Skip to main content

Graph Theory Based Classification of Brain Connectivity Network for Autism Spectrum Disorder

  • Conference paper
  • First Online:
Book cover Bioinformatics and Biomedical Engineering (IWBBIO 2018)

Abstract

Connections in the human brain can be examined efficiently using brain imaging techniques such as Diffusion Tensor Imaging (DTI), Resting-State fMRI. Brain connectivity networks are constructed by using image processing and statistical methods, these networks explain how brain regions interact with each other. Brain networks can be used to train machine learning models that can help the diagnosis of neurological disorders. In this study, two types (DTI, fMRI) of brain connectivity networks are examined to retrieve graph theory based knowledge and feature vectors of samples. The classification model is developed by integrating three machine learning algorithms with a naïve voting scheme. The evaluation of the proposed model is performed on the brain connectivity samples of patients with Autism Spectrum Disorder. When the classification model is compared with another state-of-the-art study, it is seen that the proposed method outperforms the other one. Thus, graph-based measures computed on brain connectivity networks might help to improve diagnostic capability of in-silico methods. This study introduces a graph theory based classification model for diagnostic purposes that can be easily adapted for different neurological diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stam, C.J.: Modern network science of neurological disorders. Nat. Rev. Neurosci. 15(10), 683–695 (2014)

    Article  Google Scholar 

  2. Lord, C., Cook, E.H., Leventhal, B.L., Amaral, D.G.: Autism spectrum disorders. Neuron 28(2), 355–363 (2000)

    Article  Google Scholar 

  3. Rane, P., Cochran, D., Hodge, S.M., Haselgrove, C., Kennedy, D., Frazier, J.A.: Connectivity in autism: a review of MRI connectivity studies. Harv. Rev. Psychiatry 23(4), 223 (2015)

    Article  Google Scholar 

  4. Posner, M.I., Raichle, M.E.: Images of Mind. Scientific American Library/Scientific American Books, New York (1994)

    Google Scholar 

  5. Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10(3), 186–198 (2009)

    Article  Google Scholar 

  6. Bassett, D.S., Bullmore, E.D.: Small-world brain networks. Neuroscientist 12(6), 512–523 (2006)

    Article  Google Scholar 

  7. van den Heuvel, M.P., Sporns, O.: Network hubs in the human brain. Trends Cogn. Sci. 17(12), 683–696 (2013)

    Article  Google Scholar 

  8. Reijneveld, J.C., Ponten, S.C., Berendse, H.W., Stam, C.J.: The application of graph theoretical analysis to complex networks in the brain. Clin. Neurophysiol. 118(11), 2317–2331 (2007)

    Article  Google Scholar 

  9. Stam, C.J., De Haan, W., Daffertshofer, A.B.F.J., Jones, B.F., Manshanden, I., van Cappellen van Walsum, A.M., Berendse, H.W.: Graph theoretical analysis of magnetoencephalographic functional connectivity in Alzheimer’s disease. Brain 132(1), 213–224 (2008)

    Google Scholar 

  10. Bassett, D.S., Sporns, O.: Network neuroscience. Nat. Neurosci. 20(3), 353–364 (2017)

    Article  Google Scholar 

  11. Crossley, N.A., Mechelli, A., Vrtes, P.E., Winton-Brown, T.T., Patel, A.X., Ginestet, C.E., Bullmore, E.T.: Cognitive relevance of the community structure of the human brain functional coactivation network. Proc. Nat. Acad. Sci. 110(28), 11583–11588 (2013)

    Article  Google Scholar 

  12. Dennis, E.L., Thompson, P.M.: Functional brain connectivity using fMRI in aging and Alzheimer s disease. Neuropsychol. Rev. 24(1), 49–62 (2014)

    Article  Google Scholar 

  13. Rubinov, M., Sporns, O.: Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3), 1059–1069 (2010)

    Article  Google Scholar 

  14. Guye, M., Bettus, G., Bartolomei, F., Cozzone, P.J.: Graph theoretical analysis of structural and functional connectivity MRI in normal and pathological brain networks. Magn. Reson. Mater. Phys. Biol. Med. 23(5–6), 409–421 (2010)

    Article  Google Scholar 

  15. Dodero, L., Minh, H.Q., San Biagio, M., Murino, V., Sona, D.: Kernel-based classification for brain connectivity graphs on the riemannian manifold of positive definite matrices. In: 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), pp. 42–45. IEEE (2015)

    Google Scholar 

  16. Woodward, N.D., Cascio, C.J.: Resting-state functional connectivity in psychiatric disorders. JAMA Psychiatry 72(8), 743–744 (2015)

    Article  Google Scholar 

  17. Mijalkov, M., Kakaei, E., Pereira, J.B., Westman, E., Volpe, G., Alzheimer’s Disease Neuroimaging Initiative: BRAPH: a graph theory software for the analysis of brain connectivity. PloS ONE 12(8), e0178798 (2017)

    Google Scholar 

  18. Kira, K., Rendell, L.A.: The feature selection problem: traditional methods and a new algorithm. In: Aaai, vol. 2 (1992)

    Google Scholar 

  19. Brown, J.A., Rudie, J.D., Bandrowski, A., Van Horn, J.D., Bookheimer, S.Y.: The UCLA multimodal connectivity database: a web-based platform for brain connectivity matrix sharing and analysis. Front. Neuroinformatics 6, 28 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

E. Tolan is supported by the 100/2000 CoHE Doctoral Scholarship Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ertan Tolan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tolan, E., Isik, Z. (2018). Graph Theory Based Classification of Brain Connectivity Network for Autism Spectrum Disorder. In: Rojas, I., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2018. Lecture Notes in Computer Science(), vol 10813. Springer, Cham. https://doi.org/10.1007/978-3-319-78723-7_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78723-7_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78722-0

  • Online ISBN: 978-3-319-78723-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics