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Abstract. In this paper, we present efficient realization of Kalman Filter (KF)
that can achieve up to 65% of the theoretical peak performance of underlying
architecture platform. KF is realized using Modified Faddeeva Algorithm (MFA)
as a basic building block due to its versatility and REDEFINE Coarse Grained
Reconfigurable Architecture (CGRA) is used as a platform for experiments since
REDEFINE is capable of supporting realization of a set algorithmic compute
structures at run-time on a Reconfigurable Data-path (RDP). We perform several
hardware and software based optimizations in the realization of KF to achieve
116% improvement in terms of Gflops over the first realization of KF. Overall,
with the presented approach for KF, 4-105x performance improvement in terms
of Gflops/watt over several academically and commercially available realizations
of KF is attained. In REDEFINE, we show that our implementation is scalable
and the performance attained is commensurate with the underlying hardware re-
sources6.
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1 Introduction

Coarse Grained Reconfigurable Architectures (CGRAs) have been active topic of re-
search due to their power performance and flexibility [9]. CGRAs are capable of domain
customization and they are targeted to achieve performance of Application Specific In-
tegrated Circuits (ASICs) and flexibility of Field Programmable Gate Arrays (FPGAs)
through presence of ASIC-like structures [14][8]. Typically, CGRAs occupy middle
ground between ASICs and FPGAs [16][17]. Furthermore, CGRAs are preferred as
a platform in the application domains like signal processing and automotive that are
embedded in nature [9]. Acceleration of scientific code on CGRA with high precision
floating point arithmetic is yet to be fully explored. There exist very few attempts in
the literature where computations like double precision General Matrix Multiplication

6 The paper has been accepted in ARC 2018
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(dgemm), QR factorization (dgeqrf), and LU factorization (dgetrf) are accelerated on
CGRAs. Scientific application like Kalman Filter (KF) is rich in these matrix opera-
tions and has wide range of applications from trajectory optimization, and navigation to
econometric [1]. Here we see an opportunity to accelerate KF using a highly efficient
Dense Linear Algebra (DLA) accelerator. Since, KF can be transformed as a series of
matrix operations, we use Modified Faddeeva Algorithm (MFA) as a basic building
block for our realization of KF [15]. We take an approach of algorithm-architecture
co-design where we identify several macro operations in the routines required for MFA
and realize them on a specialized data path that leads to significant performance im-
provement in KF. Major Contributions in this paper are as follows:

– We adopt a library based approach and realize KF using MFA where MFA is re-
alized using dgemm, dgetrf, and dgeqrf routines. The first realization is capable of
achieving 30% of the theoretical peak performance of the underlying platform. We
call this implementation as a base realization of KF

– A set of macro operations identified in dgemm, dgeqrf, and dgetrf are realized on a
tightly coupled Reconfigurable Data-path (RDP) and the implementation results in
66% of performance improvement over base realization at minimal area and energy
cost. We call this implementation as hardware optimized KF

– A scheduling optimization is presented for KF that results in 30% performance
improvement over the hardware optimized realization and 116% improvement over
base realization. We also show that the final implementation is able to achieve 4-
105x performance improvement over several academic and commercial realizations
of KF. We call this implementation as software optimized KF

– Parallel realization of KF is presented on REDEFINE and it is shown that REDE-
FINE scales well with increasing size of co-variance matrix

For our experiments, we use Processing Element (PE) design presented in [9]. We
optimize Floating Point Unit (FPU) design presented in [13] with recommendations
presented in [12] for optimum Instructions Per Cycle (IPC). The paper is organized as
follows: In section 2, MFA, KF and REDEFINE are discussed. In section 3, we present
case studies on multicore and General Purpose Graphics Processing Unit (GPGPU) and
show that the performance attained on these platforms even with highly tuned software
packages is not satisfactory. KF implementation is discussed in section 4. Parallel real-
ization of KF and results are discussed in section 5. We conclude our work in section
6.

2 Background and Related Work

In this section, we first discuss MFA and KF briefly and show connection between
MFA and KF. In section 2.1, we introduce REDEFINE and discuss unique features of
REDEFINE CGRA. We focus on some of the recent realizations of KF in section 2.2.

2.1 Background



Modified Faddeeva Algorithm and Kalman Filter MFA was originally presented in
[15] that is an enhancement over the original Faddeeva algorithm. QR factorization was
incorporated instead of Gaussian elimination process to improve stability of Faddeeva
algorithm. For rectangular matrices Am×n, Bm×p, Ck×n, and Dk×p, compound matrix
is shown in equation 1.

M =

[
A B
−C D

]
(1)

Applying MFA on compound matrix M incorporates following two steps.

– Step 1: Upper triangularization of matrix A using QR factorization and update
matrix B

– Step 2: Annihilate matrix C using diagonal elements of upper traingularized matrix
A

(a) Several Operations that can
be Performed Using MFA based
on Different Initial Values of
Matrices A,B,C, and D

(b) Multi Dimensional Kalman Filter

Fig. 1. MFA and KF

At the end of an MFA operation, the matrix D is of the form D + CA−1B that
is also known as the Schur complement. Versatility of MFA is described in figure 1(a)
where it is shown that based on different initial input matrices, several operations like
matrix multiplication, matrix addition, and linear system solution can be obtained. Due
to versatility in MFA, it is desirable to write applications in terms of matrix operation
that can translate into series of calls of MFA. One such application is KF. A simplistic
multi-dimensional KF is shown in the figure 1(b).

An iteration of KF requires complex matrix operations ranging from matrix mul-
tiplication to computation of numerical stable matrix inverse. One such classical GR
based numerical stable approach is presented in [20]. From figure 1(b), matrix inverse
being the most complex operation in KF, and computation of inverse using QR factor-
ization being a numerical stable process, proposed library based approach is the most
suitable for such applications.



Fig. 2. REDEFINE CGRA and Design of PE (with RDP)

REDEFINE REDEFINE is a CGRA that can be domain customized for variety ap-
plication domains [10].In REDEFINE, several Tiles are connected through a packet
switched Network-on-Chip (NoC) [11][10]. Each Tile consists of a Compute Element
(CE) and a Router. CEs in REDEFINE can be enhanced with a Custom Function Units
(CFUs) that can be tailored for a desired application domain. For our implementation,
we use a Processing Element (PE) that is highly customized for Dense Linear Algebra
(DLA) computations [9]. REDEFINE micro-architecture along with PE is shown in fig-
ure 2. It can be observed in the figure 2 that the PE consists of a RDP as an arithmetic
unit that can be reconfigured at run-time through instruction to realize identified macro
operations in the Directed Acyclic Graph (DAG) of DLA computations. It is well estab-
lished in the literature that such an approach yields significant improvement in energy
efficiency in the overall system [3].

2.2 Related Work

Due to wide range of applications of KF, there are several implementations of KF in
the literature. We present brief summary of some of the recent realizations of KF. Early
realizations of KF are based on systolic array since systolic arrays are highly suitable
for matrix computations [4]. One of the recent realization of KF presented in [22] is
targeted for advanced driver assistance system. The implementation presented in [22]
does not focus on the acceleration of matrix operations encountered in KF and hence
leaves opportunities for further performance improvements. Similarly, KF implemen-
tation presented in [2] focuses on parallel implementation using OpenMP and FPGA
based implementation presented in [18] focuses on optimizations in arithmetic opera-
tions in KF for performance improvement. MFA based KF presented in [7] focuses on



denoising of images with additive white Gaussian noise. Although the work presented
in [7] realized KF using MFA, the implementation is not scalable and can operate only
on the images of size 512 × 512. Furthermore, focus of the work presented in [7] is
not on acceleration of KF through acceleration of matrix operations in MFA. In this
paper, we focus on energy efficient fast realization of KF by accelerating gemm, QR
factorization, and LU factorization.

3 Case Studies
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Fig. 3. Performance of dgemm, dgeqrf, dgetrf, and KF in multicore and GPGPU
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Fig. 4. Performance of dgemm, dgeqrf, dgetrf, and KF in multicore and GPGPU

In this section we present case studies on the operation encountered in MFA. Since,
we implement KF using double precision FPU, we present case studies on dgeqrf,



dgetrf, and dgemm. We discuss performance of dgemm, dgeqrf, and dgetrf in highly op-
timized software libraries like Parallel Linear Algebra Software for Multicore Architec-
tures (PLASMA) and Matrix Algebra for GPU and Multicore Architectures (MAGMA).

3.1 dgeqrf

Routine dgeqrf computes QR factorization of an input matrix A and returns uppter tri-
angular matrix R and Q where QQT = QTQ = I . Householder Transform (HT) based
QR factorization routine in Linear Algebra Package (LAPACK) is shown in algorithm
1.

Input: Matrix Am×n

Output: Upper triangle matrix R
for i = 1 to n do

Compute Householder vector v
Compute P where P = I − 2vvT

Update trailing matrix using dgemv
end

Algorithm 1: dgeqr2 in LAPACK (dgemv is double precision matrix-vector multipli-
cation)

Input: Matrix Am×n

Output: Upper triangle matrix R
for i = 1 to n do

Compute Householder vectors for block column m× k
Compute P where P is multiplication of Householder vectors
Update trailing matrix using dgemm

end
Algorithm 2: dgeqrf in LAPACK

In algorithm 1, majority of the computations are performed in terms of double pre-
cision matrix vector multiplication (dgemv). Since dgemv is a memory bound opera-
tion, the realization of dgeqr2 yields hardly 10% of the theoretical peak performance
in GPGPU and 2-3% of the theoretical peak performance in multicores. In the dense
linear algebra software packages like LAPACK, PLASMA, and MGAMA, the soft-
ware routines are tiled/blocked and written in terms of dgemm for efficient exploitation
of memory hierarchy of the underlying platform where dgemm is compute bound op-
eration [19]. dgeqrf routine that uses dgeqr2 and dgemm as subroutines is shown in
algorithm 2.



3.2 dgetrf

dgetrf routine computes LU factorization of a general m × n matrix, so A = PLU
where L is unit lower triangular, U is upper triangular matrix, and P is permutation
matrix. dgetrf2 routine is shown in algorithm 3.

Input: Matrix Am×n

Output: Unit lower triangular matrix L and upper triangular matrix U
for i = 1 to n do

Find pivot
Interchange pivot rows
Compute elements of L matrix
Update the trailing matrix using dgemv

end
Algorithm 3: dgetrf2 in LAPACK

Input: Matrix Am×n

Output: Unit lower triangular matrix L and upper triangular matrix U
for i = 1 to n do

Find pivot
Interchange pivot rows
Compute elements of L matrix
Update the trailing matrix using dgemm

end
Algorithm 4: dgetrf in LAPACK

A similar approach to QR factorization is adopted for LU factorization in LAPACK
where a blocked routine shown in the algorithm 4 is developed to exploit the memory
hierarchy of cache based platforms. For our implementation, since we do not require
pivoting, we remove pivoting related routine from dgetrf2 and adopt the routine to sup-
port realization of MFA.

3.3 dgemm

Due to prevalent in the literature, we do not reproduce pseudo code of dgemm. Typi-
cally, dgemm is part of Level-3 Basic Linear Algebra Subprograms (BLAS) and used as
a subroutine in the operations like LU and QR factorizations since dgemm is compute
bound operation and theoretically dgemm is capable of attaining O(n) computations to
communication ratio for the matrices of size n× n [5].



3.4 Performance Evaluation of dgeqrf, dgetrf and dgemm on multicore and
GPGPU

We evaluate performance of dgeqrf, dgetrf, and dgemm on multicore and GPGPU. Per-
formance in terms of percentage of theoretical peak performance in Intel Core i7 for
dgeqrf, dgetrf, and dgemm is shown in figure 3(a). It can be observed in the figure 3(a)
that in Intel Core i7, performance attained by dgeqrf is 42% (21 Gflops), performance
attained by dgetrf is 25% (12 Gflops) and performance attained by dgemm is 50%
(24 Gflops). Similarly, percentage of theoretical peak performance attained in GPGPU
for dgeqrf is 48% (247.2 Gflops), for dgemm it is 58% (298 Gflops), and for dgetrf
it is 20% (103 Gflops). We ensure to compile PLASMA and MAGMA with Open-
BLAS [21]. Performance attained in terms of Gflops/watt ranges between 0.6 to 2.1 for
GPGPU and 0.6 to 1.1 for multicore as shown in figure 3(b). It can be observed that
the performance attained by dgeqrf is 84.2% of the performance attained by dgemm
and performance attained by dgetrf is 50% of the performance attained by dgemm. This
is mainly due to presence of non-parallelizable computations in dgeqrf and dgetrf that
limits the performance considering Amdahl’s law [6].

Similarly, for KF the performance attained in terms of percentage of theoretical
peak performance is 25% for multicore and 30% for GPGPU as shown in figure 4(a).
Performance attained in terms of Gflops/watt for KF is 0.15 in multicore and 0.9 in
GPGPU. Based on our case studies in dgemm, dgeqrf, and dgetrf it can be inferred that
the performance attained in the latest multicore and GPGPU is hardly 50-52% even
for highly parallel operations like dgemm. Due to this shortcoming of multicore and
GPGPU, we choose a customizable platform for our implementation presented in [9]
that is capable of achieving up to 74% of the theoretical peak in dgemm [9][14].

4 Kalman Filter Realization in Processing Element

We present realization of KF on PE depicted in the figure 2. Three different implemen-
tations of KF are presented here: 1) base implementation of KF, 2) hardware optimized
KF, and 3) software optimized KF.

4.1 Base Implementation of KF

In base implementation of KF, we realize matrix operation of in the MFA using scalar
multiplier and adder in the PE. In base realization of KF, we are able to achieve up to
30% of the theoretical peak performance of the PE. Here, since we are using only one
multiplier and adder for our implementation, the theoretical peak performance of the
PE is 1.4 Gflops at 700 MHz.

4.2 Hardware Optimized KF

In hardware optimized KF, we revisit the basic operations required to be performed in
MFA like dgemm, dgeqrf, and dgetrf and identify several macro operations in these
basic operations. We realize these macro operations in RDP depicted in the figure 2.



(a) Different Configurations of RDP Corre-
sponding to Identified Macro Operations in
dgemm, dgeqrf, and dgetrf

(b) Software Optimization in KF Resulting
in Reduction in the Run-time (logical dia-
gram)

Fig. 5. RDP Configurations for KF and Scheduling of Different Routines in KF

Configurations of RDP corresponding to the identified macro operations in dgemm,
dgeqrf and dgetrf are shown in figure 5(a). With these configurations, we achieve up to
50% of the theoretical peak of the PE where theoretical peak of the PE is 4.9 Gflops
at 700 MHz. Here theoretical peak of the PE is increased since we are using RDP that
consists of 4 multipliers and 3 adders.

We perform a software optimization in MFA by analysis of the DAG of MFA. We
overlap dgeqrf, dgemm, and dgetrf routines as shown in figure 5(b). Optimization dia-
gram shown in the figure 5(b) is logical flow of computations post software optimiza-
tion. To overlap these routines, we identify pipeline stalls in the PE while execution and
insert independent instructions while also maintaining operation correctness. Overlap-
ping dgeqrf, dgemm, and dgetrf results in significant reduction in the run-time of MFA
that directly translates to performance improvement in KF. After software optimization,
we are able to attain 65% of the theoretical peak in PE which is 30% improvement. Per-
formance improvement after each optimization is shown in figure 6. In the figure 6, we
have also incorporated the performance attained in multicore and GPGPU.

It can be observed in the figure 6 that the performance of KF in multicore and
GPGPU is hardly 20-30% of the theoretical peak of these platforms, while we achieve
up to 65% of the theoretical peak of PE in KF which is 2.15x higher.

5 Parallel Realization and Results

For parallel realization of KF, we use three different configurations of REDEFINE.
Two configurations are shown in figure 7. In configuration 1 we use 2× 2 Tile array, in
configuration 2 we use 3× 3 Tile array, and in configuration 3, we use 4× 4 Tile array.
In our simulations, for configuration 1 and configuration 2, we use last column of the
Tile array as a memory where we attach memories as a PE.
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Fig. 7. Different Configurations of REDEFINE for KF Realization and Scheduling
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(b) Power Performance Comparison of PE
with Other Platforms for KF

Fig. 8. RDP Configurations for KF and Scheduling of Different Routines in KF

In configuration 3, we use entire Tile array for computations and hence we attach
another memory PE to the Router along side the compute PE. Memory PE is divided
into to segments and the second half of the segment in memory PE acts as a global
memory that is accessible by all other Tiles while the first half of the memory segment



is private to the compute PE that is used for computations on local data. Typically, we
have 256K bytes of memory per Tile and compute PE consists of 256 registers of width
64 bits. Scheduling technique for REDEFINE is shown in the right side of the figure 7.
We use a technique where we divide input matrix into k × k blocks where k is size of
row/column of the Tile array. These blocks are further divided into the sub-blocks where
size of the sub-blocks depend on the number of local registers available and size of the
local memory available to a PE. Blocks of the matrices are loaded and computation is
performed and the result is stored to the global memory. Percentage of theoretical peak
performance attained for each configuration is shown in figure 8(a). It can be observed
in the figure 8(a) that the performance attained for each configuration saturates at 60%
of the theoretical peak performance which is 2x higher than the performance attained
in multicore and GPGPU.

We evaluate power performance of PE based on technique presented in [10]. We
compare PE with other platform for KF as shown in figure 8(b). It can be observed that
the PE is capable of achieving 4-105x higher performance improvement over platforms
like ClearSpeed CSX700, Intel Core i7, and Nvidia GPGPU.

6 Conclusion

In this paper, we presented efficient realization of KF. We used versatile MFA as a
tool for efficient realization of KF. Based on the case studies presented on dgemm,
dgetrf, and dgeqrf, it was identified that the performance of these operations on mul-
tiore and GPGPU is not satisfactory even with hightly optimized software pachages
like PLASMA and MAGMA. It was also shown that the performance attained in KF
on multicore and GPGPU is 20-30% of the theoretical peak performance of underly-
ing platform. To accelerate KF on customizable platform like REDEFINE, we identify
macro operations in the routines of MFA and realized them on RDP. Our approach re-
sulted in 67% improvement in the performance of KF. A software tuning in MFA was
also presented that resulted in 30% performance improvement over the hardware opti-
mized KF. Overall, our approach of algorithm-architecture co-design resulted in 116%
of performance improvement over the base realization of KF. In terms of Gflops/watt,
KF is 2-105x better than multicore and GPGPU platforms.
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