
SqueezeJet: High-level Synthesis Accelerator
Design for Deep Convolutional Neural Networks

Panagiotis G. Mousouliotis(�), Loukas P. Petrou

Division of Electronics and Computer Engineering,
Department of Electrical and Computer Engineering, Faculty of Engineering,

Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
pmousoul@ece.auth.gr

loukas@eng.auth.gr

Abstract. Deep convolutional neural networks have dominated the pat-
tern recognition scene by providing much more accurate solutions in com-
puter vision problems such as object recognition and object detection.
Most of these solutions come at a huge computational cost, requiring
billions of multiply-accumulate operations and, thus, making their use
quite challenging in real-time applications that run on embedded mobile
(resource-power constrained) hardware. This work presents the architec-
ture, the high-level synthesis design, and the implementation of Squeeze-
Jet, an FPGA accelerator for the inference phase of the SqueezeNet
DCNN architecture, which is designed specifically for use in embedded
systems. Results show that SqueezeJet can achieve 15.16 times speed-up
compared to the software implementation of SqueezeNet running on an
embedded mobile processor with less than 1% drop in top-5 accuracy.

Keywords: DCNN Accelerator, FPGA, High-level synthesis

1 Introduction

Since the impressive results of AlexNet deep convolutional neural network (DCNN)
in the Image-Net Large-Scale Vision Recognition Challenge (ILSVRC) in 2012
[1], DCNN research activity has seen exponential growth with the trend be-
ing deeper architectures accompanied by higher accuracies [2, 3]. Following this
trend, research in DCNN FPGA accelerators provides solutions that use high-end
costly FPGA devices and aim at the datacenter rather than the mobile appli-
cations [4–6]. An exception to the-most-accurate-network trend in the DCNN
architecture research, is SqueezeNet1 (SqN) [7, 12], an AlexNet-level accuracy
architecture which reduces dramatically the number of MACs and network pa-
rameters, requiring half of the MACs and fifty times less parameters compared
to AlexNet. Even though the SqN DCNN architecture is more suitable than
others for use in embedded mobile applications, it is still computationally very
demanding and cannot be used in applications running on an embedded mobile
processor.

1In this work, SqueezeNet refers to SqueezeNet v1.1

ar
X

iv
:1

80
5.

08
69

5v
1 

 [
cs

.C
V

] 
 6

 M
ay

 2
01

8



The contribution of this work is the design of SqueezeJet (SqJ), a small FPGA
convolutional (conv) layer accelerator for SqN, that can be used as a coprocessor
to an embedded mobile processor and enable the development of mobile com-
puter vision (CV) applications. Specifically, the SqJ design: (1) deals with the
challenge of the implementation of a single accelerator for multiple conv layers
with variable input arguments, (2) implements streaming input/output (I/O)
interfaces which, after the initialization phase, consume and produce data pixel-
by-pixel2, (3) uses a sophisticated hardware (HW) mechanism, which mimics
software (SW) pointers to the rows of a two-dimensional array, taking advan-
tage of the spatial locality of data and minimizing unnecessary data movement,
(4) presents the possibilities of high-level synthesis (HLS) design by using the
Xilinx Vivado HLS (VHLS) tool, (5) is implemented on a low-end FPGA system
on chip (SoC) device, the Xilinx XC7Z020, using the Xilinx SDSoC tool, and (6)
it achieves 80.29% ILSVRC12 top-5 accuracy when it is used for the inference
phase of SqN. To the best of the authors’ knowledge, the current work presents
the first low-end FPGA SoC (XC7Z020) DCNN implementation which achieves
80.29% ILSVRC12 top-5 accuracy.

The rest of this paper is organized as follows: Section 2 presents related work.
Section 3 is an introduction to the conv layer’s operation. Section 4 presents the
architecture, the HLS design, and the implementation of the SqJ accelerator.
Section 5 shows results related to the performance, the accuracy, and the power
consumption of SqJ. Finally, Section 6 concludes the paper and proposes future
work.

2 Related work

Works related to DCNN FPGA accelerators can be classified into two main
categories; those which accelerate only the conv layer and those which accelerate
two or more layer types of a DCNN.

Conv layer accelerators: Zhang et al. [4] designed an architecture tem-
plate for the conv layer using loop tiling, loop arrangement based on data de-
pendencies, computation optimizations (loop unrolling and pipelining), and op-
timizations for efficient data reuse. Using the parameters of the template and
the roofline model, they performed design space exploration (DSE) and found
the optimal solution which defined the parameters of their accelerator. A similar
approach is followed by Motamedi et al. [5] starting with a completely different
architectural template. Specifically, they designed their template to take advan-
tage of all the possible forms of parallelism; intra/inter-kernel and inter-output.
They eventually used the design parameters and proceeded as in the aforemen-
tioned work. Both of these works use DSE to minimize the execution time of the
accelerator and 32-bit floating-point arithmetic.

Multi-layer accelerators: Qiu et al. [8] developed a dynamic-precision data
quantization flow and designed a dynamic-precision 16-bit fixed-point accelerator

2A pixel is comprised by all the channels at a specific (x, y) location in the future
map volume (see Figure 1).



which is capable of accelerating conv, fully connected (FC), and pooling layers.
Their implementation is used to accelerate the VGG16-SVD DCNN, which is
the VGG16 DCNN with reduced weight matrices for the FC layers; SVD is used
for the weight matrix reduction. This accelerator also uses a huge amount of
FPGA resources to accelerate one of the most computational demanding DC-
NNs, requiring 15470 million MACs for a single forward pass. Gschwend [9]
converted all the layers, except the last global pooling layer, of the SqueezeNet
v1.0 DCNN architecture to conv layers and accelerated, using floating-point
arithmetic, the new DCNN, called ZynqNet, using VHLS. Gokhale et al. [10]
designed and implemented nn-X, a complete low-power system for DCNN accel-
eration composed from a host processor, a coprocessor, and external memory.
The coprocessor consists of an array of processing elements which can perform
convolution, sub-sampling, and non-linear functions. Ma et al. [11] designed an
accelerator that supports conv, pooling and fully-connected layers by following
a strategy that minimizes computing latency, partial sum storage, access of on-
chip buffer, access of external memory, and uses loop optimization techniques.
Their accelerator uses 8-16 bit dynamic fixed point arithmetic and it is evaluated
by accelerating the VGG-16 DCNN.

SqJ is a conv layer accelerator and it uses fixed-point arithmetic for both pa-
rameters (8 bits) and activations (16 bits), which results in considerable savings
in both the resources and the power consumption compared to floating-point
implementations [4,5,9]. Furthermore, even though works in [8,10,11] use fixed-
point arithmetic, they require large costly FPGA devices for their implementa-
tion.

3 Convolutional layer basics

The conv layer of a DCNN can be described by:

FMo(yo, xo, co) =

Kh−1∑
kh=0

Kw−1∑
kw=0

Ci−1∑
ci=0

FMi((yo · S + kh), (xo · S + kw), ci) ·W (co, kh, kw, ci)

+B(co),

(1)

where FMo, FMi are the output and the input future maps (fmaps) respectively,
and W , B are the weight and bias parameters respectively. The y, x, c, represent
the vertical, the horizontal, and the channel dimensions of the fmaps, S is the
stride, and kh, kw are the vertical and horizontal dimensions of the kernel3.

The second line in Equation 1 represents a 3D convolution between FMi, and
Co number of 3D kernels, the weight parameters. To calculate the first output
channel of the first output pixel of FMo, an input window IW of the FMi,
of size IW [Kh][Kw][Ci] is multiplied element-wise with kernel W [0][Kh][Kw][Ci]

3In this work, kernel has the same meaning as filter.



Fig. 1: Calculation of the channels of the first pixel of FMo. The number of 3D
kernels is equal to Co, the number of output channels.

and all partial results are accumulated to a single value. This value is then added
to the respective bias term, B(0), to produce the first output channel of the first
output pixel of FMo. This procedure is depicted in Figure 1, which shows the
calculation of all the channels of the the first pixel of FMo. To calculate all the
elements of FMo, the IW is moved vertically and horizontally by yo ·S and xo ·S
respectively, and the above procedure is repeated. The resulted size of each Y ,
X dimension of the FMo is calculated by:

Yo = (Yi −Kh + 2 · P )/S + 1

Xo = (Xi −Kw + 2 · P )/S + 1,
(2)

where P denotes the number of pixels added for padding the FMi. In all the
practical cases Yi = Xi and Kh = Kw.

An activation function always follows a conv layer. Thus, it is convenient,
from an implementation point of view, to include the activation layer in the
conv layer. In this case, the output of the conv layer becomes:

FMo,a(yo, xo, co) = f(FMo(yo, xo, co)), (3)

where f() is the activation function used in the specific DCNN, e.g. the Rectified
linear unit (ReLU) described by:

f(x) = max(0, x) (4)

The accelerator described in the next section, accelerates this fused convolution-
activation layer with output given by Equation 3.



4 The SqueezeJet accelerator

SqN is a DCNN architecture focused in reducing the network parameter count
for a given accuracy. Specifically, SqN achieves AlexNet-level accuracy with fifty
times less parameters, making its model sufficiently small to be stored in on-
chip FPGA memories and removing the need for off-chip memory access. For
an FPGA accelerator, such as SqJ, implemented on a device with a few Mbits
of block RAM (BRAM) resources, this means that the parameters (weight and
bias values) of a single layer can fit in the BRAMs. Thus, for the calculation
of the FMo of a specific conv layer by an accelerator, the following procedure
is required: the parameters are brought from off-chip memory and stored to
BRAMs, the FMi is streamed from off-chip memory in the accelerator, the
calculation of FMo pixel(s) takes place, and the resulting FMo pixel(s) are
streamed back to the off-chip memory. Having the layer’s parameters stored on-
chip is a big advantage as they will be reused for the calculation of each pixel of
FMo.

Following the architecture principle “make the common case fast”, SqJ is
designed to accelerate conv layers described by Equation 3 with stride limited to
one; it can be used for the acceleration of all the SqN conv layers except the first
one, which can be implemented as a distinct module. All SqN conv layers, except
the first one, share the following common characteristics: (1) a stride equal to 1,
(2) an input channel dimension with a greatest common divisor (GCD) equal to
16 and (3) an output channel dimension which is divisible by a power of 2. SqJ
uses all these three characteristics to accelerate a conv layer; the first SqN conv
layer does not have characteristics (1) and (2). Implementing SqJ to support the
first SqN conv layer would significantly degrade the acceleration of the other 17
conv layers (25 conv modules) of SqN.

This section describes the the architecture, the high-level synthesis design,
and the implementation of SqJ.

4.1 Architecture

Data organization: The data organization of all the convolution array argu-
ments is shown in Equation 1. This data organization is imposed by the 3D
convolution operation; it is necessary to read all the input channels of the IW
pixels in order to be able to calculate a single output channel. Because SqJ ac-
celerates 3D convolutions, the design of a streaming architecture is not possible,
but it is possible to design the accelerator to use streaming I/O interfaces.

Buffering: The implementation of the 3 × 3 convolution introduces an input
data access pattern which requires multiple lines of the input. Because FMi data
is streamed in the accelerator, FMi data lines must be buffered. In the general
case, the size of the input tile buffer ITB is:

ITB = K ·Xi · Ci, (5)



where K denotes the kernel size (considering that K = Kh = Kw, see Figure 1),
and Xi and Ci denote the width and the channels of FMi respectively. In the
SqJ case, where support for up to 3 × 3 × Ci 3D kernels is required, K = 3 and
ITB3×3 is implemented as a set of 3 line buffers whose access is determined by
a pointer array. In this way, ITB3×3 shifts down the FMi without the need for
any data shift to take place; only the lowest, as defined by the pointer array, line
buffer gets updated. This shift mechanism is also used by the input tile window
buffer ITWB (depicted as IW in Figure 1) to update only one of its columns as
it shifts horizontally on the ITB, taking advantage of the spatial locality of the
input data. Figure 2 shows the internal organization of ITB and the operation
of pointer array for ITB3×3. Apart from the ITB and ITWB, buffers are used
to store the weights, the bias, and one pixel of FMo. The buffer used to store
the FMo pixel could be omitted if each output channel was calculated serially,
but buffering is required to calculate multiple output channels in parallel and to
stream them out of the accelerator in order.

Fig. 2: ITB: (a) schematic and (b) pointer array content of ITB3×3 after a
number of shifts. AD denotes memory address, SH denotes a shift signal, and
DI, DO denote data input and output respectively.

Parallelism exploitation: SqJ takes advantage of the fact that SqN increases
in the input channel dimension and, with the exception of the first conv layer, all
conv layers’ input channels have a GCD equal to CImin = 16. The accelerator
is designed to perform CImin multiplications concurrently. These CImin prod-
ucts are then fed to an accumulator unit which outputs a CImin MAC result.
The combination of the CImin concurrent multiplications plus the accumulator
unit forms a MAC-CImin unit which is pipelined. CImin is a design parameter
and can be easily modified according to the architecture of a different DCNN.
This intra-kernel parallelism has the advantage that it exploits parallelism in
the input channel dimension and it is independent from the kernel size K. Thus,
SqJ can be easily modified to support kernel sizes larger than 3 × 3. Another
form of parallelism that is used is the concurrent calculation of multiple output
channels for a specific output pixel. This is achieved by splitting the weights
buffer in 2n (n = 1, 2, 3, ...) equal groups of 3D kernels and assigning them to
2n MAC-CImin units.



Operation: First step in the operation of SqJ is the initialization of the in-
put buffers. Weights and bias are brought from off-chip memory and, only in the
case where kernel K = 3, the ITB is initialized. After the initialization step, the
convolution begins:

• For each row of FMo: (1) only if K = 3, the ITB is shifted down (in FMi)
and two FMi pixels are written in the empty line buffer, and (2) only if
K = 3, the ITWB is initialized with ITB data.

• For each column of each row of FMo: (1) ITB is updated with a new FMi

pixel and ITWB is updated with a new ITB column, (2) the weight buffers
and the ITWB are used to calculate one pixel of FMo, and (3) the computed
pixel is written back to off-chip memory.

4.2 Implementation

FPGA algorithm acceleration is not as trivial as implementing an algorithm
in SW using a general purpose programming language such as C/C++. Even
though HLS tools advertise the automatic generation of FPGA IP cores from
C/C++ code, this process requires knowledge of the architecture of the FPGA
device, knowledge of the internals of the HLS compiler [13], and use of a C/C++
coding style compatible with the HLS capabilities. This paragraph describes the
process of generating an IP core for SqJ using the Xilinx VHLS tool and imple-
menting it as a real application using the SDSoC tool.

Coding style: Hardware description languages (HDL) books warn the reader
that if the designer cannot understand what logic circuit is described by the HDL
code, then the design tool is not likely to synthesize the circuit that the designer
is trying to model [14]. The same applies for the C/C++ code used as input
to VHLS. A result of this coding style is the implementation of ITB shown in
Figure 2, which uses the HW model of pointers to the rows of a two-dimensional
array. Even though VHLS simplifies the HW design of an algorithm, it doesn’t
provide a straightforward way for making a design scalable as it is the case with
the combination of generate constructs and generics/parameters used in HDLs.

Interfaces: The SqJ IP core requires buffers for the weights, the bias, the ITB
(FMi), and the FMo buffer for storing the output pixel. Three FIFO interfaces
are used to stream data in and out of the IP core; one for streaming in the
parameter (weights, bias) data, one for the FMi data, and one for the output
(FMo) data. In addition, an AXI-Lite interface is used for acquiring the rest
of the required HW function arguments. The SDSoC tool is used for interface
synthesis.

Optimizations: VHLS provides many optimization possibilities both in terms
of performance and resource usage [15].



• Parallelism: SqJ exploits parallelism in: (a) the input channel dimension
(intra-kernel parallelism), by calculating the result of CImin MACs every
clock cycle of the operation of the pipelined MAC-CImin unit, and (b) the
output channel dimension, by calculating 2n (n = 1, 2, 3, ...) output chan-
nels concurrently. Parallelism in (a) requires a CImin-wide data register and
partitioning the operand buffers (array partitioning) in a way which makes
them able to provide CImin outputs concurrently. Parallelism in (b) requires
2n ITWB buffers and the same number of MAC-CI units.

• Arbitrary precision types: To further decrease the model size of SqN and
reduce the amount of logic required by SqJ, fixed-point quantization in both
the parameters and the FMi is used. Specifically, Ristretto [16] is used to
specify the proper quantization of the parameters (weights and bias) and the
FMi. Parameters are quantized at 8 bits (1 bit integer + 7 bits fractional)
and FMi at 16 bits (13 bits integer + 3 bits fractional), achieving 0.88%
top-5 accuracy loss without performing any fine-tuning.

In Figure 3, the block diagram of SqJ, implemented (for simplicity) with 4 MAC-
CImin units, is shown. Since the parallelization factor is equal to 4, the sizes
of the buffers are: (1.179648/4) Mbits for the weightsi, (2048/4) bits for the
biasi, 344.064 Kbits for the ITB, 73.728 Kbits for each ITWBi, and (4096/4)
bits for the fmap oi. Table 1 presents the FPGA resources required for the
implementation of conv l0, the accelerator of the first SqN conv layer, and SqJ,
in an 8 MAC-16 unit configuration, on the XC7Z020 FPGA SoC. The conv l0
+ SqJ implementation is the one used in the results of the next Section.

Fig. 3: SqJ block diagram implemented with 4 MAC-CImin units. Bold lines
denote CImin = 16 times the data size shown at the left side of the figure.



Table 1: Resource Utilization of conv l0 and SqJ on the XC7Z020 FPGA SoC
conv l0 SqJ conv l0 + SqJ

Resource Available Util. Util. % Util. Util. % Util. Util. %

LUT 53200 9405 17.678 12692 23.857 20631 38.780

LUTRAM 17400 707 4.063 726 4.172 1273 7.316

FF 106400 15459 14.529 18114 17.024 30554 28.716

BRAM 140 13 9.285 124 88.571 134.5 96.071

DSP 220 37 16.818 149 67.727 186 84.545

5 Performance evaluation

Table 2 presents the per-layer execution times, the accuracy, and the chip power
consumption4 of SqN implemented on 4 different processing unit configurations,
an Intel Core i3-7100U@2.4GHz core (Intel NUC), an ARM Cortex-A53@1.2GHz
core (Raspberry Pi 3 (RPI3) Model B V1.2), an ARM Cortex-A9@667MHz core
(Xilinx ZC702), and an ARM Cortex-A9@667MHz core with the SqJ@100MHz
accelerator in an 8 MAC-16 unit configuration (Xilinx ZC702).

SqN is a single floating point precision C/C++ Linux application accelerated
with single-instruction multiple-data (SIMD) instruction set extensions (Intel
AVX, ARM NEON) and executed on a single core of the target CPU-only pro-
cessing systems. In the case where the SqJ accelerator is used, the implementa-
tion uses 16 bits for the activations and 8 bits for the weights and bias. GCC
(version 6.3.0 for the Intel (64-bit) and RPI3 (32-bit) configurations, and version
6.2.1 for the ZC702 (32-bit) configuration) with the -O3 flag is used to build the
SqN Linux application. Execution times are an average of 1000 inference itera-
tions. Power consumption is acquired: (1) using Intel PCM5 while the processing
system executes 1000 SqN iterations, in the case of the Intel i3 CPU, (2) using a
power plug and measuring board power consumption, in the case of RPI3, and
(3) using Xilinx XPE6 in the case of Xilinx ZC702. Accuracy is evaluated using
the Ristretto7 tool.

Results show that the SqJ configuration achieves an 15.16x execution time
speedup in SqN inference when compared to the ARM A9 core configuration,
4.36x execution time speedup in SqN inference when compared to the ARM A53
core, and similar convolution performance (see Total Conv in Table 2) to the
Intel i3 core configuration, with less than 1% top-5 accuracy loss. In terms of
performance per Watt, frames per second per Watt (FPS/W), the SqJ imple-
mentation is 10.46 times better than the ARM A9 core configuration; again,
with less than 1% accuracy loss. The Load Image execution time in the SqJ
implementation includes the conversion of the image from 32-bit floating point
to 16-bit fixed point; that’s why it takes more than double of the ARM A9 cor-

4In the case of the ARM Cortex-A53, we measure RPI3 board power consumption,
because there is no way to acquire power consumption measurements or estimations
for the Broadcom 2837 SoC.

5https://www.intel.com/software/pcm
6https://www.xilinx.com/products/technology/power/xpe.html
7https://github.com/pmgysel/caffe

https://www.intel.com/software/pcm
https://www.xilinx.com/products/technology/power/xpe.html
https://github.com/pmgysel/caffe


Table 2: SqN Application Execution time / Accuracy / Power Results

Processing Unit
NUC

Intel i3@2.4GHz
RPI3

ARM A53@1.2GHz
ZC702

ARM A9@667MHz

ZC702
ARM A9@667MHz
conv l0@100MHz

SqJ@100MHz

SqN Implementation Accuracy (bits)

Activations 32 16

Weights, Bias 32 8

SqN Application Per-Layer Execution Time Results (ms)

Load Image 0.1761 1.2137 21.3210 54.4263

0:Conv 25.3118 131.5186 297.2426 26.2756

1:Maxpool 2.0531 18.2868 28.7206 22.7574

2:Fire 16.1473 142.7623 446.1214 32.6526

3:Fire 17.0744 150.7194 474.1013 34.7981

4:Maxpool 1.3333 13.4446 27.3646 18.0916

5:Fire 13.5606 124.2315 450.0168 17.7738

6:Fire 14.5805 135.3108 482.2875 18.9882

7:Maxpool 0.6023 7.1370 14.4114 9.4158

8:Fire 7.4712 69.1218 257.9832 8.6426

9:Fire 7.8755 72.4013 273.4599 8.8704

10:Fire 13.1197 125.8514 497.6390 12.2322

11:Fire 13.6331 132.5349 517.09514 12.7946

12:Conv 34.7681 324.9181 1257.4682 33.9618

13:Fixed2float 0.0001 0.0004 0.0003 15.4479

13:Avgpool 1.5295 4.3149 5.7796 5.7085

14:Softmax 0.0260 0.1528 0.2212 0.2220

Total Conv 162.4322 1395.4275 4892.9386 174.9867

Total Merge 13.74 13.89 60.43 31.97

Total Maxpool 3.99 38.87 70.49 50.26

Total 169.2627 1453.9202 5051.2337 333.0595

FPS 5.907 0.687 0.198 3.002

SqN ILSVRC12 Accuracy Results (%)

Top-1 58.38 57.46

Top-5 81.01 80.29

SqN Application CPU/SoC Power Consumption Results (Watts)

Technology 14nm n/a 28nm 28nm

Chip Power 5.3253 2.9 1.569 2.275

FPS/W 1.109 0.237 0.126 1.319

responding time. Because of the use of lower precision for the activations, Total
Merge (merge operations are included in the Fire layers) and Total Maxpool
operations require much less time than the ARM A9 implementation. Further-
more, the Maxpool layers require 15% of the Total SqJ implementation time
and could be incorporated in a future SqJ implementation. Table 3 summarizes
the characteristics of the SqJ implementation.

6 Conclusion

In this paper, we present the design and the implementation of SqJ, an FPGA-
based convolution layer accelerator which can be used to boost the performance
of an embedded mobile processor running a CV task. The accelerator, consisting
of a buffering architecture and multiple computational units, is designed using
the Xilinx Vivado HLS tool. The Ristretto tool is used to squeeze the SqN DCNN
in the Xilinx XC7Z020 FPGA SoC, and the Xilinx SDSoC tool is used to deploy
SqJ accelerated SqN to the XC7Z020 device. To the best of our knowledge, our
work is the first one which implements the SqN DCNN in a small FPGA SoC



Table 3: SqJ (conv l0+SqJ) Implementation Summary
SqueezeNet v1.1

FPGA Zynq XC7Z020

Frequency (MHz) 100

Design Tool Vivado HLS

DCNN Ops (GOPs) 0.7755

Precision 8-16 bits

DSP (Util.) 186 (84.5%)

BRAM (Util.) 134.5 (96%)

LUT (Util.) 20631 (38.8%)

LUTRAM (Util.) 1273 (7.3%)

FF (Util.) 30554 (28.7%)

Conv Latency/Image (ms) 175

Throughput (GOPs) 4.43

Top-5
ILSVRC12 Accuracy

80.29%

device, such as the XC7Z020, and achieves 80.29% top-5 ILSVRC12 accuracy
(using XC7Z020). Results show that SqJ accelerates by 15.16 times the SqN
inference execution time of an embedded mobile processor while being 10.46
times more power efficient with less than 1% top-5 accuracy drop. Improvements
to the HLS SqJ design could include: (1) Maxpool layer support, since they
require considerable amount (15%) of the total inference time on a mobile ARM
core, and (2) streaming execution, to avoid memory accesses for fmaps (requires
additional BRAM resources). Future work could use an enhanced version of
SqJ as a template and perform multiobjective optimization for finding the best
solution in terms of performance, resources, accuracy, power, and cost.

References

1. Krizhevsky, A., Sutskever, I., Hinton, G. E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in neural information processing systems,
pp. 1097-1105 (2012)

2. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 1-9 (2015)

3. He, K., Zhang, X., Ren, S. and Sun, J.: Deep residual learning for image recognition.
In: Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770-778 (2016)

4. Zhang, C., Li, P., Sun, G., Guan, Y., Xiao, B., Cong, J.: Optimizing fpga-based
accelerator design for deep convolutional neural networks. In: Proceedings of the
2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
pp. 161-170, ACM (2015, February)

5. Motamedi, M., Gysel, P., Akella, V., Ghiasi, S.: Design space exploration of fpga-
based deep convolutional neural networks. In: Design Automation Conference
(ASP-DAC), 2016 21st Asia and South Pacific,pp. 575-580, IEEE (2016, January)



6. Ovtcharov, K., Ruwase, O., Kim, J.Y., Fowers, J., Strauss, K., Chung, E.S.: Accel-
erating deep convolutional neural networks using specialized hardware. Microsoft
Research Whitepaper, 2(11) (2015)

7. Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.:
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and¡ 0.5 MB model
size. arXiv preprint (2016). arXiv:1602.07360

8. Qiu, J., Wang, J., Yao, S., Guo, K., Li, B., Zhou, E., Yu, J., Tang, T., Xu, N., Song,
S., Wang, Y.: Going deeper with embedded fpga platform for convolutional neural
network. In: Proceedings of the 2016 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, pp. 26-35, ACM. (2016, February)

9. Gschwend, D.: Zynqnet: An fpga-accelerated embedded convolutional neural net-
work. Masters thesis, Swiss Federal Institute of Technology Zurich (ETH-Zurich).
(2016)

10. Gokhale, V., Jin, J., Dundar, A., Martini, B., Culurciello, E.: A 240 g-ops/s mobile
coprocessor for deep neural networks. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops, pp. 682-687 (2014)

11. Ma, Y., Cao, Y., Vrudhula, S., Seo, J. S.: Optimizing loop operation and dataflow
in FPGA acceleration of deep convolutional neural networks. In: Proceedings of the
2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays
(pp. 45-54). ACM (2017, February)

12. F. Iandola: SqueezeNet/SqueezeNet v1.1 at master. DeepScale/SqueezeNet.
(2017). https://github.com/DeepScale/SqueezeNet/tree/master/SqueezeNet_

v1.1

13. Xilinx Inc.: High-Level Synthesis. Vivado Design Suite User Guide. UG902. (2017).
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_2/

ug902-vivado-high-level-synthesis.pdf

14. Vranesic, Z., Brown, S.: Fundamentals of digital logic with Verilog design. 3rd
Edition. McGraw-Hill Education. (2014)

15. Ali, K.M., Atitallah, R.B., Fakhfakh, N., Dekeyser, J.L.: Exploring HLS Optimiza-
tions for Efficient Stereo Matching Hardware Implementation. In: International
Symposium on Applied Reconfigurable Computing, pp. 168-176. Springer, Cham.
(2017, April)

16. Gysel, P., Motamedi, M. and Ghiasi, S.: Hardware-oriented approximation of con-
volutional neural networks. arXiv preprint (2016). arXiv:1604.03168.

https: //github.com/DeepScale/SqueezeNet/tree/master/SqueezeNet_v1.1
https: //github.com/DeepScale/SqueezeNet/tree/master/SqueezeNet_v1.1
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_2/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_2/ug902-vivado-high-level-synthesis.pdf

	SqueezeJet: High-level Synthesis Accelerator Design for Deep Convolutional Neural Networks
	1 Introduction
	2 Related work
	3 Convolutional layer basics
	4 The SqueezeJet accelerator
	4.1 Architecture
	4.2 Implementation

	5 Performance evaluation
	6 Conclusion


