Skip to main content

A Texture Analysis Approach for Spine Metastasis Classification in T1 and T2 MRI

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2018)

Abstract

This paper presents a learning based approach for the classification of pathological vertebrae. The proposed method is applied to spine metastasis, a malignant tumor that develops inside bones and requires a rapid diagnosis for an effective treatment monitoring. We used multiple texture analysis techniques to extract useful features from two co-registered MR images sequences (T1, T2). These MRIs are part of a diagnostic protocol for vertebral metastases follow up. We adopted a slice by slice MRI analysis of 153 vertebra region of interest. Our method achieved a classification accuracy of \(90.17\% \pm 5.49\), using only a subset of 67 relevant selected features from the initial 142.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Multidisciplinary and autonomous hospital totally dedicated to cancer located in Brussels, Belgium.

  2. 2.

    www.slicer.org.

References

  1. Roodman, G.D.: Mechanisms of bone metastasis. N. Engl. J. Med. 350(16), 1655–1664 (2004). PMID: 15084698

    Article  Google Scholar 

  2. Guillevin, R., et al.: Spine metastasis imaging: review of the literature. J. Neuroradiol. 34(5), 311–321 (2007)

    Article  Google Scholar 

  3. Coleman, R.: Metastatic bone disease: clinical features, pathophysiology and treatment strategies. Cancer Treat. Rev. 27(3), 165–176 (2001)

    Article  Google Scholar 

  4. Junsung Choi, M.R.: Diagnostic imaging and image-guided therapy of skeletal metastases. Cancer Control 19(2), 102–112 (2012)

    Article  Google Scholar 

  5. Gerszten, P.C., et al.: Radiosurgery for spinal metastases: clinical experience in 500 cases from a single institution. Spine 32(2), 193–199 (2007)

    Article  Google Scholar 

  6. Jerebko, A.K., et al.: Robust parametric modeling approach based on domain knowledge for computer aided detection of vertebrae column metastases in MRI. In: IPMI 2007, pp. 713–724 (2007)

    Google Scholar 

  7. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann. Eugen. 7(2), 179–188 (1936)

    Article  Google Scholar 

  8. McLachlan, G.J.: Discriminant Analysis and Statistical Pattern Recognition. Wiley Series in Probability and Mathematical Statistics (1992)

    Google Scholar 

  9. Burns, J., et al.: Automated detection of sclerotic metastases in the thoracolumbar spine at CT. J. Radiol. 268(1), 69–78 (2013)

    Article  Google Scholar 

  10. Huang, S.F., Chian, K.H.: Automatic detection of bone metastasis in vertebrae by using CT images. In: Proceedings of the World Congress on Engineering, July 2012

    Google Scholar 

  11. Yao, J., O’Connor, S.D., Summers, R.M.: Computer aided detection of lytic bone metastases in the spine using routine CT images. In: ISBI, pp. 512–515 (2007)

    Google Scholar 

  12. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)

    Article  Google Scholar 

  13. Roth, H., et al.: Detection of sclerotic spine metastases via random aggregation of deep convolutional neural network classifications. In: Yao, J., Glocker, B., Klinder, T., Li, S. (eds.) Recent Advances in Computational Methods and Clinical Applications for Spine Imaging, vol. 20, pp. 3–12. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-14148-0_1

    Chapter  Google Scholar 

  14. Haider, M.A., et al.: CT texture analysis: a potential tool for prediction of survival in patients with metastatic clear cell carcinoma treated with sunitinib. Cancer Imaging 17(1), 4 (2017)

    Article  Google Scholar 

  15. Rao, S.X., et al.: CT texture analysis in colorectal liver metastases: a better way than size and volume measurements to assess response to chemotherapy? United Eur. Gastroenterol. J. 4(2), 257–263 (2016)

    Article  Google Scholar 

  16. Vallieres, M., et al.: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol. 60(14), 5471 (2015)

    Article  Google Scholar 

  17. Holli, K., et al.: Texture analysis of MR images of patients with mild traumatic brain injury. BMC Med. Imaging 10(1), 8 (2010)

    Article  Google Scholar 

  18. Holli, K., et al.: Characterization of breast cancer types by texture analysis of magnetic resonance images. Acad. Radiol. 17(2), 135–141 (2010)

