Skip to main content

Predicting Disease Genes from Clinical Single Sample-Based PPI Networks

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2018)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 10813))

Included in the following conference series:

Abstract

Experimentally identifying disease genes is time-consuming and expensive, and thus it is appealing to develop computational methods for predicting disease genes. Many existing methods predict new disease genes from protein-protein interaction (PPI) networks. However, PPIs are changing during cells’ lifetime and thus only using the static PPI networks may degrade the performance of algorithms. In this study, we propose an algorithm for predicting disease genes based on centrality features extracted from clinical single sample-based PPI networks (dgCSN). Our dgCSN first constructs a single sample-based network from a universal static PPI network and the clinical gene expression of each case sample, and fuses them into a network according to the frequency of each edge appearing in all single sample-based networks. Then, centrality-based features are extracted from the fused network to capture the property of each gene. Finally, regression analysis is performed to predict the probability of each gene being disease-associated. The experiments show that our dgCSN achieves the AUC values of 0.893 and 0.807 on Breast Cancer and Alzheimer’s disease, respectively, which are better than two competing methods. Further analysis on the top 10 prioritized genes also demonstrate that dgCSN is effective for predicting new disease genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moody, S.E., Boehm, J.S., Barbie, D.A., Hahn, W.C.: Functional genomics and cancer drug target discovery. Curr. Opin. Mol. Ther. 12(3), 284–293 (2010)

    Google Scholar 

  2. Yang, P., Li, X., Wu, M., Kwoh, C.K., Ng, S.K.: Inferring gene-phenotype associations via global protein complex network propagation. PLoS ONE 6(7), e21502 (2011)

    Article  Google Scholar 

  3. Chen, B., Shang, X., Li, M., Wang, J., Wu, F.X.: A two-step logistic regression algorithm for identifying individual-cancer-related genes. In: 2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 195–200. IEEE (2015)

    Google Scholar 

  4. Chen, B., Shang, X., Li, M., Wang, J., Wu, F.X.: Identifying individual-cancer-related genes by rebalancing the training samples. IEEE Trans. Nanobiosci. 15(4), 309–315 (2016)

    Article  Google Scholar 

  5. Tang, X., Hu, X., Yang, X., Sun, Y.: A algorithm for identifying disease genes by incorporating the subcellular localization information into the protein-protein interaction networks. In: 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 308–311. IEEE (2016)

    Google Scholar 

  6. Yang, P., Li, X.L., Mei, J.P., Kwoh, C.K., Ng, S.K.: Positive-unlabeled learning for disease gene identification. Bioinformatics 28(20), 2640–2647 (2012)

    Article  Google Scholar 

  7. Jia, P., Zheng, S., Long, J., Zheng, W., Zhao, Z.: dmGWAS: dense module searching for genome-wide association studies in protein-protein interaction networks. Bioinformatics 27(1), 95–102 (2011)

    Article  Google Scholar 

  8. Aerts, S., Lambrechts, D., Maity, S., Van Loo, P., Coessens, B., De Smet, F., Tranchevent, L.C., De Moor, B., Marynen, P., Hassan, B., et al.: Gene prioritization through genomic data fusion. Nat. Biotechnol. 24(5), 537–544 (2006)

    Article  Google Scholar 

  9. Tranchevent, L.C., Ardeshirdavani, A., ElShal, S., Alcaide, D., Aerts, J., Auboeuf, D., Moreau, Y.: Candidate gene prioritization with endeavour. Nucleic Acids Res. 44, W117–W121 (2016). https://doi.org/10.1093/nar/gkw365

    Article  Google Scholar 

  10. Wang, Q., Yu, H., Zhao, Z., Jia, P.: EW_dmGWAS: edge-weighted dense module search for genome-wide association studies and gene expression profiles. Bioinformatics 31, 2591–2594 (2015). https://doi.org/10.1093/bioinformatics/btv150

    Article  Google Scholar 

  11. Hou, L., Chen, M., Zhang, C.K., Cho, J., Zhao, H.: Guilt by rewiring: gene prioritization through network rewiring in genome wide association studies. Hum. Mol. Genet. 23(10), 2780–2790 (2014)

    Article  Google Scholar 

  12. Luo, P., Tian, L.P., Ruan, J., Wu, F.X.: Identifying disease genes from PPI networks weighted by gene expression under different conditions. In: 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 1259–1264. IEEE (2016)

    Google Scholar 

  13. Wang, J., Peng, X., Li, M., Pan, Y.: Construction and application of dynamic protein interaction network based on time course gene expression data. Proteomics 13(2), 301–312 (2013)

    Article  Google Scholar 

  14. Meng, X., Li, M., Wang, J., Wu, F.X., Pan, Y.: Construction of the spatial and temporal active protein interaction network for identifying protein complexes. In: 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 631–636. IEEE (2016)

    Google Scholar 

  15. Chen, B., Fan, W., Liu, J., Wu, F.X.: Identifying protein complexes and functional modules from static PPI networks to dynamic PPI networks. Brief. Bioinform. 15(2), 177–194 (2013)

    Article  Google Scholar 

  16. Chen, B., Wang, J., Li, M., Wu, F.X.: Identifying disease genes by integrating multiple data sources. BMC Med. Genomics 7(Suppl. 2), S2 (2014)

    Article  Google Scholar 

  17. Chen, B., Li, M., Wang, J., Wu, F.X.: Disease gene identification by using graph kernels and Markov random fields. Sci. China Life Sci. 57(11), 1054–1063 (2014)

    Article  Google Scholar 

  18. Chen, B., Li, M., Wang, J., Shang, X., Wu, F.X.: A fast and high performance multiple data integration algorithm for identifying human disease genes. BMC Med. Genomics 8(Suppl. 3), S2 (2015)

    Article  Google Scholar 

  19. Köhler, S., Bauer, S., Horn, D., Robinson, P.N.: Walking the interactome for prioritization of candidate disease genes. Am. J. Hum. Genet. 82(4), 949–958 (2008)

    Article  Google Scholar 

  20. Hoff, P.D., Raftery, A.E., Handcock, M.S.: Latent space approaches to social network analysis. J. Am. Stat. Assoc. 97(460), 1090–1098 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., Parisi, D.: Defining and identifying communities in networks. Proc. Nat. Acad. Sci. U.S.A. 101(9), 2658–2663 (2004)

    Article  Google Scholar 

  22. Wang, J., Li, M., Wang, H., Pan, Y.: Identification of essential proteins based on edge clustering coefficient. IEEE/ACM Trans. Comput. Biol. Bioinf. 9(4), 1070–1080 (2012)

    Article  Google Scholar 

  23. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  24. McKusick, V., et al.: Online mendelian inheritance in man (OMIM). Mckusick-Nathans Institute for Genetic Medicine, Johns Hopkins University. National Center for Biotechnology Information, National Library of Medicine, Bethesda (2004). http://www.ncbi.nlm.nih.gov/omim/

  25. Luo, P., Tian, L.P., Ruan, J., Wu, F.: Disease gene prediction by integrating PPI networks, clinical RNA-Seq data and OMIM data. IEEE/ACM Trans. Comput. Biol. Bioinf. (2017)

    Google Scholar 

  26. Forbes, S.A., Beare, D., Boutselakis, H., Bamford, S., Bindal, N., Tate, J., Cole, C.G., Ward, S., Dawson, E., Ponting, L., et al.: COSMIC: somatic cancer genetics at high-resolution. Nucleic Acids Res. 45, D777–D783 (2016). https://doi.org/10.1093/nar/gkw1121

    Article  Google Scholar 

  27. Grossman, R.L., Heath, A.P., Ferretti, V., Varmus, H.E., Lowy, D.R., Kibbe, W.A., Staudt, L.M.: Toward a shared vision for cancer genomic data. N. Engl. J. Med. 375(12), 1109–1112 (2016)

    Article  Google Scholar 

  28. Scheckel, C., Drapeau, E., Frias, M.A., Park, C.Y., Fak, J., Zucker-Scharff, I., Kou, Y., Haroutunian, V., Ma’ayan, A., Buxbaum, J.D., et al.: Regulatory consequences of neuronal ELAV-like protein binding to coding and non-coding RNAs in human brain. Elife 5, e10421 (2016)

    Article  Google Scholar 

  29. Love, M.I., Huber, W., Anders, S.: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15(12), 550 (2014)

    Article  Google Scholar 

  30. Dillies, M.A., Rau, A., Aubert, J., Hennequet-Antier, C., Jeanmougin, M., Servant, N., Keime, C., Marot, G., Castel, D., Estelle, J., et al.: A comprehensive evaluation of normalization methods for illumina high-throughput RNA sequencing data analysis. Brief. Bioinform. 14(6), 671–683 (2013)

    Article  Google Scholar 

  31. Li, T., Wernersson, R., Hansen, R.B., Horn, H., Mercer, J., Slodkowicz, G., Workman, C.T., Rigina, O., Rapacki, K., Stærfeldt, H.H., et al.: A scored human protein-protein interaction network to catalyze genomic interpretation. Nat. Methods 14(1), 61–64 (2016)

    Article  Google Scholar 

  32. Chen, Y., Wang, W., Zhou, Y., Shields, R., Chanda, S.K., Elston, R.C., Li, J.: In silico gene prioritization by integrating multiple data sources. PLoS ONE 6(6), e21137 (2011)

    Article  Google Scholar 

  33. Erten, S., Bebek, G., Ewing, R.M., Koyutürk, M.: DADA: degree-aware algorithms for network-based disease gene prioritization. BioData Min. 4(1), 19 (2011)

    Article  Google Scholar 

  34. Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: ToppGene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res. 37(Suppl. 2), W305–W311 (2009)

    Article  Google Scholar 

  35. Weber, A.M., Ryan, A.J.: ATM and ATR as therapeutic targets in cancer. Pharmacol. Ther. 149, 124–138 (2015)

    Article  Google Scholar 

  36. Soria-Bretones, I., Sáez, C., Ruíz-Borrego, M., Japón, M.A., Huertas, P.: Prognostic value of CtIP/RBBP8 expression in breast cancer. Cancer Med. 2(6), 774–783 (2013)

    Article  Google Scholar 

  37. Stotani, S., Giordanetto, F., Medda, F.: DYRK1A inhibition as potential treatment for Alzheimers disease. Future Med. Chem. 8(6), 681–696 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported in part by Natural Science and Engineering Research Council of Canada (NSERC), China Scholarship Council (CSC) and by the National Natural Science Foundation of China under Grant No. 61571052 and No. 61602386, and the Natural Science Foundation of Shaanxi Province under Grant No. 2017JQ6008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang-Xiang Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Luo, P., Tian, LP., Chen, B., Xiao, Q., Wu, FX. (2018). Predicting Disease Genes from Clinical Single Sample-Based PPI Networks. In: Rojas, I., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2018. Lecture Notes in Computer Science(), vol 10813. Springer, Cham. https://doi.org/10.1007/978-3-319-78723-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78723-7_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78722-0

  • Online ISBN: 978-3-319-78723-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics