Skip to main content

Signal Transduction and Communication Through Model Membranes in Networks of Coupled Chemical Oscillators

  • Conference paper
  • First Online:
Artificial Life and Evolutionary Computation (WIVACE 2017)

Abstract

In nature, an important example of chemical communication and synchronicity can be found in cell populations where long-range chemical communication takes place over micrometer distance. In vitro laboratory systems can be useful to understand and control such complex biological mechanisms and, in a biomimetic approach, we present in this paper a model based on three basic features, namely (i) the compartmentalization of chemical information (using microfluidics), (ii) a stable emitter of periodic chemical signals inside compartments (Belousov-Zhabotinsky oscillating reaction) and (iii) a suitable spatio-temporal monitoring of the emitted chemical signal. In particular, starting from our recent work on the communication among oscillators via chemical intermediates in networks of lipid-stabilised droplets, we discuss here the role of compartments and of the geometry of the system. We present 3 different experimental configurations, namely liposomes (water-in-water dispersions), double emulsions (water-in-oil-in-water dispersions) and simple emulsions (water-in-oil dispersions) and we show that the global behaviour of networks can be influenced and controlled by several experimental parameters, like the nature of the collecting solvent, the presence of dopants and the network geometry. Numerical models supporting and explaining the experimental findings are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Prigogine, I.: Time, structure and fluctuations. In: Nobel Lectures, Chemistry 1971–1980, pp. 263–285. World Scientific Publishing Co., Singapore (1977)

    Google Scholar 

  2. Nicolis, G., Prigogine, I.: Self-organization in Nonequilibrium Systems. Wiley, New York (1977)

    MATH  Google Scholar 

  3. Field, R.J., Burger, M.: Oscillations and Traveling Waves in Chemical Systems. Wiley, New York (1985)

    Google Scholar 

  4. Ruiz-Mirazo, K., Briones, C., de la Escosura, A.: Prebiotic systems chemistry: new perspectives for the origins of life. Chem. Rev. 114(1), 285–366 (2014)

    Article  Google Scholar 

  5. Belousov, B.P.: A periodic reaction and its mechanism. In: Sbornik Referatov po Radiatsonno Meditsine, Moscow, Medgiz, pp. 145–147 (1958)

    Google Scholar 

  6. Zhabotinsky, A.M.: Periodic liquid phase reactions. Proc. Acad. Sci. USSR 157, 392–395 (1964)

    Google Scholar 

  7. Winfree, A.T.: The Geometry of Biological Time. Springer, Heidelberg (2001). https://doi.org/10.1007/978-3-662-22492-2

    Book  MATH  Google Scholar 

  8. Tiezzi, E.: Steps Towards an Evolutionary Physics. WIT Press, Southempton (2006)

    Google Scholar 

  9. Yamaguchi, T., Suematsu, N., Mahara, H.: Nonlinear dynamics in polymeric systems. In: Pojman, J.A., Tran-Cong-Miyata, Q. (eds.) Nonlinear Dynamics in Polymeric Systems. Volume 869 of ACS Symposium Series, Washington DC, pp. 16–27 (2004)

    Google Scholar 

  10. Yamaguchi, T., Epstein, I.R., Shimomura, M., Kunitake, T.: Introduction: engineering of self-organized nanostructures. Chaos 15(4), 047501-1–047501-3 (2005)

    Article  MATH  Google Scholar 

  11. Gompper, G., Domb, C., Green, M.S., Schick, M., Lebowitz, J.L.: Phase Transitions and Critical Phenomena: Self-assembling Amphiphilic Systems. Academic Press, Cambridge (1994)

    Google Scholar 

  12. Cevc, G.: Phospholipids Handbook. CRC Press, Boca Raton (1993)

    Google Scholar 

  13. Fennell-Evans, D., Wennerström, H.: The Colloidal Domain: Where Physics, Chemistry, Biology, and Technology Meet. Wiley, Hoboken (1999)

    Google Scholar 

  14. Lach, S., Yoon, S.M., Grzybowski, B.A.: Tactic, reactive, and functional droplets outside of equilibrium. Chem. Soc. Rev. 45, 4766–4796 (2016)

    Article  Google Scholar 

  15. Ashkenasy, G., Hermans, T.M., Otto, S., Taylor, A.F.: Systems chemistry. Chem. Soc. Rev. 46(9), 2543–2554 (2017)

    Article  Google Scholar 

  16. Vanag, V.K., Epstein, I.R.: Pattern formation in a tunable medium: the Belousov-Zhabotinsky reaction in an aerosol OT microemulsion. Phys. Rev. Lett. 87(22), 228301–4 (2001)

    Article  Google Scholar 

  17. Epstein, I.R., Xu, B.: Reaction-diffusion processes at the nano- and microscales. Nat. Nanotechnol. 11(4), 312–319 (2016)

    Article  Google Scholar 

  18. Rossi, F., Vanag, V.K., Epstein, I.R.: Pentanary cross-diffusion in water-in-oil microemulsions loaded with two components of the Belousov-Zhabotinsky reaction. Chem. Eur. J. 17(7), 2138–2145 (2011)

    Article  Google Scholar 

  19. Budroni, M.A., Lemaigre, L., De Wit, A., Rossi, F.: Cross-diffusion-induced convective patterns in microemulsion systems. Phys. Chem. Chem. Phys. 17(3), 1593–1600 (2015)

    Article  Google Scholar 

  20. Toiya, M., Vanag, V.K., Epstein, I.R.: Diffusively coupled chemical oscillators in a microfluidic assembly. Angew. Chem. Int. Ed. 47(40), 7753–7755 (2008)

    Article  Google Scholar 

  21. Delgado, J., Li, N., Leda, M., González-Ochoa, H.O., Fraden, S., Epstein, I.R.: Coupled oscillations in a 1D emulsion of Belousov-Zhabotinsky droplets. Soft Matter 7(7), 3155 (2011)

    Article  Google Scholar 

  22. Tompkins, N., Li, N., Girabawe, C., Heymann, M., Ermentrout, G.B., Epstein, I.R., Fraden, S.: Testing Turing’s theory of morphogenesis in chemical cells. Proc. Natl. Acad. Sci. 111(12), 4397–4402 (2014)

    Article  Google Scholar 

  23. Thutupalli, S., Herminghaus, S., Seemann, R.: Bilayer membranes in micro-fluidics: from gel emulsions to soft functional devices. Soft Matter 7(4), 1312 (2011)

    Article  Google Scholar 

  24. de Souza, T.P., Perez-Mercader, J.: Entrapment in giant polymersomes of an inorganic oscillatory chemical reaction and resulting chemo-mechanical coupling. Chem. Commun. 50(64), 8970–8973 (2014)

    Article  Google Scholar 

  25. Guzowski, J., Gizynski, K., Gorecki, J., Garstecki, P.: Microfluidic platform for reproducible self-assembly of chemically communicating droplet networks with predesigned number and type of the communicating compartments. Lab Chip 16(4), 764–772 (2016)

    Article  Google Scholar 

  26. Magnani, A., Marchettini, N., Ristori, S., Rossi, C., Rossi, F., Rustici, M., Spalla, O., Tiezzi, E.: Chemical waves and pattern formation in the 1,2-dipalmitoyl-sn-glycero-3-phosphocholine/water lamellar system. J. Am. Chem. Soc. 126(37), 11406–11407 (2004)

    Article  Google Scholar 

  27. Ristori, S., Rossi, F., Biosa, G., Marchettini, N., Rustici, M., Tiezzi, E.: Interplay between the Belousov-Zhabotinsky reaction-diffusion system and biomimetic matrices. Chem. Phys. Lett. 436, 175–178 (2007)

    Article  Google Scholar 

  28. Rossi, F., Ristori, S., Rustici, M., Marchettini, N., Tiezzi, E.: Dynamics of pattern formation in biomimetic systems. J. Theor. Biol. 255(4), 404–412 (2008)

    Article  MathSciNet  Google Scholar 

  29. Torbensen, K., Rossi, F., Ristori, S., Abou-Hassan, A.: Chemical communication and dynamics of droplet emulsions in networks of Belousov-Zhabotinsky micro-oscillators produced by microfluidics. Lab Chip 17(7), 1179–1189 (2017)

    Article  Google Scholar 

  30. Tomasi, R., Noel, J.M., Zenati, A., Ristori, S., Rossi, F., Cabuil, V., Kanoufi, F., Abou-Hassan, A.: Chemical communication between liposomes encapsulating a chemical oscillatory reaction. Chem. Sci. 5(5), 1854–1859 (2014)

    Article  Google Scholar 

  31. Rossi, F., Zenati, A., Ristori, S., Noel, J.M., Cabuil, V., Kanoufi, F., Abou-Hassan, A.: Activatory coupling among oscillating droplets produced in microfluidic based devices. Int. J. Unconventional Comput. 11(1), 23–36 (2015)

    Google Scholar 

  32. Torbensen, K., Ristori, S., Rossi, F., Abou-Hassan, A.: Tuning the chemical communication of oscillating microdroplets by means of membrane composition. J. Phys. Chem. C 121(24), 13256–13264 (2017)

    Article  Google Scholar 

  33. Nii, T., Ishii, F.: Properties of various phosphatidylcholines as emulsifiers or dispersing agents in microparticle preparations for drug carriers. Colloids Surf. B: Biointerfaces 39(1), 57–63 (2004)

    Article  Google Scholar 

  34. Di Cola, E., Torbensen, K., Clemente, I., Rossi, F., Ristori, S., Abou-Hassan, A.: Lipid stabilized water- oil interfaces studied by micro focusing small angle X-ray scattering. Langmuir 33(36), 9100–9105 (2017)

    Article  Google Scholar 

  35. Utada, A.S., Lorenceau, E., Link, D.R., Kaplan, P.D., Stone, H.A., Weitz, D.A.: Monodisperse double emulsions generated from a microcapillary device. Science 308(5721), 537–541 (2005)

    Article  Google Scholar 

  36. Stockmann, T.J., Noël, J.M., Ristori, S., Combellas, C., Abou-Hassan, A., Rossi, F., Kanoufi, F.: Scanning electrochemical microscopy of Belousov-Zhabotinsky reaction: how confined oscillations reveal short lived radicals and auto-catalytic species. Anal. Chem. 87(19), 9621–9630 (2015)

    Article  Google Scholar 

  37. Pikovsky, A.S., Rosenblum, M.G., Osipov, G.V., Kurths, J.: Phase synchronization of chaotic oscillators by external driving. Phys. D: Nonlinear Phenom. 104(3–4), 219–238 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  38. Fukuda, H., Morimura, H., Kai, S.: Global synchronization in two-dimensional lattices of discrete Belousov-Zhabotinsky oscillators. Phys. D: Nonlinear Phenom. 205(1–4), 80–86 (2005)

    Article  Google Scholar 

  39. Vanag, V.K., Epstein, I.R.: Excitatory and inhibitory coupling in a one-dimensional array of Belousov-Zhabotinsky micro-oscillators: theory. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 84(6 Pt 2), 066209 (2011)

    Article  Google Scholar 

  40. Torbensen, K., Rossi, F., Pantani, O.L., Ristori, S., Abou-Hassan, A.: Interaction of the Belousov-Zhabotinsky reaction with phospholipid engineered membranes. J. Phys. Chem. B 119(32), 10224–10230 (2015)

    Article  Google Scholar 

  41. Benini, O., Cervellati, R., Fetto, P.: Experimental and mechanistic study of the bromomalonic acid/bromate oscillating system catalyzed by [Fe(phen)3]2+. Int. J. Chem. Kinet. 30(4), 291–300 (1998)

    Article  Google Scholar 

  42. Rossi, F., Varsalona, R., Liveri, M.L.T.: New features in the dynamics of a ferroin-catalyzed Belousov-Zhabotinsky reaction induced by a zwitterionic surfactant. Chem. Phys. Lett. 463(4–6), 378–382 (2008)

    Article  Google Scholar 

  43. Rossi, F., Lombardo, R., Sciascia, L., Sbriziolo, C., Liveri, M.L.T.: Spatio-temporal perturbation of the dynamics of the ferroin catalyzed Belousov-Zhabotinsky reaction in a batch reactor caused by sodium dodecyl sulfate micelles. J. Phys. Chem. B 112, 7244–7250 (2008)

    Article  Google Scholar 

  44. Noyes, R.M., Field, R., Koros, E.: Oscillations in chemical systems. I. Detailed mechanism in a system showing temporal oscillations. J. Am. Chem. Soc. 94(4), 1394–1395 (1972)

    Article  Google Scholar 

  45. Zhang, J., Unwin, P.R.: Kinetics of bromine transfer across Langmuir monolayers of phosphatidylethanolamines at the water/air interface. Phys. Chem. Chem. Phys. 5(18), 3979–3983 (2003)

    Article  Google Scholar 

  46. Xiang, T.X., Anderson, B.D.: Permeability of acetic acid across gel and liquid-crystalline lipid bilayers conforms to free-surface-area theory. Biophys. J. 72(1), 223–237 (1997)

    Article  Google Scholar 

  47. Kummer, U., Hoops, S., Sahle, S., Gauges, R., Lee, C., Pahle, J., Simus, N., Singhal, M., Xu, L., Mendes, P.: COPASI-a COmplex PAthway SImulator. Bioinformatics 22(24), 3067–3074 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

F.R. gratefully acknowledge the University of Salerno for the grants ORSA158121 and ORSA167988. F.R. and A.A-H. acknowledge the support through the COST Action CM1304 (Emergence and Evolution of Complex Chemical Systems).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Rossi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rossi, F., Torbensen, K., Ristori, S., Abou-Hassan, A. (2018). Signal Transduction and Communication Through Model Membranes in Networks of Coupled Chemical Oscillators. In: Pelillo, M., Poli, I., Roli, A., Serra, R., Slanzi, D., Villani, M. (eds) Artificial Life and Evolutionary Computation. WIVACE 2017. Communications in Computer and Information Science, vol 830. Springer, Cham. https://doi.org/10.1007/978-3-319-78658-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78658-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78657-5

  • Online ISBN: 978-3-319-78658-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics