J.: Normalized finite fractional differences - the computational and accuracy breakthroughs. Int. J. Appl. Math. Comput. Sci. 22(4), 907–919 (2012)

    MathSciNet  MATH  Google Scholar 

  13. Stanisławski, R., Latawiec, K.J.: Modeling of open-loop stable linear systems using a combination of a finite fractional derivative and orthonormal basis functions. In: Proceedings of the 15th International Conference on Methods and Models in Automation and Robotics, Miedzyzdroje, Poland, pp. 411–414 (2010)

    Google Scholar 

  14. Stanisławski, R.: New Laguerre filter approximators to the Grünwald-Letnikov fractional difference. Math. Probl. Eng. 2012, 1–21 (2012). Article ID: 732917

    Article  MATH  Google Scholar 

  15. Stanisławski, R., Latawiec, K.J., Łukaniszyn, M.: A comparative analysis of Laguerre-based approximators to the Grünwald-Letnikov fractional-order difference. Math. Probl. Eng. 2015, 1–10 (2015). Article ID: 512104

    Article  Google Scholar 

  16. Stanisławski, R., Latawiec, K.J., Łukaniszyn, M., Gałek, M.: Time-domain approximations to the Grünwald-Letnikov difference with application to modeling of fractional-order state space systems. In: 20th International Conference on Methods and Models in Automation and Robotics (MMAR), Miedzyzdroje, Poland, pp. 579–584, August 2015

    Google Scholar 

  17. Stanisławski, R., Latawiec, K.J.: Fractional-order discrete-time Laguerre filters - a new tool for modeling and stability analysis of fractional-order LTI SISO systems. Discrete Dyn. Nature Soc. 2016, 1–9 (2016). Article ID: 9590687

    Article  MathSciNet  Google Scholar 

  18. Latawiec, K.J., Stanisławski, R., Łukaniszyn, M., Rydel, M., Szkuta, B.R.: FFLD-based modeling of fractional-order state space LTI MIMO systems. In: International Conference on Applied Physics, System Science and Computers (APSAC2016). Lecture Notes in Electrical Engineering, vol. 428. Springer (2017). https://doi.org/10.1007/978-3-319-53934-8_36

  19. Stanisławski, R., Latawiec, K.J.: Stability analysis for discrete-time fractional-order LTI state-space systems. Part I: new necessary and sufficient conditions for asymptotic stability. Bull. Polish Acad. Sci. Tech. Sci. 61(2), 353–361 (2013)

    Google Scholar 

  20. Stanisławski, R., Latawiec, K.J.: Stability analysis for discrete-time fractional-order LTI state-space systems. Part II: new stability criterion for FD-based systems. Bull. Polish Acad. Sci. Tech. Sci. 61(2), 362–370 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafał Stanisławski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Latawiec, K.J., Stanisławski, R., Łukaniszyn, M., Rydel, M., Szkuta, B.R. (2019). Grünwald-Letnikov-Laguerre Modeling of Discrete-Time Noncommensurate Fractional-Order State Space LTI MIMO Systems. In: Ostalczyk, P., Sankowski, D., Nowakowski, J. (eds) Non-Integer Order Calculus and its Applications. RRNR 2017. Lecture Notes in Electrical Engineering, vol 496. Springer, Cham. https://doi.org/10.1007/978-3-319-78458-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78458-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78457-1

  • Online ISBN: 978-3-319-78458-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics