arXiv:1705.04589v1 [cs.DS] 12 May 2017

How to answer a small batch of RMQs or LCA
queries in practice

Mai Alzamel', Panagiotis Charalampopoulos!, Costas S. Iliopoulos', and
Solon P. Pissis!

Department of Informatics, King’s College London, UK
[mai.alzamel,panagiotis.charalampopoulos,
costas.iliopoulos,solon.pissis]@kcl.ac.uk

Abstract. In the Range Minimum Query (RMQ) problem, we are given
an array A of n numbers and we are asked to answer queries of the fol-
lowing type: for indices ¢ and j between 0 and n — 1, query RMQ 4 (4, 7)
returns the index of a minimum element in the subarray Afi .. j]. Answer-
ing a small batch of RMQs is a core computational task in many real-
world applications, in particular due to the connection with the Lowest
Common Ancestor (LCA) problem. With small batch, we mean that the
number g of queries is o(n) and we have them all at hand. It is therefore
not relevant to build an 2(n)-sized data structure or spend {2(n) time
to build a more succinct one. It is well-known, among practitioners and
elsewhere, that these data structures for online querying carry high con-
stants in their pre-processing and querying time. We would thus like to
answer this batch efficiently in practice. With efficiently in practice, we
mean that we (ultimately) want to spend n + O(g) time and O(q) space.
We write n to stress that the number of operations per entry of A should
be a very small constant. Here we show how existing algorithms can be
easily modified to satisfy these conditions. The presented experimental
results highlight the practicality of this new scheme. The most significant
improvement obtained is for answering a small batch of LCA queries. A
library implementation of the presented algorithms is made available.

1 Introduction

In the Range Minimum Query (RMQ) problem, we are given an array A of n
numbers and we are asked to answer queries of the following type: for indices ¢
and j between 0 and n — 1, query RMQ 4 (4, j) returns the index of a minimum
element in the subarray Afi.. j].

The RMQ problem and the linearly equivalent Lowest Common Ancestor
(LCA) problem [4] are very well-studied and several optimal algorithms exist
to solve them. It was first shown by Harel and Tarjan [14] that a tree can be
pre-processed in O(n) time so that LCA queries can be answered in O(1) time
per query. A major breakthrough in practicable constant-time LCA-computation
was made by Berkman and Vishkin [6]. Farach and Bender [4] further simplified
this algorithm by showing that the RMQ problem is linearly equivalent to the

http://arxiv.org/abs/1705.04589v1

LCA problem (shown also in [10]). The constants due to the reduction, however,
remained quite large, making these algorithms impractical in most realistic cases.
To this end, Fischer and Heun [9] presented yet another optimal, but also direct,
algorithm for the RMQ problem. The same authors (but also others [15]) showed
that due to large constants in the pre-processing and querying time implementa-
tions of this algorithm are often slower than implementations of the naive ones.
Continuous efforts for engineering these solutions are being made [8].

In this article we try to address this problem, in particular when one wants to
answer a relatively small batch of RMQs efficiently. This version of the problem
is a core computational task in many real-world applications such as in object
inheritance during static compilation of code [5] or in several string matching
problems (see Section 5 for some). With small batch, we mean that the number
q of the queries is o(n) and we have them all at hand. It is therefore not rele-
vant to build an 2(n)-sized data structure or spend {2(n) time to build a more
succinct one. It is well-known, among practitioners and elsewhere, that these
data structures carry high constants in both their pre-processing and querying
time. (Note that when g = £2(n) one can use these data structures for this com-
putation.) We would thus like to answer this batch efficiently in practice. With
efficiently in practice, we mean that we (ultimately) want to spend n + O(q)
time and O(q) space. We write n to stress that the number of operations per
entry of A should be a very small constant; e.g. scan the array once or twice. In
what follows, we show how existing algorithms can be easily modified to satisfy
these conditions. Experimental results presented here highlight the practicality
of this scheme. The most significant improvement obtained is for answering a
small batch of LCA queries. The RMQ Batch problem can be defined as follows.

RMQ Batch
Input: An array A of size n of numbers and a list Q@ of g pairs of indices
Output: RMQ 4 (4,) for each (i,j) € Q

The LCA Queries Batch problem can be defined as follows.

LCA Queries Batch

Input: A rooted tree T' with n labelled nodes 0,1,...,n — 1 and a list @ of
q pairs of nodes (u,v)

Output: LCAr(u,v) for each (u,v) € Q

Our computational model. We assume the word-RAM model with word size
w = 2(logn). For the RMQ Batch problem, we assume that we are given a
rewritable array A of size n, each entry of which may be increased by n and still
fit in a computer word. For the LCA Queries Batch problem, we assume that we
are given (an O(n)-sized representation of) a rewritable tree T' allowing constant-
time access to (at least) the nodes of T that are in some query in @ (see the
representation in [12], for instance). All presented algorithms are deterministic.

2 Contracting the Input Array

Consider any two adjacent array entries A[i] and A[i + 1]. Observe that if no
query in @) starts or ends at ¢ or at i+ 1 then, if A[i] # A[i+1], max(A[é], A[i+1])
will never be the answer to any of the queries in (). Hence, the idea is that we
want to contract array A, so that each block that does not contain the left
or right endpoint of any query gets replaced by one element: its minimum. A
similar idea, based on sorting the list @), has been considered in the Ezxternal
Memory model [1] (see also [2]). In this section, we present a solution for our
computational model, which avoids using 2(n) space or time, but also avoids
using £2(sort(Q)) time.

There are some technical details in order to update the queries for A into
queries for the new array using only O(q) time and extra space. We first scan
the array A once and find p = max; A[i]. We also create two auxiliary arrays
Zp[0..2¢ — 1] and Z;1[0..2q — 1]. For each query (¢,j) € @ we mark positions i
(and j) in the array A as follows. If A[i] < p, then i has not been marked before.
Let this be the k-th position, k > 0, that gets marked (we just store a counter
for that). We store A[i] in Zy[p+k mod 2¢] and replace the value that is stored
in A[i] by p+ k. We also start a linked list at Z;[u+ &k mod 2q], where we insert
a pointer to query (i,75), so that we can update it later. If A[i] > p, then the
position has already been marked; we just add a pointer to the respective query
in the linked list starting at Z1[A[i] mod 2¢].

We then scan array A again and create a new array Ag as follows: for
each marked position j (i.e. A[j] > u), we copy the original value (i.e. Zy[A[j]
mod 2¢]) in Ag, while each maximal block in A that does not contain a marked
position is replaced by a single entry—its minimum. When we insert the original
entry of a marked position j of A (i.e. Zo[A[j] mod 2¢]) in Ag at position p,
we go through the linked list that is stored in Z;[A[j] mod 2q], where we have
stored pointers to all the queries of the form (i, 7) or (j,k), and replace j by p
in each of them. Thus, after we have scanned A, for each query (4,j) € @ on
A, we will have stored the respective pair (i/,j’) on Ag. Note that we need to
scan array A only once if we know p a priori (e.g. in LCP array [7]), or twice
otherwise.

Ezample 1. Assume we are given array A and Q = {(4, 18), (0,6), (6,10)}.

A [P2Y 8921012 8] 7[13[3]6 [14[36] 0] 4]

Then Ag is as follows.

Ao [4 15N 5 28 8 O] 3 [0|

While creating Ag, we also store in an auxiliary array the function f :
{0,1,...,]4g| = 1} — {0,1,...,n — 1} between positions of Ag and the re-
spective original positions in A.

Now notice that Ag and the auxiliary arrays are all of size O(g) since in the
worst case we mark 2¢ distinct elements of A and contract 2¢ + 1 blocks that do
not contain a marked position. (We can actually throw away everything before
the first marked position and everything after the last marked position and get
4q — 1 instead.) The whole procedure takes n+ O(q) time and O(q) space. Note
that if RMQAQ(i’,j’) = ¢ then RMQ 4(4,7) = f(£).

We can finally retrieve the original input array if required by replacing A[f(j)]
by Aglj] for every j in the domain of f in O(g) time.

3 Small RMQ Batch

3.1 An n + O(gqlog q)-time and O(q)-space Algorithm

The algorithm presented in this section is a modification of the Sparse Table
algorithm by Bender and Farach-Colton [4] applied on array Ag; we denote it
by ST-RMQ. The modification is based on the fact that (i) we do not want
to consume £2(qlogq) extra space to answer the ¢ queries; and (ii) we do not
want to necessarily do all the pre-processing work of the algorithm in [4], which
is designed to answer any of the ©(q?) possible queries online. We denote this
modified algorithm by ST-RMQcon and formalise it below.

ST-RMQcon(4, Q)
1 Ag + CONTRACT(A4, Q)

2 Store function f; store (i’,j’) for every (i,5) € @
3 for each (i,j) € Q do
4 if ¢ = j then
5 REPORT((4,1),1%)
6 else Add (i, j) in bucket Bjjog(jr—i))
7 t+ max{r|B, #0}+1
8 for m=0to |Ag| —1do
9 Dm] + (Ag[m],m)
10 fork=0tot—1do
11 for each (i, j) € By, do
12 (a,p) + min(D[i'], D[’ — 2% +1])
13 REPORT((,), f(P))
14 for m =0 to |Ag| — 1 do
15 if m+ 2% <|Ag| -1 then
16 D[m] + min(D[m], D[m + 2¥])

The idea is to first put each (¢,j) € @ with ¢ # j in a bucket By based on
the k for which 2% < j/ — i’ < 2k*1—ye can have at most [log(|Ag| — 1)] such
buckets. In this process, if we find queries of the form (i,4) € @, we answer them
on the spot. We can do this in O(q) time.

We then create an array D of size |Ag| where we will store 2-tuples (a,p).
In Step k, D[m] will store the minimum value across Ag[m..m + 2¥ — 1], as
well as the position p, m < p < m + 2F where it occurs. We initialise it as

D[m] = (Ag[m], m) and we will then update it by utilising the doubling technique.
At Step 0 we answer all (trivial) queries that are stored in By; they are of the form
(7,7 + 1) and the answer can be found by looking at min(D[i'], D[i’ + 1])—mnote
that we compare elements of D lexicographically. When we are done with By we
have to update D by setting D[m] = min(D[m], D[m +2°]) for all m < |Ag|— 1.

Generally, in Step k, we answer the queries of By, as follows. For query (i, j),
we find the answer by obtaining min(D[i'], D[j’ —2¥+1] = (a, p). We then return
f(p). The point is that {i’,... .7 +28¥ —1yU{j’ =2k +1,....5} = {i,...,j'}.
When we are done with By we set D[m] = min(D[m], D[m + 2*]) if m + 2k <
|[Ag| — 1.

We do this until we have gone through all ¢ non-empty buckets (i.e. t =
max{r|B, # (0} + 1). Updating D takes O(q) time in each step, and we need
in total O(q) time for the queries. We thus need O(qt) time for this part of the
algorithm. Since ¢ = max{|log(j' —) ||(f(#), f(§')) € Q)} = O(log q), this time
is O(qlogq). The overall time complexity of the algorithm is thus n + O(qlog q).
Notably, the space required is only O(q) as we overwrite D in each step.

3.2 n 4+ O(q)-time and O(q)-space Algorithms

Offline-based algorithm. Given an array A of m numbers its Cartesian tree is
defined as follows. The root of the Cartesian tree is A[i] = min{A[0], ..., A[n—1]},
its left subtree is computed recursively on A[0], ..., Al — 1] and its right subtree
on Afi + 1],...,A[n — 1]. An LCA instance can be obtained from an RMQ
instance on an array A by letting T' be the Cartesian tree of A that can be
constructed in O(n) time [10]. It is easy to see that RMQ 4 (¢, j) in A translates
to LCAr(A[i], Alj]) in T The first step of this algorithm is to create array Ag in
n+0O(q) time similarly to algorithm ST-RMQcon- The second step is to construct
the Cartesian tree T of Ag in O(q) time and extra space. Finally, we apply the
offline algorithm by Gabow and Tarjan [11] to answer ¢ LCA7, queries in O(q)
time and extra space. This takes overall n + O(q) time and O(q) extra space.
We denote this algorithm by OFF-RMQcon. We denote by OFF-RMQ the same
algorithm applied on array A.

Online-based algorithm. The first step of this algorithm is to create array Ag
in n + O(q) time similarly to algorithm ST-RMQcon. We can then apply the
algorithm by Fischer and Heun [9] on array Ag to obtain overall an n + O(q)-
time and O(g)-space algorithm. We denote this algorithm by ON-RMQcon. We
denote by ON-RMQ the same algorithm applied on array A.

Note that in the case when g = £2(n), i.e. the batch is not so small, we can
choose to apply algorithm OFF-RMQ or algorithm ON-RMQ on array A directly
thus obtaining an algorithm that always works in n+O(q) time and O(min{n, ¢})
extra space. We therefore obtain the following result asymptotically.

Theorem 1. The RMQ Batch problem can be solved in n + O(q) time and
O(min{n, q}) extra space.

4 Small LCA Queries Batch

In the LCA problem, we are given a rooted tree 1" having n labelled nodes and
we are asked to answer queries of the following type: for nodes u and v, query
LCA7(u,v) returns the node furthest from the root that is an ancestor of both
u and v. There exists a time-optimal algorithm by Gabow and Tarjan [11] to
answer a batch @ of ¢ LCA queries in O(n + ¢) time and O(n) extra space.
We denote this algorithm by OFF-LCA. In this section, we present a simple but
non-trivial algorithm for improving this, for ¢ = o(n), to n+ O(q) time and O(q)
extra space.

It is well-known (see [4] for the details) that an RMQ instance A can be
obtained from an LCA instance on a tree T by writing down the depths of the
nodes visited during an Fuler tour of T. That is, A is obtained by listing all
node-visitations in a depth-first search (DFS) traversal of T' starting from the
root. The LCA of two nodes translates to an RMQ (where we compare nodes
based on their level) between the first occurrences of these nodes in A.

We proceed largely as in Section 2. For each query (u,v) € @, we mark nodes
u (and v) in T as follows. If u < n then u has not been marked before. Let this
be the k-th node, k > 0, that gets marked (we just store a counter for that). We
also create two arrays Zop[0..2¢—1] and Z;[0..2q—1]. We store u in Zy[n—1+k
mod 2¢| and replace u by n — 1 + k. We also start a linked list at Zy[n — 1+ &
mod 2¢|, where we insert a pointer to query (u,v), so that we can update it later.
If u > n — 1, the node has already been marked, and we just add a pointer to
the respective query in the linked list starting at Z;[u mod 2g].

We then do a single DFS traversal on T" and create two new arrays g and Lg
as follows. When a marked node v (i.e. v > n —1) is visited for the first time, we
write down in Eq its original value (i.e. Zp[v mod 2q]), while for each maximal
sequence of visited nodes that are not marked we write down a single entry—the
one with the minimum tree level. At the same time, we store in Lg[v] the level
of the node added in Eg[v]. While creating Eg, we also store in an auxiliary
array the function f:{0,1,...,|Eg| —1} — {0,1,...,n — 1} between positions
of Fg and the respective node labels in 7.

When we insert the original entry of a marked node v of T' (i.e. Zy[u mod 2q])
in Eq at position p, we go through the linked list that is stored in Z;[u mod 2¢],
where we have stored pointers to all the queries of the form (u,v) or (w,u), and
replace u by p in each of these queries. Thus, after we have finished the traversal
on T, for each LCA query (u,v) € @ on T, we will have stored the respective
RMQ pair (v/,v") on Lg; where u’ (resp. v’) corresponds to the first occurrence
of node u (resp. v) in the traversal. Thus we traverse T only once.

Now notice that Eg and the auxiliary arrays are all of size O(q) since in
the worst case we mark 2¢ distinct nodes of T" and contract 2¢ + 1 sequences of
visited nodes that do not contain a marked node. (We can actually throw away
everything before the first marked node and everything after the last marked
node and get 4¢ — 1 instead.) The whole procedure takes n+ O(q) time and O(q)
space. We are now in a position to apply algorithm ON-RMQ on L to obtain
the final bound. To answer the queries, note that if RMQ,, (u',v") = ¢ then

LCA7(u,v) = Eg[f]. We denote this algorithm by ON-LCAcon. Alternatively,
we can apply algorithm ST-RMQ on Lg to solve this problem in n + O(glog q)
and O(q) extra space; we denote this algorithm by ST-LCAcon-

We can finally retrieve the original input tree if required by replacing node
f(v) by Eg[v] for every v in the domain of f in O(q) time.

Note that in the case when ¢ = 2(n), i.e. the batch is not so small, we
can choose to apply algorithm OFF-LCA on tree T directly, thus obtaining an
algorithm that always works in n+ O(q) time and O(min{n, q}) extra space. We
therefore obtain the following result asymptotically.

Theorem 2. The LCA Queries Batch problem can be solved in n 4+ O(q) time
and O(min{n, q}) extra space.

5 Applications

We consider the well-known application of answering ¢ LCA queries on the suffix
tree of a string. The suffix tree T(S) of a non-empty string S of length n is a
compact trie representing all suffixes of S (see [7], for details). The nodes of the
trie which become nodes of the suffix tree are called explicit nodes, while the
other nodes are called implicit. Fach edge of the suffix tree can be viewed as an
upward maximal path of implicit nodes starting with an explicit node. Moreover,
each node belongs to a unique path of that kind. Then, each node of the trie
can be represented in the suffix tree by the edge it belongs to and an index
within the corresponding path. The path-label of a node v is the concatenation
of the edge labels along the path from the root to v. The nodes whose path-label
corresponds to a suffix of S are called terminal. Given two terminal nodes u and
v in T(S), representing suffixes S[i..n — 1] and S[j..n — 1], the string depth
of node LCA7(g)(u,v) corresponds to the length of their longest common prefix,
also known as their longest common extension (LCE) [15].

In many textbook solutions for classical string matching problems (e.g. max-
imal palindromic factors, approximate string matching with k-mismatches, ap-
proximate string matching with k-differences, online string search with the suffix
array, etc.) we have that ¢ = £2(n) and/or the queries have to be answered on-
line. In other algorithms, however, ¢ can be much smaller on average (in practice)
and the queries can be answered offline. We describe here a few such solutions.
The common idea, as in many fast average-case algorithms, is to minimise the
number of queries by filtering out queries that can never lead to a valid solution.

Text indexing. Suppose we are given the suffix tree T'(S) of a text S of length n
and we are asked to create the suffix links for the internal nodes. This may be
necessary if the construction algorithm does not compute suffix links (e.g. con-
struction via suffix array) but they are needed for an application of interest. The
suffiz link of a node v with path-label ay is a pointer to the node path-labelled
Yy, where a € X' is a single letter and y is a string. The suffix link of v exists if
v is a non-root internal node of T'. The suffix links can be computed as follows.

The first step is to mark each internal node v of the suffix tree with a pair of
leaves (4, j) such that leaves labelled ¢ and j are in subtrees rooted at different
children of v. This can be done by a DFS traversal of the tree. (Note that if
an internal node v has only one child then it must be terminal; assume that it
represents the suffix S[t..n — 1]. We thus create a suffix link to the node repre-
senting S[t +1..n — 1].) Given an internal node v marked with (i, j), note that
v = LCAp(g(i,7), and let ay be its path-label. To create the suffix link from
v, node u with path-label y can be obtained by the query LCApg)(i + 1,7 +1).
We can create a batch of LCA queries consisting of all such pairs. Note that
in randomly generated texts, the number of internal nodes of T'(S) is O(n/h)
on average, where h is the alphabet’s entropy [20]; thus the standard @(n)-time
and ©(n)-space solution to this problem, building the LCA data structure over
T(S) [4], is not satisfactory.

Finding frequent gapped factors in texts. We are given a text S of length n,
and positive integers ¢1, 2, d, and k > 1. The problem is to find all couples
(u,v), such that string uwv, for any string w (known as gap or spacer), |w| = d,
occurs in S at least k times, |u| = ¢4, |v| = €3 [16,19]. The first step is to build
T'(S). We then locate all subtrees rooted at an explicit node with string depth
at least ¢; and whose parent has string depth less than ¢;, corresponding to
factors u repeated in S. From these subtrees, we only consider the ones with at
least k terminal nodes. Note that if k is large enough, we may have only a few
such subtrees. For each subtree with k' > k terminal nodes, representing suffixes
Sliy..n—1],Sfig..n—1],...,S[ir ..n — 1], we create a batch of LCA queries
between all pairs (i; + ¢1 + d,ij + {1 + d) and report occurrences when LCA
queries extend pairwise matches to length at least /5 for a set of at least k such
suffixes. (This algorithm can be easily generalised for any number of gaps.)

Pattern matching on weighted sequences. A weighted sequence specifies the proba-
bility of occurrence of each letter of the alphabet for every position. A weighted
sequence thus represents many different strings, each with the probability of
occurrence equal to the product of probabilities of its letters at subsequent po-
sitions of the weighted sequence. The problem is to find all occurrences of a
(standard) pattern P of length m with probability at least 1/z in a weighted
sequence S of length n [17]. The first step is to construct the heavy string of
S, denoted by H(S), by assigning to H(S)[i] the most probable letter of S[i]
(resolving ties arbitrarily). The second step is to build T(P$H(S)), $ ¢ X. We
can then compute the first mismatch between P and every substring of H(S).
Note that the number of positions in S where two or more letters occur with
probability at least 1/z can be small, and so we consider only these positions
to cause a legitimate mismatch between P and a factor of H(S). We then use
O(log z) batches of LCA queries per such starting position to extend a match to
length at least m. This is because P cannot match a weighted sequence S with
probability 1/z if more than |log z| mismatches occur between P and H(S) [17].

Pattern matching with don’t care letters. We are given a pattern P of length
m, with m — k letters from alphabet X and k£ occurrences of a don’t care letter
(matching itself and any letter from X), and a text S of length n. The problem
is to find all occurrences of P in S [18]. The first step is to build T(P’$S), $ ¢ X,
where P’ is the string obtained from P by replacing don’t care letters with a
letter # ¢ Y. We then locate the subtree rooted at the highest explicit node
corresponding to the longest factor f of P’ without #’s. We also locate, in the
same subtree, all V' terminal nodes corresponding to starting positions of f in
S. Note that if f is long enough, we may have only a few such nodes. Since we
know where the don’t care letters occur in P, we can create a batch of kV LCA
queries. An occurrence is then reported when LCA queries extend a match to
length at least m. (This algorithm can be easily generalised for any number of
patterns.)

Circular string matching. We are given a pattern P of length m and a text S of
length n. The problem is to find all occurrences of P or any of its cyclic shifts
in S [3]. The first step is to build T(PP$PEPRH#S%SE), where $,#,% ¢ X,
and X denotes the reverse image of string X. We then conceptually split P in
two fragments of lengths [m/2] and [m/2]. Any cyclic shift of P contains as a
factor at least one of the two fragments. We thus locate the two subtrees rooted
at the highest explicit nodes corresponding to the fragments. We also locate in
the same subtrees all V' terminal nodes corresponding to starting positions of
the fragments in S. Note that if m is long enough, we may have only a few such
nodes. We create a batch of at most 2V LCA queries in order to extend to the
left and to the right and report occurrences when LCA queries extend a match
to length at least m. (This algorithm can be easily generalised for any number
of patterns.)

6 Experimental Results

We have implemented algorithms ST-RMQcon, OFF-RMQcon, and ON-RMQcon
in the C++ programming language. We have also implemented the same algo-
rithms applied on the original array A, denoted by ST-RMQ, OFF-RMQ, and
ON-RMQ), respectively; as well as the brute-force algorithm for answering RMQs
in the two corresponding flavours, denoted by BF-RMQcon and BF-RMQ. For the
implementation of ON-RMQcon and ON-RMQ we used the sdsl-lite library [13].
If an algorithm requires f(n,q) time and g(n,q) extra space, we say that the
algorithm has complexity < f(n,q),g(n,q) >. Table 1 summarises the imple-
mented algorithms. The following experiments were conducted on a Desktop PC
using one core of Intel Core 15-4690 CPU at 3.50GHz and 16GB of RAM. All
programs were compiled with g++ version 5.4.0 at optimisation level 3 (-O3).
Ezperiment I. We generated random (uniform distribution) input arrays of
n = 1,000,000 and n = 100,000,000 entries (integers), and random (uniform
distribution) lists of queries of sizes varying from /n to 128/n, doubling each
time. We compared the runtime of the implementations of the algorithms in

Non-Contracted Contracted
ST-RMQ |< O(nlogn + q),O(nlogn) >| ST-RMQcon |< n+ O(glogq),O(q) >
ON-RMQ <O0OMm+4q),0(n) > ON-RMQcon | <n+ 0O(q),0(q) >
OFF-RMQ <0O(n+q),0(n) > OFF-RMQcon| < n+ O(q),0(q) >
BF-RMQ < O(gn),O0(1) > BF-RMQcon | <n+ O(¢%),0(q) >

Table 1: Time and space complexities of algorithms for answering RMQs offline.

T S
CEER T S
. .
o .
:
s
.
£ g
:
s
.
.
1 1
0 o
200000 400000 600000 800000 1x10° 1.2x10° 200000 400000 600000 800000 1x10° 12x10°
Number g of queries [-] Number g of queries [-]
(a) n = 100, 000, 000 (b) n = 100, 000, 000
»
oree e
OFF MOy, - sl BF-RMQcon
n
wf
“
=
=
g 3
g £
. =
10 s
o L L L L L 0 L L L L L
aer st s Noer gt s
(¢) n = 1,000, 000 (d) n = 1,000, 000

Fig. 1: Impact of the proposed scheme on the RMQ algorithms of Table 1.

Table 1 on these inputs; in particular, for each algorithm, we compared the stan-
dard implementation against the one with the contracted array. We used the
large array, n = 100,000, 000, for ST-RMQ and ON-RMQ because they are sig-
nificantly faster and the small one, n = 1,000, 000, for OFF-RMQ and BF-RMQ.
The results plotted in Figure 1 show that the proposed scheme of contracting
the input array improves the performance for all implementations substantially.

Ezxperiment II. We generated random input arrays of n = 1,000,000, 000
entries, and random lists of queries of sizes varying from /n to 128,/n, doubling
each time. We then compared the runtime of ON-RMQcon and ST-RMQcon on
these inputs. The results are plotted in Figure 2. We observe that ST-RMQcon
becomes two times faster than ON-RMQcon as ¢ grows. Notably, it was not

ON-RMQcopy ——
16 ST-RMOSon ——+— 1

14 -
12 -

10

Time [s]

2 T 4

506000 1><‘10S 1.5>‘<106 2><‘106 z.5>‘<1o6 3><‘106 3.5>‘<10E 4><‘1o6
Number q of queries [-]

Fig. 2: Elapsed-time comparison of ON-RMQcon and ST-RMQcon algorithms for

n = 1,000,000, 000.

possible to run this experiment with ON-RMQ, which implements a succinct
data structure for answering RMQs, due to insufficient amount of main memory.

Ezxperiment III. In addition, we have implemented algorithms ST-LCAcon
and OFF-LCA for answering LCA queries. We first generated a random input
array of n = 1,000,000 entries and used this array to compute its Cartesian
tree. Next we generated random lists of LCA queries of sizes varying from +/n
to 1284/n, doubling each time. We then compared the runtime of OFF-LCA and
ST-LCAcon on these inputs. The results plotted in Figure 3 show that the imple-
mentation of ST-LCAcon is more than two orders of magnitude faster than the
implementation of OFF-LCA, highlighting the impact of the proposed scheme on
LCA queries.

7 Final Remarks

In this article, we presented a new family of algorithms for answering a small
batch of RMQs or LCA queries in practice. The main purpose was to show that
if the number ¢ of queries is small with respect to n and we have them all at
hand existing algorithms for RMQs and LCA queries can be easily modified
to perform in n + O(q) time and O(q) extra space. The presented experimental
results indeed show that with this new scheme significant practical improvements
can be obtained; in particular, for answering a small batch of LCA queries.
Specifically, algorithms ST-RMQcon and ST-LCAcon, our modifications to
the Sparse Table algorithm whose main catch is ©(nlogn) space [4], seem to
be the best way to answer in practice a small batch of RMQs and LCA queries,
respectively. A library implementation of ST-RMQcon is available at https:
//github.com/solonas13/rmqo under the GNU General Public License.

80

" OFF-LCA ——
ST-LCAcgN —

Time [s]

L L L L L L
20000 40000 60000 80000 100000 120000
Number q of queries [-]

Fig. 3: Elapsed-time comparison of OFF-LCA and ST-LCAcon algorithms for n =
1,000, 000.

References

1.

2.

10.

11.

12.

P. Afshani and N. Sitchinava. I/O-efficient range minima queries. In SWAT 2014,
volume 8503 of LNCS, pages 1-12. Springer, 2014.

L. Arge, J. Fischer, P. Sanders, and N. Sitchinava. On (dynamic) range minimum
queries in external memory. In WADS 2018, volume 8037 of LNCS, pages 37—48.
Springer, 2013.

T. Athar, C. Barton, W. Bland, J. Gao, C. S. Iliopoulos, C. Liu, and S. P. Pissis.
Fast circular dictionary-matching algorithm. Mathematical Structures in Computer
Science, 27(2):143-156, 2017.

M. A. Bender and M. Farach-Colton. The LCA problem revisited. In LATIN 2000,
volume 1776 of LNCS, pages 88-94. Springer-Verlag, 2000.

M. A. Bender, M. Farach-Colton, G. Pemmasani, S. Skiena, and P. Sumazin. Low-
est common ancestors in trees and directed acyclic graphs. Journal of Algorithms,
57(2):75-94, 2005.

O. Berkman and U. Vishkin. Recursive star-tree parallel data structure. SIAM J.
Comput., 22(2):221-242, 1993.

M. Crochemore, C. Hancart, and T. Lecroq. Algorithms on strings. Cambridge
University Press, 2007.

H. Ferrada and G. Navarro. Improved range minimum queries. J. Discrete Algo-
rithms, 43:72-80, 2016.

J. Fischer and V. Heun. Theoretical and practical improvements on the rmg-
problem, with applications to lca and lce. In CPM 2006, volume 4009 of LNCS,
pages 36-48. Springer Berlin Heidelberg, 2006.

H. N. Gabow, J. L. Bentley, and R. E. Tarjan. Scaling and related techniques for
geometry problems. In STOC 1984, pages 135-143. ACM, 1984.

H. N. Gabow and R. E. Tarjan. A linear-time algorithm for a special case of disjoint
set union. Journal of Computer and System Sciences, 30(2):209-221, 1985.

R. F. Geary, N. Rahman, R. Raman, and V. Raman. A simple optimal represen-
tation for balanced parentheses. Theor. Comput. Sci., 368(3):231-246, 2006.

13

14.

15.

16.

17.

18.

19.

20.

S. Gog, T. Beller, A. Moffat, and M. Petri. From theory to practice: Plug and
play with succinct data structures. In SEA, volume 8504 of LNCS, pages 326-337,
2014.

D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common ancestors.
SIAM J. Comput., 13(2):338-355, 1984.

L. Ilie, G. Navarro, and L. Tinta. The longest common extension problem revisited
and applications to approximate string searching. J. Discrete Algorithms, 8(4):418-
428, 2010.

C. Iliopoulos, J. Mchugh, P. Peterlongo, N. Pisanti, W. Rytter, and M.-F. Sagot.
A first approach to finding common motifs with gaps. International Journal of
Foundations of Computer Science, 16(6):1145-1155, 2005.

T. Kociumaka, S. P. Pissis, and J. Radoszewski. Pattern Matching and Consensus
Problems on Weighted Sequences and Profiles. In ISAAC 2016, volume 64 of
LIPIcs, pages 46:1-46:12. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.
R. Y. Pinter. Efficient string matching with don’t-care patterns. In Combinatorial
Algorithms on Words, volume F12 of NATO ASI Series, pages 11-29. Springer
Berlin Heidelberg, 1985.

S. P. Pissis. MoTeX-II: structured motif extraction from large-scale datasets. BMC
Bioinformatics, 15:235, 2014.

M. Régnier and P. Jacquet. New results on the size of tries. IEEE Trans. Infor-
mation Theory, 35(1):203-205, 1989.