    Article  Google Scholar 

  19. Vinholes, J., Coleman, R., Eastell, R.: Effects of bone metastases on bone metabolism: implications for diagnosis, imaging and assessment of response to cancer treatment. Cancer Treat. Rev. 22(4), 289–331 (1996)

    Article  Google Scholar 

  20. Grankvist, J., et al.: MRI and PET/CT of patients with bone metastases from breast carcinoma. Eur. J. Radiol. 81(1), e13–e18 (2012)

    Article  Google Scholar 

  21. Bardera, A., Feixas, M., Boada, I.: Normalized similarity measures for medical image registration. In: Medical Imaging 2004, pp. 108–118. International Society for Optics and Photonics (2004)

    Google Scholar 

  22. Wang, J., et al.: Multi-atlas segmentation of subcortical brain structures via the autoseg software pipeline. Front. Neuroinformatics 8, 7 (2014)

    Article  Google Scholar 

  23. Johnson, H., Harris, G., Williams, K., et al.: BRAINSFit: mutual information rigid registrations of whole-brain 3D images. Insight J. 57(1) (2007). http://hdl.handle.net/1926/1291

  24. Alobaidli, S., et al.: The role of texture analysis in imaging as an outcome predictor and potential tool in radiotherapy treatment planning. Br. J. Radiol. 87(1042), 20140369 (2014)

    Article  Google Scholar 

  25. Haidekker, M.: Advanced Biomedical Image Analysis. Wiley, Hoboken (2011)

    MATH  Google Scholar 

  26. Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 3, 610–621 (1973)

    Article  Google Scholar 

  27. El Adoui, M., Drisis, S., Larhmam, M.A., Lemort, M., Benjelloun, M.: Breast cancer heterogeneity analysis as index of response to treatment using MRI images: a review. Imaging Med. 9(4), 109–119 (2017)

    Google Scholar 

  28. Ojala, T., et al.: A comparative study of texture measures with classification based on featured distributions. Pattern Recogn. 29(1), 51–59 (1996)

    Article  Google Scholar 

  29. Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans. Image Process. 19(6), 1635–1650 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu, D., Wang, S., Huang, D., Deng, G., Zeng, F., Chen, H.: Medical image classification using spatial adjacent histogram based on adaptive local binary patterns. Comput. Biol. Med. 72, 185–200 (2016)

    Article  Google Scholar 

  31. Hu, L.S., et al.: Multi-parametric MRI and texture analysis to visualize spatial histologic heterogeneity and tumor extent in glioblastoma. PLoS ONE 10(11), e0141506 (2015)

    Article  Google Scholar 

  32. Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  MATH  Google Scholar 

  33. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  34. Gressin, A.: Mise à jour d’une base de données d’occupation du sol à grande échelle en milieux naturels à partir d’une image satellite THR. Ph.D. thesis, Université Paris-Descartes (2014)

    Google Scholar 

  35. Fisher, R.: The use of multiple measurements in taxonomic problems. Ann. Hum. Genet. 7(2), 179–188 (1936)

    Google Scholar 

  36. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (1967)

    Article  MATH  Google Scholar 

  37. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  38. Hsu, C.W., Chang, C.C., Lin, C.J., et al.: A Practical Guide to Support Vector Classification (2003)

    Google Scholar 

  39. Raschka, S.: Python Machine Learning. Packt Publishing, Birmingham (2015)

    Google Scholar 

  40. Varma, S., Simon, R.: Bias in error estimation when using cross-validation for model selection. BMC Bioinform. 7(1), 1 (2006)

    Article  Google Scholar 

  41. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: 14th International Joint Conference on AI (1995)

    Google Scholar 

  42. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Mach. Learn. 46, 389–422 (2002)

    Article  MATH  Google Scholar 

  43. Larhmam, M.A., Benjelloun, M., Mahmoudi, S.: Vertebra identification using template matching model and k-means clustering. Int. J. Comput. Assist. Radiol. Surg. 9(2), 177–187 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Amine Larhmam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Larhmam, M.A., Mahmoudi, S., Drisis, S., Benjelloun, M. (2018). A Texture Analysis Approach for Spine Metastasis Classification in T1 and T2 MRI. In: Rojas, I., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2018. Lecture Notes in Computer Science(), vol 10814. Springer, Cham. https://doi.org/10.1007/978-3-319-78759-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78759-6_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78758-9

  • Online ISBN: 978-3-319-78759-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics