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Abstract

We present a series of results regarding conceptually simple algorithms for bipartite matching
in various online and related models.

We first consider a deterministic adversarial model. The best approximation ratio possible
for a one-pass deterministic online algorithm is 1/2, which is achieved by any greedy algorithm.
Dürr et al. [20] recently presented a 2-pass algorithm called Category-Advice that achieves
approximation ratio 3/5. We extend their algorithm to multiple passes. We prove the exact
approximation ratio for the k-pass Category-Advice algorithm for all k ≥ 1, and show that
the approximation ratio converges to the inverse of the golden ratio 2/(1 +

√
5) ≈ 0.618 as k

goes to infinity. The convergence is extremely fast — the 5-pass Category-Advice algorithm
is already within 0.01% of the inverse of the golden ratio.

We then consider a natural greedy algorithm in the online stochastic IID model – Min-
Degree. This algorithm is an online version of a well-known and extensively studied offline
algorithm MinGreedy. MinGreedy is known to have excellent empirical performance, as
well as excellent performance under various input models. Alas, recently it was shown to have
approximation ratio 1/2 in the adversarial offline setting — the approximation ratio achieved
by any greedy algorithm. We obtain a result in the online known IID model that, in spirit, is
similar to the offline result, but the proof is different. Namely, we show that MinDegree can-
not achieve an approximation ratio better than 1− 1/e, which is guaranteed by any consistent
greedy algorithm in the known IID model.

Finally, following the work in Besser and Poloczek [7], we depart from an adversarial or
stochastic ordering and investigate a natural randomized algorithm (MinRanking) in the pri-
ority model. Although the priority model allows the algorithm to choose the input ordering in
a general but well defined way, this natural algorithm cannot obtain the approximation of the
Ranking algorithm in the ROM model.

1 Introduction

Maximum bipartite matching (MBM) is a classic extensively studied graph problem. Let G =
(U, V,E) be a bipartite graph, where U and V are the vertices on the two sides, and E ⊆ U × V
is a set of m edges. In 1931, König and Egerváry independently gave a characterization of MBM
in terms of the minimum vertex cover. The celebrated Hopcroft-Karp algorithm [30] running in
time O(m

√
n) was discovered in 1973 where n is the number of vertices. The first improvement in

the regime of relatively sparse graphs came forty years later, in 2013, when Madry [37] developed
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a Õ(m10/7) algorithm based on electrical flows. For dense graphs, i.e., when m ≈ n2, Mucha
and Sankowski [43] describe an algorithm running in time O(nω), where ω ≤ 2.373 is the matrix
multiplication constant. We refer the interested reader to [38] and [19] and references therein
for more information on MBM in the offline setting. While current algorithms for solving MBM
optimally in the offline setting are reasonably efficient, they still fall short of linear time algorithms.
For large graphs, linear or near linear time algorithms might be required. In that regard, a (1− ǫ)-
approximation can be computed in O(m/ǫ) time by a version of the Hopcroft-Karp algorithm in
the offline setting [19]. Arguably, such algorithms are not that conceptually simple and require a
reasonable understanding of the problem. We now outline the computational models relevant to
our focus on simple algorithms, and then highlight our results.

Conceptually Simple Algorithms. Our focus in this paper is on “conceptually simple al-
gorithms” and, in particular, on such algorithms with regard to variants of the online bipartite
matching problem. We will not define “conceptual simplicity” but claim that certain types of al-
gorithms (e.g., greedy and local search) usually fall within this informal “you know it when you
see it” concept. The online model is sometimes necessitated by applications, and can be studied
with respect to a completely adversarial model, the random order model (ROM), or a distributional
input model (e.g., known and unknown IID input models). In all of these models, the algorithm has
no control over the ordering of the inputs and must make irrevocable decisions for each input item
as it arrives. As such, online algorithms are a prime example of a conceptually simple algorithmic
paradigm that can be extended in various ways leading to simple offline algorithms. These online
extensions can provide much improved performance both in terms of worst-case approximation
ratios and in terms of performance on real data. See, for example, the experimental analysis of
MaxSat provided by Poloczek and Williamson [47]. However, this still begs the question as to why
we should restrict ourselves to conceptually simple algorithms when much better offline algorithms
are known. Indeed as already stated, there are polynomial time offline optimal algorithms and
efficient FPTAS algorithms running in time O(m/ǫ) for bipartite matching.

While conceptually simple algorithms may not match the best approximations realized by more
complex methods, they are usually very efficient (i.e., linear or near linear time with small con-
stant factors) and often work well on realistic data exceeding worst-case approximation bounds.
Conceptually simple algorithms can also be used as a preprocessing step for initializing a local
search algorithm as in Chandra and Halldórsson [15]. Moreover, and this can be even more critical
in many settings, conceptually simple algorithms are easy to implement and modify with rela-
tively little knowledge about the problem domain. Indeed, conceptual simplicity is arguably the
main reason for the use of simple mechanisms in auctions (see, for example, Lucier and Syrgkanis
[36]) and the success of MapReduce in distributed parallel applications as introduced by Dean and
Ghemawat [17].

We will consider two departures from the adversarial and distributional one-pass online models.
In the first departure, we consider a multi-pass online algorithm generalizing the two-pass algorithm
in Dürr et al.[20]. In this regard we are also motivated by the Poloczek et al. [46] two-pass algorithm
for MaxSat. The Dürr et al. two-pass algorithm and our extension to a k-pass online bipartite
algorithm can also be viewed as an O(n) space semi-streaming algorithm in the vertex input model.
We can also view these multi-pass algorithms as de-randomizations of randomized online algorithms.

The second departure is that of priority algorithms [12], a model for greedy and more generally
myopic algorithms that extend online algorithms by allowing the algorithm to determine (in some
well-defined way) the order of input arrivals.

Other conceptually simple generalizations of the traditional online model are clearly possible,
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such as the ability to modify previous decision (e.g., as in [23]) and parallel executions of online
algorithms (e.g., as in [29, 14, 44]).

Adversarial Online Model. In 1990, Karp, Vazirani, and Vazirani [33] initiated the study of
MBM in the online setting. In this setting, nodes V are the offline nodes known to an algorithm
beforehand, and nodes U arrive online in some adversarial order. When a node in U arrives,
all its neighbors in V are revealed simultaneously. An online algorithm is required to make an
irrevocable decision with regard to which neighbor (if any) the arrived node is matched to. Any
greedy algorithm (yielding a maximal matching) achieves a 1/2 approximation and Karp, Vazirani,
and Vazirani showed that no deterministic algorithm can achieve an (asymptotic) approximation
ratio better than 1/2 in the adversarial online model. They gave a randomized online algorithm
called Ranking and showed that it achieves a 1 − 1/e ≈ 0.632 expected approximation ratio.
Moreover, they proved that no randomized algorithm can beat 1 − 1/e in the adversarial online
model. Seventeen years after the publication of the Ranking algorithm a mistake was found in
the analysis of the Ranking algorithm. The mistake was discovered independently by Krohn and
Varadarajan and by Goel and Mehta in [27], and a correct proof was provided by Goel and Mehta.
Since then many different and simplified proofs of the approximation ratio of Ranking have been
given (see [27, 8, 18]). Thus, the one-pass adversarial online setting for MBM is now reasonably
well understood.

Online Stochastic Models. Feldman et al. [25] introduced the known IID distributional model
for MBM, which is motivated by practical considerations. In the applications of MBM to online
advertising, one often knows some statistics about the upcoming queries (online nodes). Feldman
et al. model this by the notion of a type graph G = (U, V,E) and a probability distribution
p : U → [0, 1]. The online nodes are sampled from p independently one at a time. An algorithm
knows G and p beforehand. As before, an algorithm is required to make an irrevocable decision
about which neighbor to match the newly arriving online node to. In this setting, the adversary
can only choose the type graph and the distribution p but doesn’t have further control over the
online sequence of nodes, as those are sampled in the IID fashion. Thus, the adversary is more
restricted than in the adversarial online model. Feldman et al. [25] describe an algorithm beating
the 1 − 1/e barrier and achieving approximation ratio ≈ 0.67. This work was followed by a long
line of work including [5, 40, 28, 31, 13]. So far, the best approximation ratio for arbitrary arrival
rates is ≈ 0.706 due to Jaillet and Lu [31].

Other online stochastic input models have been studied; e.g., Known IID with integer types,
Random Order Model (ROM), and Unknown IID. In addition, practical considerations have moti-
vated a study of MBM-like problems and extensions that include Vertex-Weighted Matching, Edge-
Weighted Matching, Adwords, DisplayAds, Online Submodular Welfare Maximization, among the
most well-known. For more information and background on these models and problems, we refer
the reader to the excellent survey by Mehta [42]. The main reason for such an abundance of models
and problems is that in recent years the online advertising industry (and more generally online
auctions) has grown extensively. Online advertising platforms essentially solve various flavors of
MBM. Online MBM is an important example of a problem that is at the intersection of practice
and theory.

Semi-streaming Model. One-pass and multi-pass streaming algorithms are important algorith-
mic models motivated by the necessity to process extremely large data streams where the amount
of data may preclude storing all of the input and hence small space bounds are imposed through-
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out the computation. The usual assumption is that the data stream is created by an adversary
but other input streams (e.g., distributional) are also possible. Much of the streaming literature
concerns various forms of counting and statistics gathering. Semi-streaming algorithms are stream-
ing algorithms designed for (say) graph search and optimization problems where the output itself
requires O(n) space and hence a realistic goal is to maintain Õ(n) space rather than space O(m).
The semi-streaming model (with edge inputs) was introduced by Feigenbaum et al. [24] and sub-
sequently studied in [22, 34, 21]. In particular, Eggert et al. [21] provide a FPTAS multi-pass
semi-streaming algorithm for MBM using space Õ(n) in the edge input model. In the vertex input
semi-streaming model, Goel et al. [26] give a deterministic 1−1/e approximation and Kapralov [32]
proves that no semi-streaming algorithm can improve upon this ratio. (See also the recent survey
by McGregor [41].) The difference between semi-streaming algorithms and online algorithms in the
sense of competitive analysis is that streaming algorithms do not have to make online decisions
but must maintain small space throughout the computation while online algorithms must make
irrevocable decisions for each input item but have no space requirement. The Goel et al. result
shows the power of deterministic semi-streaming over deterministic online algorithms. In some
cases, streaming algorithms are designed so as to make results available at any time (after each
input item) during the computation and hence some streaming algorithms can also be viewed both
as a streaming algorithm and an online algorithm. Conversely, any algorithm that restricts itself
to Õ(n) space can also be considered as a semi-streaming algorithm.

Priority Model. The priority model [12] captures the notion of greedy-like algorithms. In this
setting, an algorithm has some control over the order of online nodes. More specifically, an input to
the algorithm is represented as a set of input items coming from some (possibly infinite) universe.
For example, the universe of items in the MBM problem is the set of all pairs (u,N(u)) where u is an
online node and N(u) is its neighborhood, and an instance is a collection of such pairs specifying
the graph G. The algorithm first commits to an ordering of the entire universe.1 Then, the
adversary picks an instance G and reveals the online nodes in the order specified by the algorithm.
The algorithm is still required to make an irrevocable decision about a newly arriving node. This
captures the idea that many offline greedy algorithms sort the input items, and then do a single
pass over the items in the sorted order. More generally, priority algorithms can adaptively reorder
so as to select the next input item to process. Many problems have been studied in the priority
model [2, 10, 51, 45, 16, 11, 7]. The original deterministic priority model was extended to the
randomized priority model in [3]. We shall use the term fully randomized priority algorithm to
indicate that the ordering of the input items and the decisions for each item are both randomized.
When only the decisions are randomized (and the ordering is deterministic) we will simply say
randomized priority algorithm. With regards to maximum matching, Aronson et al. [4] proved that
an algorithm that picks a random vertex and matches it to a random available neighbor (if it exists)
achieves approximation ratio 1/2+ǫ for some ǫ > 0 in general graphs. Besser and Poloczek [7] show
that the algorithm that picks a random vertex of minimum degree and matches it to a randomly
selected neighbor cannot improve upon the 1/2 approximation ratio (with high probability) even for
bipartite graphs. Pena and Borodin [44] show that no deterministic (respectively, fully randomized)
priority algorithm can achieve approximation ratio better than 1/2 (respectively 53/54) for the
MBM problem. (See also [6] with respect to the the difficulty of proving inapproximation results
for all randomized priority algorithms.)

1In practice, the ordering is determined by a priority function that maps each possible input item into a real
number and then the ordering is determined by the priority values.
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Advice Model. Dürr et al. in [20] studied the online MBM problem in the adversarial (tape)
advice model. Advice can be viewed as a generalization of randomness. A randomized algorithm
is given random bits (independent of the input instance), whereas an advice algorithm is given
advice bits prior to processing the online input. In the most unrestricted advice setting, the advice
bits are set by an all-powerful oracle. Dürr et al. show that Θǫ(n) advice bits are necessary and
sufficient 2 to guarantee approximation ratio 1− ǫ for MBM. They also show that O(log n) advice
bits are sufficient for a deterministic advice algorithm to guarantee a 1− 1/e approximation ratio.
(This result is based on the randomization to advice transformation due to Böckenhauer et al.
[9].) Construction of the O(log n) advice bits is based on examining the behavior of the Ranking
algorithm on all n! possible random strings for a given input of length n, which requires exponential
time. It is not known if there is an efficient way to construct O(log n) advice bits. More generally,
one may put computational or information-theoretic restrictions on the advice string, and ask
what approximation ratios are achievable by online algorithms with restricted advice. Not only is
this framework of theoretical value, but it also gives rise to classes of conceptually simple offline
algorithms if the advice string is restricted to be efficiently computable. Dürr et al. [20] present
a deterministic advice algorithm Category-Advice achieving approximation ratio 3/5 with an
n-bit advice string, where the advice string itself is computable by an online algorithm. This
algorithm can obviously be viewed as a 2-pass online algorithm.

1.1 Summary of Our Results

In this subsection, we briefly describe our results on conceptually simple algorithms under the input
models discussed above.

Our Online Multi-pass Results. We generalize the Category-Advice algorithm to a k-pass
Category-Advice algorithm for k ≥ 1. For each k ≥ 1, we prove that the exact approximation
ratio of k-pass Category-Advice algorithm is F2k/F2k+1, where Fn is the nth Fibonacci number.
Our bounds show that the analysis of Dürr et al. for the 2-pass Category-Advice algorithm was
tight. Our result immediately implies that the approximation ratio of k-pass Category-Advice
converges to the inverse of the golden ratio 2/(1 +

√
5) ≈ 0.618 as k goes to infinity.

Our Results for the Known IID Model. A greedy algorithm always matches an online vertex
if it has at least one available neighbor. We observe that every online algorithm for bipartite
matching can be converted into a greedy online algorithm without hurting its approximation ratio.
The greedy property does not specify how to break ties when several neighbors of an online vertex
are available. Goel and Mehta [27] proved that most greedy algorithms (i.e., no matter what tie-
breaking rules are used as long as they are consistent) achieve at least a 1 − 1/e approximation
ratio in the known IID model. As mentioned earlier, algorithms achieving better approximation
ratios are known. They are usually stated as non-greedy algorithms, but using a general conversion
they can be turned into greedy algorithms, albeit with somewhat unnatural tie-breaking rules.
These algorithms have polynomial time preprocessing of the type graph and, thus, are feasible
from a theoretical point of view. The preprocessing step, although polynomial time, might not
be feasible from a practical point of view on large type graphs. Moreover, we argue that these
algorithms are not that “conceptually simple.” At present, the research literature on conceptually
simple tie-breaking rules for greedy algorithms in the known IID model is scarce. We introduce

2More precisely, O( n

ǫ5
) advice bits are sufficient and Ω(log( 1

ǫ
)n) advice bits are necessary to achieve a (1 − ǫ)

approximation. The approximation algorithm is based on the multi-pass semi-streaming result of Eggert et al. [21]
and lacks the simplicity of the Dürr et al. [20] Category Advice algorithm.
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and study a deterministic greedy online algorithm arising out of a natural, conceptually simple,
and efficient tie-breaking rule — MinDegree. This algorithm is motivated by a well-known offline
matching algorithm — MinGreedy [48]. We show that MinDegree does not beat the 1 − 1/e
approximation achieved by any greedy algorithm (using consistent tie-breaking).

Our Results for the Priority Model. When we consider the Ranking algorithm in the ROM
model, we have an instance of a priority algorithm where both the order of input arrivals and the
decisions made for each online input are randomized. This ordering is simply a uniform random
permutation of the set of adversarial chosen input items. Is there a more “informed” way to
deterministically or randomly choose the ordering within the priority framework? A natural idea
is to give priority to the online nodes having the smallest degree since intuitively they would
seem to be the hardest to match if not seen early. Using the Ranking algorithm to match online
nodes, our intuition turns out to be misleading. We show that giving priority to nodes having the
smallest degree using some deterministic (or the uniform random tie-breaking) rule cannot match
the approximation achieved by a uniform ordering of the online nodes. In contrast to the 2-pass
Category-Advice 3/5 approximation, our analysis can also be used to show that a deterministic
two-pass algorithm that computes the degree of the offline vertices in the first pass and then reorders
the offline vertices according to non-decreasing degree (breaking ties by the initial ordering) will
not achieve an asymptotic approximation ratio better than 1/2.

Organization. The rest of this paper is organized as follows. Section 2 introduces key defini-
tions, notation, and a statement of the Ranking algorithm. In Section 3 we describe the k-pass
Category-Advice algorithm and prove the exact approximation ratio for each k ≥ 1, giving
matching upper and lower bounds. In Section 4, we provide an analysis of MinDegree in the
known IID model. In Section 5, we describe the MinRanking algorithm and provide analysis of
the family of graphs due to Besser and Poloczek [7]. We conclude and present some open problems
in Section 6.

2 Preliminaries

We are given a bipartite graph G = (U, V,E) where U and V form a partition of the vertices, and
edges are E ⊆ U × V . Names of the vertices are natural numbers. We consider the maximum
bipartite matching problem in various online models. We typically think of U as the online vertices
that are revealed to a given algorithm one at a time, and V as the offline vertices. When a vertex
u from U is revealed, all edges incident on u are also revealed simultaneously. The online models
differ in how vertices in U (and the order of arrivals) are chosen — adversarially, sampled from a
known distribution (with a known type graph) in the IID fashion, or via a limited adversary (as in
the priority model where the adversary chooses the graph but not the sequence of arrivals).

Let M ⊆ E be some matching in G. For u ∈ U , we write u ∈ M when there exists v ∈ V
such that (u, v) ∈ M . Similarly, we write v ∈ M when there exists u ∈ U such that (u, v) ∈ M .
For u ∈M , we write M(u) to indicate the neighbor of u in M . We write OPT(G) to stand for an
offline optimum matching in G.

Given a deterministic algorithm ALG in any of the models being considered and a bipartite
graph G, we let ALG(G) stand for the matching returned by the algorithm ALG on input G.
Abusing notation, we will also use ALG(G) (resp. OPT(G)) to stand for the size of the matching
returned by the algorithm on G (resp. by OPT(G)).
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Definition 2.1. For a deterministic algorithm ALG and adversarial input, we define its asymptotic
approximation ratio as

AR(ALG) = lim
OPT(G)→∞

inf
G

ALG(G)

OPT(G)
.

For a deterministic algorithm and distributional input, its asymptotic approximation ratio is

AR(ALG) = lim
E[OPT(G)]→∞

inf
G

E[ALG(G)]

E[OPT(G)]
,

where the expectation is over the input distribution.
For a randomized algorithm and adversarial input, its asymptotic approximation ratio is

AR(ALG) = lim
OPT(G)→∞

inf
G

E[ALG(G)]

OPT(G)
,

where the expectation is taken over the randomization in the algorithm.

Definition 2.2. An online (or priority) MBM algorithm is greedy if whenever a newly arriving
online node has at least one available neighbor the algorithm matches the arrived node to one of
its neighbors.

Remark 2.1. Any online (or priority) algorithm for MBM achieving approximation ratio ρ (in an
adversarial or stochastic input setting) can be turned into a greedy algorithm achieving approxima-
tion ratio ≥ ρ. Informally, the idea is a simulation of the non-greedy algorithm in which we replace
any non-greedy decision by forcing a match while remembering the configuration of the non-greedy
algorithm.

In the bipartite graphs G = (U, V,E) that we consider in this paper, we shall often refer to
the so-called “parallel edges.” Let U ′ = {u′1, . . . , u′k} ⊆ U and V ′ = {v′1, . . . , v′k} ⊆ V be two
distinguished subsets such that for all i ∈ [k] we have (u′i, v

′

i) ∈ E (there might be other edges
incident on U ′ and V ′). The parallel edges between U ′ and V ′ are precisely the edges (u′i, v

′

i).

2.1 The Ranking Algorithm

In the adversarial model, graph G as well as an order π of its online vertices U is chosen by an
adversary. Karp, Vazirani, and Vazirani [33] presented an optimal randomized algorithm in the
adversarial model called Ranking (see Algorithm 1). They showed that AR(Ranking) = 1− 1/e
and that no randomized algorithm can do better in the adversarial model. Ranking works by
sampling a permutation σ of the offline nodes uniformly at random and running the natural simple
greedy algorithm on G breaking ties using σ. That is, when an online vertex u arrives, if u has
many unmatched neighbors v then u is matched with v that minimizes σ(v).

Algorithm 1 The Ranking algorithm.

procedure Ranking(G = (U, V,E))
Pick a permutation σ : V → V uniformly at random
for all u ∈ U do

When u arrives, let N(u) be the set of unmatched neighbors of u
if N(u) 6= ∅ then

Match u with argminv{σ(v) | v ∈ N(u)}

7



Let π be a permutation of U in which the nodes are revealed online, and σ be a permutation of
V chosen by the algorithm. In this case, we write Ranking(π, σ) to denote the matching returned
by Ranking given π and σ. When π is clear from the context we will omit it and simply write
Ranking(σ).

2.2 Known IID Model with Uniform Probability Distribution

In the known IID model, graph G = (U, V,E) is called a type graph. Nodes in u are sometimes
referred to as “types.” The type graph specifies the distribution from which the actual instance
graph Ĝ is generated. An instance graph Ĝ = (Û , V̂ , Ê) is generated by setting V̂ = V , sampling
each û ∈ Û IID uniformly from U , and letting (û, v̂) ∈ Ê if and only if the corresponding (u, v) ∈ E.

Note that each online û is drawn independently from U with replacement, thus it is possible
that the same u ∈ U appears multiple times in Û . The type graph is chosen adversarially and
is revealed to the algorithm in advance. After that, nodes û are generated one by one on the fly
and presented to the algorithm one at a time. An online algorithm makes an irrevocable decision
on how to match a newly generated û (if at all) without the knowledge of the future. We shall
sometimes refer to U and Û as the online side. Note that the known IID model can be defined more
generally by allowing an arbitrary distribution p on U from which û is sampled IID. We don’t do
that since our (negative) results only need the case when p is the uniform distribution. We make
one additional assumption that |Û | = |U |. This is not necessary, but all our examples are in this
setting.

For a given type graph G we shall write µG to denote the corresponding distribution de-
fined above. Observe that in this setting, we have OPT(G) = EĜ∼µG

(M(Ĝ)), and ALG(G) =

E
Ĝ∼µG

(ALG(Ĝ)).

Algorithms can be taken to be greedy without loss of generality in the known IID model (see
Remark 2.1). In addition, a basic guarantee on the performance of a greedy algorithm in the
known IID model holds as long as its tie-breaking rules satisfy natural consistency conditions. The
conditions say that if an online node u is matched with u∗ in some run of the algorithm and u∗ is
available in another “similar” run of the algorithm, u should still be matched with u∗ (“similar”
means that neighbors of u in the second run form a subset of the neighbors of u in the first run).
More formally:

Definition 2.3. Let ALG be a greedy algorithm. Let Ĝ(π) denote a type graph with online nodes
presented in the order given by π. Let Nπ(u) denote the set of neighbors of u that are available to be
matched when u is processed by ALG running on Ĝ(π). We say that a greedy algorithm is consistent
or that it satisfies consistency conditions if the following holds: ∀π, π′, u if Nπ′(u) ⊆ Nπ(u) and u
is matched with u∗ ∈ Nπ′(u) by ALG(Ĝ(π)) then u is also matched with u∗ by ALG(Ĝ(π′)).

Goel and Mehta [27] proved that such greedy algorithms achieve approximation at least 1−1/e
in the known IID model.3

Theorem 2.1 ([27]). Every consistent greedy algorithm ALG in the known IID model satisfies

AR(ALG) ≥ 1− 1/e.

3The Goel and Mehta [27] result is even stronger as it holds for the ROM model, but we do not need the stronger
result in our paper.
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2.3 Priority Model

In the priority model, an input instance consists of several data items. For the MBM problem, a
data item is a pair (u,N(u)), where u is the name of an online vertex and N(u) is the set of names of
its offline neighbors. Let I be the infinite universal set of all data items. An input instance is then a
finite subset S = {(ui, N(ui))} ⊆ I that defines the bipartite graph G = (U, V,E) in a natural way:
U = {ui}, V = ∪iN(ui), and (u, v) ∈ E if and only if there exists j such that u = uj and v ∈ N(uj).
A fixed priority algorithm a priori chooses a permutation τ : I → I of the entire universe of data
items. The adversary then chooses an instance S ⊆ I and presents it to the algorithm one data
item at a time in the order of τ . The algorithm is required to make an irrevocable decision on how
to match (if at all) the newly arriving online node u. An adaptive priority algorithm can change
the permutation τ of the universe of data items after each arriving node u. This gives us two
models of deterministic priority algorithms. There are two natural ways of introducing randomness
in this model: (1) allow the algorithm to use randomness in selecting τ , (2) allow the algorithm
to use randomness for making decisions on how to match the newly arriving node u. This leads
to 8 different possible priority models. In this paper, we shall be interested in an adaptive priority
randomized algorithm called MinRanking (see Section 5). As defined, MinRanking is a fully
randomized priority algorithm, (i.e. in terms of both the ordering and decisions being randomized)
but it can also be modified to be a randomized priority algorithm in the sense that its irrevocable
decisions are randomized (as done in the Ranking algorithm) whereas the input sequence is chosen
deterministically.

3 Deterministic Multipass Online Algorithms

A simple greedy algorithm achieves approximation ratio 1/2 in the online adversarial model since
it computes a maximal matching. Moreover, no deterministic online algorithm can achieve an
approximation guarantee better than 1/2 in the online adversarial model. To break through the
1/2 barrier either the input or algorithmic model needs to be changed. Dürr et al. [20] modify
the algorithmic model to allow for a second pass over the input. They give a deterministic 2-pass
algorithm, called Category-Advice, that achieves a 3/5 approximation ratio. The Category-
Advice algorithm belongs to the class of Ranking-based algorithms called category algorithms
that were introduced in the work of Dürr et al.

A category algorithm considers a permutation σ of the offline nodes. Instead of running Rank-
ing directly with σ, a category function c : V → Z∪{±∞} is computed first. The updated permu-
tation σc is the unique permutation satisfying the following defining property: for all v1, v2 ∈ V ,
we have σc(v1) < σc(v2) if and only if c(v1) < c(v2) or (c(v1) = c(v2) and σ(v1) < σ(v2)). Then
Ranking is performed with σc as the permutation of the offline nodes. In other words, a cate-
gory algorithm partitions the offline nodes into | Im(c)| categories and specifies the ranking of the
categories, the ranking within the category is induced by the initial permutation σ.

The Category-Advice algorithm starts with an arbitrary permutation σ, e.g., σ could be
induced by the names of nodes V . In the first pass, the algorithm runs Ranking with σ. Let M
be the matching obtained in the first pass. The category function c : V → [2] is then defined as
follows: c(v) = 1 if v 6∈ M and c(v) = 2 otherwise. In the second pass, the Category-Advice
algorithm runs Ranking with σc. The output of the second run of Ranking is declared as the
output of the Category-Advice algorithm. In other words, in the second pass the algorithm
gives preference to those vertices that were not matched in the first pass. (We observe that the
Besser-Poloczek graphs, as depicted in Figure 6, show that the category function c(v) = degree of
v will not yield an asymptotic approximation better than 1/2.)
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In this section, we present a natural extension of the Category-Advice algorithm to multiple
passes, called k-pass Category-Advice (see Algorithm 2). Let Fn denote the nth Fibonacci
number, i.e., F1 = F2 = 1, and Fn = Fn−1 + Fn−2 for n ≥ 3. For each k ≥ 1, we prove that the
k-pass Category-Advice algorithm4 achieves the approximation ratio F2k/F2k+1. Moreover, we
show that this is tight, i.e., there exists a family of bipartite graphs, one for each k ≥ 1, such that
the k-pass Category-Advice algorithm computes a matching that is F2k/F2k+1 times the size of
the maximum matching. In particular, we show that the analysis of the 3/5 approximation ratio in
[20] is tight. It immediately follows from our results that as k goes to infinity, the approximation
guarantee of the k-pass Category-Advice algorithm tends to the inverse of the golden ratio
2/(1 +

√
5) ≈ 0.618. The convergence is extremely fast – the approximation ratio guaranteed by

the 5-pass algorithm is already within 0.01% of the inverse of the golden ratio. The following main
theorem of this section follows immediately from Lemmas 3.5 and 3.6.

Theorem 3.1. The exact approximation ratio of the k-pass Category-Advice algorithm is
F2k/F2k+1, where Fn is the nth Fibonacci number. Thus, the approximation ratio of the k-pass
Category-Advice algorithms tends to the inverse of the golden ration 2/(1 +

√
5) ≈ 0.618 as k

goes to infinity. This holds even when k is allowed to depend on n arbitrarily. For constant k, the
algorithm can be implemented as a semi-streaming algorithm using O(n) space.5

3.1 Positive Result

The 2-pass algorithm in [20] is called Category-Advice, so we refer to our generalization as
k-pass Category-Advice. The pseudocode appears in Algorithm 2. The algorithm is defined
iteratively with each iteration corresponding to a new pass. The algorithm initializes σ of the offline
nodes to the identity permutation. The algorithm maintains a category function c : V → Z∪{±∞}.
Initially, c is set to −∞ everywhere. In the ith pass, the algorithm runs Ranking on σc. Let Mi be
the resulting matching. For each v ∈ V , if c(v) = −∞ and v ∈Mi then c(v) is updated to −i. The
algorithm uses the updated c in the next pass. In words, c records for each vertex v the (negative
of the) first pass, in which v was matched. In the subsequent pass, the algorithm gives preference
to the nodes that were unmatched, followed by nodes that were matched for the first time in the
latest round, etc.

Algorithm 2 The k-pass Category-Advice algorithm.

procedure k-pass Category Advice
σ ← the identity permutation of V
initialize array c of size V with −∞
for i from 1 to k do

Perform the ith pass: Mi ←Ranking(σc)
for v ∈ V do

if c(v) = −∞ and v ∈Mi then

c(v)← −i
return Mk

Before we prove the main result of this subsection, we recall several useful results regarding the
analysis of the Ranking algorithm.

4A notable feature of this multi-pass algorithm is that after pass i, the algorithm can deterministically commit to
matching a subset of size F2i

F2i+1
|M | where M is a maximum matching. This will follow from Lemma 3.3.

5To the best of our knowledge, published semi-streaming algorithms for bipartite matching use space Ω̃(n) where
the Ω̃ hides polylogarithmic factors.
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Lemma 3.2 (Lemma 2 in Birnbaum and Mathieu [8]). Let G = (U, V,E) be a given bipartite
graph. Let π be a permutation of the online side, and σ be a permutation of the offline side. Let
x ∈ U ∪ V , and set H = G \ x. Let πH and σH be the permutations of UH and VH induced by π
and σ. If the matchings Ranking(πH , σH) and Ranking(π, σ) are not identical, then they differ
by a single alternating path starting at x.

Let M be a maximum matching in G. Choose x 6∈ M and delete it. The above lemma
implies that the size of the matching found by Ranking on H is at most the size of the matching
found by Ranking on G, while the size of a maximum matching hasn’t changed. We can repeat
this procedure until the resulting graph has a perfect matching M . This means that the worst-case
approximation ratio of Ranking is achieved on bipartite graphs with a perfect matching. Since the
k-pass Category-Advice algorithm is a Ranking-based algorithm, the same conclusion holds
for k-pass Category-Advice. Hence, from now on we assume that the input graph G = (U, V,E)
is such that |U | = |V | = n and G has a perfect matching. Before proving the main result of this
subsection, we need one more lemma regarding Ranking.

Lemma 3.3 (Implicit in the proof of Lemma 4 in Birnbaum and Mathieu [8]). Let σ1 be a
permutation of the offline vertices and let M1 =Ranking(σ1). Let v be an offline vertex such
that v 6∈ M1. Let σ2 be a permutation of the offline vertices obtained from σ1 by improving the
rank of v. Let M2 =Ranking(σ2). Then for every online node u if u ∈ M1 then u ∈ M2 and
σ2(M2(u)) ≤ σ2(M1(u)).

This lemma immediately implies the following:

Lemma 3.4. Let Mk be the matching obtained by running the k-pass Category-Advice algo-
rithm on some instance. Let Mk′ be the matching obtained by running the k′-pass Category-
Advice algorithm on the same instance. If k ≤ k′ then |Mk| ≤ |Mk′ |.

Proof. Simple induction.

We are now ready to prove the main result of this subsection.

Lemma 3.5. The k-pass Category-Advice algorithm achieves approximation ratio F2k/F2k+1.

Proof by induction on k. Base case: k = 1. The 1-pass Category-Advice algorithm is the simple
deterministic greedy algorithm, which achieves a 1/2 = F2/F3 approximation ratio.

Inductive step. Assume that the k-pass Category-Advice algorithm achieves approximation
ratio F2k/F2k+1. Let’s consider the (k + 1)-pass Category-Advice algorithm running on some
bipartite input graph G = (U ∪ V,E), where U are the online nodes. By Lemma 3.2, we may
assume without loss of generality that |U | = |V | and G has a perfect matching. Let U1 ⊆ U be the
set of nodes matched in the first pass of the algorithm. Let V1 ⊆ V be the nodes that U1 nodes are
matched to. Define U2 = U \ U1 and V2 = V \ V1. Note that there are no edges between U2 and
V2; otherwise some node of U2 would have been matched to some node of V2 in the first round. Let
Mi be the matching found by the (k + 1)-pass Category-Advice algorithm in round i, where
i ∈ [k+1]. Also define M11 = Mk+1 ∩U1×V1, M12 = Mk+1 ∩U1×V2, and M21 = Mk+1 ∩U2×V1.
We are interested in computing a bound on |Mk+1| = |M11|+ |M12|+ |M21|. Figure 1 is a graphical
depiction of the variables described.

Observe that after the first round, nodes in U1 prefer nodes from V2 to those from V1. Moreover,
nodes in V2 are only connected to nodes in U1 and there is a perfect matching between V2 and a
subset of U1. Thus, the matching constructed between U1 and V2 in the next k passes is the same
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U1

U2

V1

V2

M1

U1

U2 V2

V11

V12

M11

M12M21

Mk+1

V1

Figure 1: G is the input graph. On the left we show the matching constructed in the first pass.
On the right we show the matching constructed in the k + 1st pass.

as if we ran k-pass Category-Advice algorithm on the subgraph of G induced by U1 ∪ V2. This
implies that |M12| ≥ (F2k/F2k+1)|V2| = (F2k/F2k+1)|U2|.

By Lemma 3.3, in the k + 1st pass, all nodes from U1 that were not matched with V2 will
be matched with some nodes in V1, i.e., |U1| = |M12| + |M11|. Let V11 be such a set, and let
V12 = V1 \ V11. We would like to lower bound |M21|. To that end we first lower bound the size
of a maximum matching between U2 and V12. Since U2 is only connected to V1 and since we
assume there is a perfect matching, a maximum matching between U2 and V1 is of size |U2|. Thus,
the size of a maximum matching between U2 and V12 is at least |U2| − |V11|. Also, observe that
|V11| = |V1| − |V12| and |V12| = |M12|. Therefore, the size of a maximum matching between U2 and
V12 is at least |U2|−(|V1|−|M12|) = |U2|−|U1|+ |M12| (note that |U1| = |V1|). Finally, observe that
in the last round, the algorithm constructs a maximal matching between U2 and V12 guaranteeing
that |M21| ≥ (1/2)(|U2| − |U1|+ |M12|).

Putting it all together, we obtain

|Mk+1| = |M11|+ |M12|+ |M21| = |U1| − |M12|+ |M12|+ |M21|

≥ |U1|+
1

2
(|U2| − |U1|+ |M12|) ≥

1

2

(
|U2|+ |U1|+

F2k

F2k+1
|U2|

)

=
1

2

(
n+

F2k

F2k+1
(n− |M1|)

)
=

(
1

2
+

F2k

F2k+1

)
n− F2k

2F2k+1
|M1|.

By Lemma 3.4 we also have that |Mk+1| ≥ |M1|. Thus, we derive

|Mk+1| ≥ max

{
|M1|,

(
1

2
+

F2k

F2k+1

)
n− F2k

2F2k+1
|M1|

}
.

This implies that |Mk+1| ≥ 1/2+F2k/F2k+1

1+F2k/(2F2k+1)
n =

F2k+1+F2k

2F2k+1+F2k
n =

F2(k+1)

F2(k+1)+1
n.

3.2 Negative Result

In this subsection, we construct a family of bipartite graphs (Gk)
∞

k=1 with the following properties:

1. Gk has exactly F2k+1 online nodes and F2k+1 offline nodes.

2. Gk has a perfect matching.
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3. The k-pass Category-Advice algorithm finds a matching of size F2k.

4. For all k′ > k, the k′-pass Category-Advice algorithm finds a matching of size F2k + 1.

Remark 3.1. The last property allows us to conclude that the approximation ratio of k-pass
Category-Advice converges to the inverse of the golden ratio even when k is allowed to de-
pend on n arbitrarily.

This family of graphs shows that our analysis of the k-pass Category-Advice algorithm is tight.
First, we describe the construction and then prove the above properties.

The construction of the Gk is recursive. The base case is given by G1, which is depicted in
Figure 2. The online nodes are shown on the left whereas the offline nodes are on the right. The
online nodes always arrive in the order shown on the diagram from top to bottom, and the initial
permutation σ of the offline nodes is also given by the top to bottom ordering of the offline nodes
on the diagram.

Figure 2: G1 is the graph used for the basis of the induction.

In the recursive step, we assume that Gk has been constructed, and we show how to construct
Gk+1. The online nodes U of Gk+1 are partitioned into three disjoint sets U = U1 ∪ U2 ∪ U3 such
that |U1| = |U3| = F2k+1 and |U2| = F2k. Similarly, the offline nodes V of Gk+1 are partitioned
into three disjoint sets V = V1 ∪ V2 ∪ V3 such that |V1| = |V3| = F2k+1 and |V2| = F2k. There is
a copy of Gk between U1 and V3. U2 and V2 are connected by parallel edges. There is a complete
bipartite graph between U1 and V1, as well as between U2 and V1. Finally, U3 is connected to V1

by parallel edges. The construction is depicted in Figure 3.

U1

U2

U3

V1

V2

V3

Gk

F2k+1

F2k

F2k+1

F2k+1

F2k

F2k+1

Figure 3: Gk+1 depicts the inductive construction.

Lemma 3.6. Properties (1-4) mentioned at the beginning of this subsection hold for the Gk.
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Proof by induction on k. Base case: k = 1. We have that G1 has 2 online and 2 offline nodes and
F3 = 2. It is easy to see that G1 has a perfect matching. The 1-pass Category-Advice algorithm
is simply the regular deterministic greedy algorithm, which clearly returns a matching of size 1 on
G1, and F2 = 1. Lastly, 2-pass Category-Advice finds a matching of size F2+1 = 2 and adding
more passes after that does not change the matching found by the algorithm.

Inductive step. Assume that properties (1-4) hold for Gk. First, observe that the number of
online vertices of Gk+1 is equal to the number of offline vertices and is equal to

F2k+1 + F2k + F2k+1 = F2k+2 + F2k+1 = F2k+3 = F2(k+1)+1.

By inductive assumption, Gk has a perfect matching. Therefore, U1 vertices can be matched with
V3 via the perfect matching given by Gk. In addition, U2 can be matched with V2 by parallel edges,
and U3 can be matched with V1 by parallel edges as well. Thus, Gk+1 has a perfect matching.
Thus, we proved properties 1 and 2. Recall, that the order in which online vertices U appear is
the top-to-bottom order in Figure 3. To prove the 3rd property, observe that in the first pass, the
(k + 1)-pass Category-Advice algorithm matches U1 and V1 by parallel edges, U2 with V2 by
parallel edges, and leaves U3 and V3 unmatched. Since V3 is only connected to the nodes U1, in the
next k passes the behavior of the algorithm between U1 and V3 nodes is exactly that of the k-pass
Category-Advice algorithm. Therefore, by the inductive assumption, the algorithm is going to
match exactly F2k nodes from U1 with the nodes in V3. The remaining F2k+1 − F2k nodes from
U1 will be matched to the nodes in V1 (since those are the only neighbors of U1 nodes besides the
nodes from V3). Also note that the nodes from U2 in all passes behave the same way – they prefer
V1 nodes to V2 nodes. Thus, since V1 will have F2k nodes unmatched after processing all nodes of
U1 in the last round, all of U2 nodes will be matched to V1 in the last round. This implies that after
processing U1 and U2 in the last round, all of V1 nodes are matched. Therefore, none of U3 nodes
can be matched. Thus, the matching found by the (k + 1)-pass Category-Advice algorithm on
Gk+1 is of size |U1|+ |U2| = F2k+1 + F2k = F2k+2 = F2(k+1). The last property is proved similarly
to the 3rd. Let k′ > k be given and we analyze the behavior of k′-pass Category-Advice on
Gk+1. After the first pass, by inductive assumption, the next k′ − 1 passes are going to produce a
matching of size F2k + 1 between U1 and V3. This means that in the last pass, F2k+1 − (F2k + 1)
vertices from U1 will be matched with V1. This, in turn, implies that F2k vertices from U2 will be
matched with V1, leaving 1 more vertex from V1 to be matched with U3. This results in the overall
matching of size F2k+1 + F2k + 1 = F2k+2 + 1.

4 Analysis of MinDegree in the Known IID Model

In this section we prove a tight approximation ratio for a natural greedy algorithm in the known IID
input model—MinDegree. Recall from Section 2 that every algorithm achieving approximation
ratio ρ in the known IID model can be converted into a greedy algorithm achieving approximation
ratio ≥ ρ. Thus, we can consider greedy algorithms without loss of generality. Moreover, greedy
algorithms satisfying natural consistency conditions (see Definition 2.3) achieve approximation ratio
at least 1− 1/e (see Theorem 2.1). Ties may occur in a greedy algorithm when an online node has
more than one available neighbor. A greedy algorithm can be made more specialized if we specify
a tie-breaking rule. How important is the tie-breaking for the performance of a greedy algorithm in
the known IID model? Turns out that it’s very important and a good tie breaking rule can improve
the approximation ratio.

Algorithms beating 1− 1/e ratio are known in this model ([5, 40, 28, 31, 13]). Although these
algorithms are not stated as greedy algorithms, we can apply the general conversion to turn them

14



into greedy algorithms, albeit with unnatural tie-breaking conditions. The tie-breaking rules of
these algorithms often require polynomial time preprocessing of the type graph, thus they are
feasible from the theoretical point of view, but not from a practical point of view for large type
graphs. This motivates the study of conceptually simple and practical tie-breaking rules for greedy
algorithms in the known IID model. We contribute to this by studying a natural tie-breaking rule.

Remark 4.1. In fact, it is easy to see that there is an optimal tie breaking rule that can be computed
by dynamic programming. This leads to an optimal online algorithm in the known IID model.
Unfortunately, the size of the dynamic programming table is exponentially large, so computing this
optimal tie-breaking rule using such a dynamic program is not computationally feasible. Currently
no one knows how to analyze an optimal tie-breaking rule, but certain potentially sub-optimal and
computationally feasible tie-breaking rules have been analyzed as discussed above.

Our algorithm is MinDegree. The motivation for studying this algorithm is as follows. It is
easy to see that in the adversarial setting we can take any greedy algorithm, modify the tie-breaking
rule to always give more preference to the offline nodes of degree 1, and this will not decrease the
approximation ratio of the algorithm. Generalizing this, we may come to the conclusion that online
vertices should give preference to the offline vertices of smaller degrees. The problem is that in
the adversarial setting we do not know the degrees of the offline nodes a priori; however, in the
known IID setting we can estimate the degrees of the offline vertices from the type graph. This
is precisely what MinDegree formalizes. The algorithm is given a type graph G = (U, V,E) as
input. It keeps track of a set S of currently “active”, i.e., not yet matched, offline nodes. When a
new node ũ arrives, it is matched to its active neighbor of minimum degree in the type graph. The
pseudocode of MinDegree is presented in Algorithm 3.

Algorithm 3 The MinDegree algorithm.

procedure MinDegree(G = (U, V,E))
Let S = V denote the set of active offline nodes
repeat

Let û denote the newly arriving online node
Let N(û) = {v ∈ S | (u, v) ∈ E}
if N(û) 6= ∅ then

Let v = argminv∈N(û) deg(v)
Match û with v
Remove v from S

until all online nodes have been processed

Remark 4.2. Our algorithm does not fully break ties, i.e., MinDegree takes some neighbor of
currently minimum degree. In practice, it means that ties are broken in some arbitrary way, e.g.,
by names of vertices. In our theoretical analysis, this means that the adversary is more powerful,
as it can decide how the algorithm breaks these ties.

MinDegree is a conceptually simple and promising algorithm in the known IID setting. Indeed,
a version of MinDegree has been extensively studied in the offline setting (see Besser and Poloczek
[7] and references therein). Unfortunately, in spite of having excellent empirical performance as well
as excellent performance under various random input models, it has a bad worst-case approximation
ratio of 1/2 in the offline adversarial setting [7]. As far as we know, this algorithm has not been
analyzed in the known IID model. We obtain a result that, in spirit, is similar to the offline result,
but the proof is different. Namely, we show that MinDegree cannot achieve an approximation
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ratio better than 1 − 1/e, which is guaranteed by any consistent greedy algorithm in the known
IID model.

Theorem 4.1.

AR(MinDegree) = 1− 1

e

The negative result holds no matter which rule is used to break (remaining) ties in MinDegree.

First observe that AR(MinDegree) ≥ 1− 1/e immediately follows from Theorem 2.1, since it
is easy to see that MinDegree satisfies the consistency conditions. Thus, the rest of this section
is dedicated to proving AR(MinDegree) ≤ 1− 1/e. Namely, we prove the following.

Theorem 4.2 (MinDegree negative result). There is a family of type graphs witnessing

AR(MinDegree) ≤ 1− 1/e.

This result holds no matter which rule is used to break (remaining) ties in MinDegree.

U V

U1 V1

U2 V2

U3 V3

U4 V4

Figure 4: G2,4.

To prove the above theorem we use the family of type graphs due to Goel and Mehta [27] as a
building block. Each graph in that family is indexed by two integers L and N . Let GL,N (U, V,E)
denote the (L,N)th graph in the family. The offline side is partitioned into N blocks of size L:

V =
⋃̇N

i=1Vi. The online side is partitioned into N blocks of size L, i.e., U =
⋃̇N

i=1Ui. The edges
are as follows: there is a complete biclique between Vi and Uj if and only if i ≥ j. An example of
this graph with L = 2 and N = 4 is depicted in Figure 4.

Theorem 4.3 (Goel and Mehta [27]). There is a tie-breaking criterion such that a simple greedy
algorithm finds a matching of size ≤ LN(1− 1/e) + o(LN) on GL,N with high probability.

In fact, the implicit tie-breaking criterion in the work of Goel and Mehta on GL,N is equivalent
to breaking ties by maximum degree, i.e., online nodes from Uj are matched with a neighboring
node from Vi with largest possible i. Thus, the online nodes try to fill in the spaces on the V side
from bottom up to prevent future online nodes from having neighbors. The high level idea behind
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our construction is to use K independent copies of GL,N and N shared gadgets. The gadgets are
used to make the offline degrees the same on each copy of GL,N without affecting the size of the
matching found by the algorithm on a particular copy of GL,N . Then we can invoke an adversarial
argument to say that MinDegree on the augmented GL,N behaves exactly like the Goel and
Mehta greedy algorithm on the original GL,N . As the number of copies K goes to infinity, the
contribution of the shared gadgets to the size of the overall matching goes to zero. Thus, we get
the approximation ratio of 1− 1/e for MinDegree.

We denote our type graph by GL,N,K . Let Gi
L,N denote the ith copy of GL,N in our type graph

for i ∈ [K]. Gadget j, denoted by Hj,L, simply consists of a biclique with the offline side of size

L + o(L) and the online side of size L. We let HL denote
⋃̇N

j=1Hj,L. For each i, we connect the

offline side of kth block of Gi
L,N via a biclique with the online side of Hj,L for k ≤ j. Figure 5

shows an example, where the offline side has the same number of nodes as the online side in each
gadget for simplicity. In Figure 5, black nodes indicate the online side and white nodes indicate
the offline side.

Copy of GL,N Gadgets HL

H1,L

H2,L

H3,L

H4,L

Figure 5: L = 2, N = 4.

Proof of Theorem 4.2. Since each offline node in each copy Gi
L,N has the same degree, we may

assume that MinDegree breaks ties by matching an online node from block j with an offline node
of block k for the largest possible k. This is the same behavior as in Goel and Mehta [27] analysis.
Assume that L,N, and K are large enough. By the Chernoff bound, with high probability the
number of online nodes generated from Hj,L is bounded by L + o(L). Thus, by the choice of our
gadget, with high probability all nodes from Hj,L can be matched to the offline nodes within Hj,L.
Therefore, the online nodes generated from gadgets do not have affect on any of the independent
copies of GL,N . Moreover, the expected number of nodes generated from Gi

L,N is LN . Invoking the
Chernoff bound again, we see that with high probability for each i we generate at most LN+o(LN)
nodes fromGi

L,N . Since independent copies Gi
L,N do not share any edges except with the gadget, the

matchings constructed by our algorithm on independent copies are independent. Since the behavior
of our algorithm on each copy of GL,N is identical to the behavior of a simple greedy algorithm,
our algorithm for each Gi

L,N constructs a matching of expected size LN(1 − 1/e) + o(LN). Thus,
overall our algorithm finds a matching of expected size LNK(1− 1/e) + o(LNK). Moreover, it is
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easy to see that a matching of size at least LNK−o(LNK) is possible. The claimed approximation
ratio follows.

Remark 4.3. The claim of Theorem 4.2 can be strengthened by taking away the power of the
adversary in breaking ties. We can force the unfavorable tie-breaking used in the above proof by
introducing an additional biclique gadget with N + o(N) offline nodes and N online nodes. We
modify the degrees in Gi

L,N in a natural way: the offline nodes from block j of Gi
L,N get connected

to N − j nodes of the online side of the new gadget. This forces the MinDegree algorithm to
process blocks Gi

L,N from “bottom to top” (see Figure 4), which is exactly the wrong order that
results in LNK(1 − 1/e) + o(LNK) matching. It is easy to see that the only other affect this
additional gadget introduces is to increase the size of the matching found by MinDegree, as well
as OPT, by a lower order term N + o(N) = o(LNK).

5 A Hybrid Algorithm in the Priority Model

We propose a conceptually simple greedy algorithm for bipartite matching. Our algorithm is a
natural hybrid between two well-studied greedy algorithms for bipartite matching—Ranking (see
Section 2) and MinGreedy (due to Tinhofer [48]). MinGreedy is an offline algorithm that selects
a random vertex of minimum degree in the input graph and matches it with a random neighbor,
removes the matched vertices, and proceeds. Despite excellent empirical performance and excellent
performance under certain random input models, the algorithm achieves approximation ratio 1/2
in the adversarial input setting (see [7] and references therein). Algorithm 4 shows the pseudocode
of a natural adaptation of MinGreedy to bipartite graphs G = (U, V,E). The algorithm picks a
random node of minimum degree from U and matches it to a random neighbor from V . Observe
that this algorithm can be realized as a fully randomized priority algorithm, where the ordering of
the input items is by increasing degree with ties broken randomly.

Algorithm 4 The MinGreedy algorithm.

procedure MinGreedy(G = (U, V,E))
repeat

Let d = min{deg(i) | i ∈ U} and S = {i ∈ U | deg(i) = d}
Pick i ∈ S uniformly at random
Let N(i) be the set of neighbors of i
if N(i) = ∅ then

i remains unmatched
Delete i from G

else

Match i with j chosen from N(i) uniformly at random
Delete i and j from G

until U = ∅

Karp, Vazirani, Vazirani [33] exhibited a family of graphs, on which Ranking achieves its worst
approximation ratio 1 − 1/e. The biadjacency matrix of the nth graph in this family is an n × n
upper triangular matrix with all 1s at and above the diagonal. Interestingly, MinGreedy finds a
perfect matching on these graphs. Thus, it is natural to consider the performance of an algorithm
that combines Ranking and MinGreedy. This is our proposed MinRanking algorithm (see
Algorithm 5). In MinRanking, a random permutation π of vertices V is initially sampled. Then,
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nodes in U are processed in the increasing order of their current degrees with ties broken randomly.
When a node u is processed, it is matched with its neighbor appearing earliest in the ordering π.

Algorithm 5 The MinRanking algorithm.

procedure MinRanking(G = (U, V,E))
Pick a permutation π : V → V uniformly at random
repeat

Let d = min{cur deg(i) | i ∈ U} and S = {i ∈ U | cur deg(i) = d}
Pick i ∈ S uniformly at random
Let N(i) be the set of neighbors of i
if N(i) = ∅ then

i remains unmatched
Delete i from G

else

Match i with j = argmink{π(k) | k ∈ N(i)}
Delete i and j from G
Update cur deg

until U = ∅

MinrRankingmodifiesMinGreedy in the same way that the onlineRanking algorithm mod-
ifies the seemingly more natural online randomized algorithm that simply matches an online vertex
to an available neighbor uniformly at random which surprisingly was shown to be (asymptotically)
a 1/2 approximation. So it is hopeful that MinRanking can improve upon MinGreedy. Like
MinGreedy, our algorithm can be implemented and analyzed in the fully randomized adaptive
priority model [12]. Since our algorithm is a generalization of Ranking, its asymptotic approxi-
mation ratio is at least 1 − 1/e ≈ 0.6321. The main result of this section is that the asymptotic
approximation ratio of this algorithm is at most 1/2 + 1/(2e) ≈ 0.6839, as witnessed by the family
of graphs due to Besser and Poloczek [7].

Theorem 5.1.

1− 1

e
≤ AR(MinRanking) ≤ 1

2
+

1

2e
.

This negative result shows that MinRanking falls short of the known bound for Ranking
in the ROM model, where it achieves approximation ratio 0.696 [39]. From our result it follows
that a deterministic ordering of the online nodes by non-decreasing degree (breaking ties by the
given adversarial ordering of those nodes) will also fall short. That is (similar to the result in [44]
for deterministic decisions), a naive randomized ordering can be better than a seemingly informed
deterministic ordering.

5.1 The Besser-Poloczek Graph Construction

In this section we describe the family of bipartite graphs constructed by Besser and Poloczek in [7].
Each graph in the family is indexed by an integer parameter b. Let Gb(L,R,E) denote the bth
graph in the family. A note about notation: we use L and R instead of U and V in the definition
of Gb. This is because we want to reserve U and V for a different graph that will play the central
role in the analysis of MinRanking. Continuing with the definition of Gb(L,R,E), each of the
two sides L and R is partitioned into three sets:

• L = S1,L∪̇S2,L∪̇S3,L
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• R = S1,R∪̇S2,R∪̇S3,R

Blocks S2,L and S2,R are further partitioned into b sets each:

• S2,L =
⋃̇b

i=1S
(i)
2,L

• S2,R =
⋃̇b

i=1S
(i)
2,R

For convenience, we give numeric names to each vertex in L and R:

• S1,W = {1W , 2W , . . . , b2W } where W ∈ {L,R}

• S
(i)
2,W = {(b2 + (i− 1)b+ 1)W , . . . , (b2 + ib)W } where W ∈ {L,R}

• S3,W = {(2b2 + 1)W , . . . , (2b2 + 2b)W } where W ∈ {L,R}

Thus, we have |L| = |R| = 2b2 + 2b. Next, we describe the edges of Gb:

• There is a biclique between S3,L and S1,R and between S3,R and S1,L.

• S1,R and S2,L are connected by “parallel” edges, i.e., {iR, (b2 + i)L} ∈ E for all i ∈ [b2].

• S1,L and S2,R are connected by “parallel” edges, i.e., {iL, (b2 + i)R} ∈ E for all i ∈ [b2].

• S3,L and S3,R are connected by “parallel” edges, i.e., {iR, iL} ∈ E for all i ∈ {2b2+1, . . . , 2b2+
2b}.

• There is a biclique between S
(i)
2,L and S

(i)
2,R for each i ∈ [b].

Figure 6 depicts the Besser-Poloczek graph with b = 3. We note that Gb has a perfect matching.

Claim 5.2. Gb has a perfect matching, i.e., a matching of size 2b2 + 2b.

Proof. Using the parallel edges, match the vertices in S1,R with the vertices in S2,L, the vertices in
S2,R with the vertices in S1,L, and the vertices in S3,L with the vertices in S3,R.

Besser and Poloczek [7] show that the graphs Gb are asymptotically hardest for MinGreedy.

Theorem 5.3 (Besser,Poloczek [7]). The expected size of a matching constructed by MinGreedy
on Gb is b2 + o(b2). Thus, the worst case asymptotic approximation ratio of MinGreedy is 1/2.

In the next section we shall see that MinRanking finds a significantly larger matching on Gb.

5.2 Analysis of MinRanking on the Besser-Poloczek Graphs

This section is devoted to proving the following theorem, which immediately implies Theorem 5.1.

Theorem 5.4. MinRanking running on the family of graphs {Gb} has the asymptotic approxi-
mation ratio exactly 1

2 +
1
2e .
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S3,L

S2,LS1,R

S3,R

S2,R S1,L

Figure 6: The Besser-Poloczek graph with parameter b = 3. The edges on the left wrap around on
the right connecting the nodes in S3,L to the nodes in S3,R.

We shall prove the above theorem in two steps. In the first step, we get tight bounds on the
expected number of edges of relevant type in a matching constructed by MinRanking running
on certain induced subgraphs of the Besser-Poloczek graphs. In the second step, we show how
to combine the results for subgraphs and derive the expected size of a matching of the entire
Besser-Poloczek graph.

We begin by analyzing the expected performance of MinRanking on a particular bipartite
graph Hn,k(U, V,W ) parameterized by two integers n and k where k ≤ n. The relevance of this
analysis to Theorem 5.4 will be evident later. We use a different capital letter for these graphs
to distinguish them from the Besser-Poloczek graphs. The left side consists of n vertices U =
{1U , . . . , nU}. The right side is partitioned into two blocks V = V1∪̇V2 such that the first block
contains k vertices V1 = {1V1 , . . . , kV1} and the second block contains n vertices V2 = {1V2 , . . . , nV2}.
The edges consist of biclique edges between U and V1 and parallel edges between U and V2, i.e.,
we have {iU , iV2} ∈W for i ∈ [n]. Figure 7 depicts this bipartite graph for n = 5 and k = 3.

Consider MinRanking running on Hn,k. For reasons that will become clear later, we are
interested in obtaining sharp bounds on the expected number of (U, V2) edges in a matching output
by MinRanking. Let t ∈ {0, 1, . . . , n} denote the time, i.e., the iteration number of the main loop
in MinRanking with 0 being the time prior to the execution of the main loop. First, we make the
following simple observation.

Lemma 5.5. Consider MinRanking running on Hn,k. Then ∀t ∈ {0, 1, . . . , n} the subgraph
remaining at time t in MinRanking (disregarding isolated vertices) is isomorphic to Hn−t,k−k′ for
some k′ ≤ k. In particular, ∀t ∈ {0, 1, . . . , n} every unmatched vertex in U has the same current
degree at time t.

Proof. This follows by a simple induction on t. Isolated vertices do not affect the performance
of MinRanking, so we freely disregard them whenever they occur. Case t = 0 is trivial. By
the induction hypothesis, at time t we have a graph isomorphic to Hn−t,k−k′. In the inductive
step, there are possibly two cases at time t + 1. In the first case, a vertex in U is matched with
a vertex in V2. After deleting both of these vertices, the remaining subgraph is isomorphic to
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U

V1

V2

Figure 7: The Hn,k graph with n = 5 and k = 3.

Hn−t−1,k−k′ = Hn−(t+1),k−k′ . In the second case, a single vertex u in U is matched with a vertex in
V1 (if there is one remaining, i.e., if k − k′ ≥ 1). After deleting both of these vertices, the unique
vertex in V2 that used to be the neighbor of u becomes isolated. Disregarding this isolated vertex,
the remaining subgraph is isomorphic to Hn−t−1,k−k′−1 = Hn−(t+1),k−(k′+1).

Therefore, by symmetry, we may assume from now on that MinRanking processes the vertices
in U in the order from 1U to nU . This assumption does not affect the expected number of (U, V2)
edges in a matching output by MinRanking.

Definition 5.1. Let RHSGreedy be the algorithm that receives vertices from V1∪V2 in a random
order and matches the received vertex to the first available vertex in U , if there is one.

It is easier to analyze the expected number of (U, V2) edges for RHSGreedy than for Min-
Ranking. Fortunately, the two algorithms produce the same outputs.

Lemma 5.6. For a given fixed permutation π of vertices in V1 ∪ V2 the matching constructed by
MinRanking is exactly the same as the matching constructed by RHSGreedy on Hn,k. Conse-
quently, the expected number of (U, V2) edges in the output is the same for the two algorithms.

Proof. Let v1, . . . , vn+k be the vertices in V1 ∪V2 listed in the order given by π. By Lemma 5.5, we
may assume that the order in which MinRanking considers vertices in U is given by 1U , . . . , nU .
Note that RHSGreedy has n+k iterations, since in iteration i it considers vi, while MinRanking
has n iterations, since in iteration i it considers iU . Thus, the two algorithms run in different time
domains. However, if we ignore iterations in which RHSGreedy considers isolated vertices, it
is easy to see that both algorithms have n iterations. We prove that the matching constructed
by MinRanking is the same as the matching constructed by RHSGreedy by induction on the
number of U vertices matched by MinRanking.

Let vj denote the vertex matched by MinRanking with 1U . The vertex 1U can be matched
either with a vertex in V1 or with 1V2 . We consider these two cases separately.
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Suppose that vj ∈ V1. By the definition of MinRanking, there exists k > j such that 1V2 = vk,
and for all i < j we have vi ∈ V2. Therefore, RHSGreedy on this input matches each vi ∈ V2

with its unique neighbor in U for i < j. Then vj will be matched with 1U , as it will be the first
available neighbor of vj in U . Note that removing the two matched vertices together with 1V2

(which becomes isolated) does not affect the matchings constructed by the two algorithms on the
resulting subgraphs. Thus, we can eliminate these vertices and proceed inductively.

Now, suppose that vj ∈ V2. By the definition of MinRanking, for all i < j we have vi ∈ V2.
Arguing as above, RHSGreedy on this input matches each vi ∈ V2 with its unique neighbor in U
for i ≤ j. In particular, vj is matched with 1U . Eliminating the two matched vertices does not affect
the rest of the matching constructed by the two algorithms. Thus, we can proceed inductively.

We showed that in both cases both algorithms include the same edge (1U , vj) in their outputs,
and we can proceed inductively after removing 1U , vj and possibly 1V2 .

Lemma 5.7. Consider RHSGreedy running on Hn,n. Let Xn(t) denote the number of vertices
in U unmatched at iteration t (ignoring trivial iterations with isolated vertices). Let Yn(t) denote
the number of vertices in V2 that have been matched up to and including iteration t (ignoring
trivial iterations with isolated vertices). Then (Xn(t), Yn(t)) is a Markov chain with the state space
{0, 1, . . . , n}2 and the following transition probabilities:

P ((Xn(t+ 1), Yn(t+ 1)) = (x− 1, y) | (Xn(t), Yn(t)) = (x, y)) =
x+ y

2x+ y
, and

P ((Xn(t+ 1), Yn(t+ 1)) = (x− 1, y + 1) | (Xn(t), Yn(t)) = (x, y)) =
x

2x+ y
,

where t ∈ {0, 1, . . . , n− 1}. The initial state is (Xn(0), Yn(0)) = (n, 0).

Proof. Let Xn(t) = x and Yn(t) = y. Then the number of vertices from V2 that remain as possible
candidates for a match with a vertex in U is x. The number of vertices that have been matched
in V1 is n − x − y. Thus, the number of vertices in V1 that remain as possible candidates for a
match with a vertex in U is n− (n−x− y) = x+ y. In the next nontrivial iteration, the number of
remaining U vertices goes down by one, hence Xn(t+1) = x− 1. The number of matched vertices
in V2 can either remain the same or increase by one. RHSGreedy matches a vertex from V2 with
a vertex in U if and only if a vertex from V2 appears next in the permutation of the remaining
vertices from V1 ∪ V2, which happens with probability x/(2x+ y). Therefore, we have

P ((Xn(t+ 1), Yn(t+ 1)) = (x− 1, y + 1) | (Xn(t), Yn(t)) = (x, y)) =
x

2x+ y
.

The probability of the other case, i.e., Yn(t+1) = y+1), is simply 1− x/(2x+ y) = (x+ y)/(2x+
y).

By Lemma 5.6, the expected number of (U, V2) edges in a matching constructed by MinRank-
ing is equal to E(Yn(n)). The asymptotic behavior of E(Yn(n)) is captured by a solution to a
related ordinary differential equation – this is an application of the differential equation method
(see [35], [49], [50]). We get the following result.

Lemma 5.8. Let the setting be as in Lemma 5.7. For every ǫ > 0 we have

(1− ǫ)
n

e
+ o(n) ≤ E(Yn(n)) ≤

n

e
+ o(n).

We remark that E(Yn(n)) is also equal to the expected number of (U, V2) edges in a matching
constructed by MinRanking.
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Proof. Define ∆Yn(t) = Yn(t) − Yn(t− 1) and ∆Xn(t) = Xn(t) −Xn(t − 1). Then by Lemma 5.7
we have

E(∆Yn(t)) =
Xn(t)

2Xn(t) + Yn(t)
, and

E(∆Xn(t)) = −1.
Thus, we have

E(∆Yn(t))

E(∆Xn(t))
=

−Xn(t)

2Xn(t) + Yn(t)
.

Applying the differential equation method (see [35], [49], [50]), the asymptotics of Yn(n) are cap-
tured by a solution to the following ordinary differential equation (y is regarded as a differentiable
function of x):

dy

dx
=
−x

2x+ y

with the initial condition y(n) = 0. Let ỹ(x) be defined implicitly as a solution to the following
equation:

ln(1 + ỹ(x)/x) − 1

1 + ỹ(x)/x
= −1 + ln(n)− ln(x).

Then it is straightforward to verify that ỹ(x) is a solution to the above ODE. Note that the function
ỹ(x) is undefined at x = 0 (this essentially comes from the condition of Lemma 5.7 that t ≤ n− 1).
However, we have |E(Yn(n))−E(Yn(n−1))| ≤ 1, thus we can estimate the asymptotics of E(Yn(n))
by the asymptotics of E(Yn(n− 1)), which amounts to finding the value of ỹ at x = 1:

ln(1 + ỹ(1)) − 1

1 + ỹ(1)
= −1 + ln(n).

Define

f(z) = ln(1 + z)− 1

1 + z
+ 1− ln(n).

We have

f(n/e) = ln(1 + n/e)− ln(n/e)− 1

1 + n/e

= ln(1 + e/n)− 1

1 + n/e

=

(
e

n
− e2

2n2
+ o(n−3)

)
−
(
e

n
− e2

n2
+ o(n−3)

)

=
e2

2n2
+ o(n−3)

> 0

where the third equality follows from the Taylor series for ln(1 + x) and 1/(1 + 1/x) around 0, and
the last inequality holds for large enough n.
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Similarly, we have

f((1− ǫ)n/e) = ln(1 + (1− ǫ)n/e)− ln(n/e)− 1

1 + (1− ǫ)n/e

= ln(1− ǫ+ e/n)− 1

1 + (1− ǫ)n/e

≤ ln(1− ǫ/2) − 1

1 + (1− ǫ)n/e

≤ −ǫ/2− o(n−1)

< 0

where the first inequality holds for large enough n since ln is an increasing function, the second
inequality follows from ex ≥ 1 + x, and the last inequality holds for large enough n.

Since f(n/e) > 0 and f((1− ǫ)n/e) < 0, by the intermediate value theorem f(z) has a root in
the interval ((1− ǫ)n/e+ o(n), n/e+ o(n)). This is precisely the statement of this lemma.

Now we are in a position to prove the main theorem of this section.

Proof of Theorem 5.4. Fix ǫ > 0. Consider MinRanking running on graph Gb. We introduce the
following variables to denote the number of edges of certain types in a matching constructed by
MinRanking:

• Xi denotes the number of (S
(i)
2,L, S1,R) edges,

• Yi denotes the number of (S
(i)
2,L, S2,R) edges,

• Z denotes the number of (S1,L, S2,R) edges.

MinRanking first matches nodes in S2,L since these nodes have the minimum degree of b+ 1.

Once MinRanking matches a node in some block S
(i)
2,L, it will continue matching the nodes in the

same block until that block is exhausted. The algorithm then moves on to the next block. This
continues for at least b− 1 blocks. In the unlikely scenario that all b2 − b nodes of S1,R have been
matched in this process, nodes from S3,L would have degree b+ 1. Therefore, after considering at
least b− 1 blocks from S2,L the algorithm might start matching nodes from other parts of L, but

not sooner. The subgraph induced by S
(i)
2,L ∪ S

(i)
2,R ∪ S

(i)
1,R is Hb,b, where S

(i)
1,R consists of the nodes

connected in parallel to S
(i)
2,L. Therefore, by Lemma 5.8 we have

b2/e+ o(b2) ≥ E

[
b∑

i=1

Xi

]
≥ (1− ǫ)b2/e+ o(b2) (1)

The algorithm will match all the vertices from the first b− 1 blocks of S2,L. Therefore, we have

b2 ≥
b∑

i=1

Xi + Yi ≥ (b− 1)b. (2)

Note that Xi also counts the number of nodes from S
(i)
2,R available to be matched with S1,L. There-

fore, disregarding nodes from S3,L the number of nodes matched between S1,L and S2,R is at least
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(∑b
i=1 Xi

)
− 2b, i.e., we have

(
b∑

i=1

Xi

)
≥ Z ≥

(
b∑

i=1

Xi

)
− 2b. (3)

Putting all this together, the expected size of the matching output by MinRanking is

E

[
Z +

b∑

i=1

Xi + Yi

]
≥ E[Z] + (b− 1)b

≥ E

[
b∑

i=1

Xi

]
− 2b+ (b− 1)b

≥ (1− ǫ)b2/e+ b2 + o(b2)

= b2(1 + (1− ǫ)/e) + o(b2),

where the first inequality is by (2), the second inequality is by (3), and the last inequality is by (1).
Similarly, we have

E

[
Z +

b∑

i=1

Xi + Yi

]
≤ b2(1 + 1/e) + o(b2).

Since the graph has a perfect matching of size 2b2 + 2b, the asymptotic approximation ratio of
MinRanking on Gb is at least 1/2+1/(2e) and at most 1/2+(1− ǫ)/(2e). Since ǫ > 0 is arbitrary,
the theorem follows.

The expectation Eσ,π[Ranking(σ, π)] in the analysis of MinRanking is with respect to the
joint distribution for the Ranking permutation π of the offline nodes and the distribution on
σ induced by the tie breaking rule for the online nodes. The expectation can be written as
Eσ[Eπ[Ranking(σ, π)|σ]], the expectation with respect to π conditioned on the instantiations of
σ. By averaging this implies that there is some fixed setting of σ for which the inappropximation
result holds. In this regard, our inapproximation for MinRanking is the analogue of Besser and
Poloczek’s priority analysis of the MinGreedy algorithm. Both results show that what seems
to be a “well-motivated” deterministic (or random) ordering of the online vertices performs worse
than a naive uniform random ordering of the online vertices.

6 Conclusion and Open Problems

We have considered a number of “online-based” algorithms for the maximum bipartite matching
problem. We believe that the algorithms considered in this paper all pass the intuitive “you know
it when you see it” standard for conceptually simple algorithms. In particular, these algorithms
take linear time in the number of edges and are very easy to implement. Even given the restricted
nature of these algorithms, it is a challenge to understand their performance.

Our results for the MBM, in conjunction with the results in Poloczek et al. [46] for MaxSat
show both the promise and limitations of conceptually simple algorithms. Many open problems are
suggested by this work. Clearly, any problem studied in the competitive online literature can be
considered within the expanded framework of conceptually simple algorithms that in some way can
be considered as expansions of the online model. In particular, for what problems is there a general
method for de-randomizing online algorithms? Is there a precise algorithmic model that lends
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itself to analysis and captures multi-pass algorithms? And in addition to worst case and stochastic
analysis, how would any of the conceptually simple MBM algorithms perform “in practice”.

There are a number of more specific immediate questions that deserve consideration. We collect
a few of them here.

Open Problem 6.1. Can we establish a MBM inapproximation result for any category algorithm
(i.e. a two pass deterministic algorithm that online assigns a category to each input item which
is then used as the advice in the second pass)? In particular, is the Dürr et al. Category-Advice
algorithm the best such algorithm using say O(1) or O(log n) bits per input?

Open Problem 6.2. Does there exist a determnistic mutli-pass linear time algorithm that matches
or improves upon the 1− 1/e approximation of the Ranking algorithm?

Open Problem 6.3. What is the exact approximation ratio achieved by MinRanking? What is
the best achievable ratio by any randomized priority algorithm? Note that Pena and Borodin [44]
show that every deterministic priority algorithm for MBM cannot asymptotically exceed the 1/2
approximation that holds for any greedy algorithm.

Open Problem 6.4. Find a conceptually simple tie-breaking rule for the greedy algorithm that beats
the 1− 1/e approximation ratio in the known IID model.

Open Problem 6.5. Is there a randomized priority algorithm for MBM that achieves an approxi-
mation ratio better than that of Ranking in the ROM model?

Open Problem 6.6. Is there a simple multi pass algorithm for the vertex weighted matching problem
where the offline vertices are weighted? Note that Aggarwal et al. [1] show that a “perturbed”
version of KVV achieves a 1− 1/e approximation for this vertex weighted case.
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[29] Magnús M. Halldórsson, Kazuo Iwama, Shuichi Miyazaki, and Shiro Taketomi. Online inde-
pendent sets. Theor. Comput. Sci., 289(2):953–962, 2002.

[30] John E. Hopcroft and Richard M. Karp. An n5/2 algorithm for maximum matchings in bipartite
graphs. SIAM J. on Comput., 2(4):225–231, 1973.

[31] Patrick Jaillet and Xin Lu. Online stochastic matching: New algorithms with better bounds.
Mathematics of Operations Research, 39(3):624–646, 2014.

[32] Michael Kapralov. Better bounds for matchings in the streaming model. In Proc. of SODA,
pages 1679–1697, 2013.

[33] R. M. Karp, U. V. Vazirani, and V. V. Vazirani. An optimal algorithm for on-line bipartite
matching. In Proc. of STOC, pages 352–358, 1990.

[34] Christian Konrad, Frédéric Magniez, and Claire Mathieu. Maximum matching in semi-
streaming with few passes. In Proc. of APPROX and RANDOM, pages 231–242, 2012.

[35] Thomas G. Kurtz. Solutions of ordinary differential equations as limits of pure jump markov
processes. Journal of Applied Probability, 7(1):49–58, 1970.

[36] Brendan Lucier and Vasilis Syrgkanis. Greedy algorithms make efficient mechanisms. In Proc.
of Conference on Economics and Computation, EC, pages 221–238, 2015.

[37] A. Madry. Navigating central path with electrical flows: From flows to matchings, and back.
In Proc. of FOCS, pages 253–262, 2013.

[38] A. Madry. Computing maximum flow with augmenting electrical flows. In Proc. of FOCS),
pages 593–602, 2016.

[39] Mohammad Mahdian and Qiqi Yan. Online bipartite matching with random arrivals: An
approach based on strongly factor-revealing LPs. In Proc. of STOC, pages 597–606, 2011.

[40] Vahideh H. Manshadi, Shayan Oveis Gharan, and Amin Saberi. Online stochastic matching:
Online actions based on offline statistics. In Proc. of SODA, pages 1285–1294, 2011.

[41] Andrew McGregor. Graph sketching and streaming: New approaches for analyzing massive
graphs. In Proc. of Intern. Comput. Sci. Symp. in Russia, CSR, pages 20–24, 2017.

[42] Aranyak Mehta. Online matching and ad allocation. Foundations and Trends in Theoretical
Computer Science, 8(4):265–368, 2013.

29



[43] M. Mucha and P. Sankowski. Maximum matchings via gaussian elimination. In Proc. of FOCS,
pages 248–255, 2004.

[44] Nicolas Pena and Allan Borodin. On the limitations of deterministic de-randomizations for
online bipartite matching and max-sat. CoRR, abs/1608.03182, 2016.

[45] Matthias Poloczek. Bounds on Greedy Algorithms for MAX SAT, pages 37–48. 2011.

[46] Matthias Poloczek, Georg Schnitger, David P. Williamson, and Anke Van Zuylen. Greedy
algorithms for the maximum satisfiability problem: Simple algorithms and inapproximability
bounds. SICOMP. Accepted for publication.

[47] Matthias Poloczek and David P. Williamson. An experimental evaluation of fast approximation
algorithms for the maximum satisfiability problem. In Proc. of Intern. Symp. on Experimental
Algorithms, SEA, pages 246–261, 2016.

[48] Gottfried Tinhofer. A probabilistic analysis of some greedy cardinality matching algorithms.
Annals of Operations Research, 1(3):239–254, 1984.

[49] Nicholas C. Wormald. Differential equations for random processes and random graphs. Ann.
Appl. Probab., 5(4):1217–1235, 11 1995.

[50] Nicholas C. Wormald. The differential equation method for random graph processes and greedy
algorithms. In Lectures on approximation and randomized algorithms, pages 73–155. PWN,
Warsaw, 1999.

[51] Yuli Ye and Allan Borodin. Priority algorithms for the subset-sum problem. J. Comb. Optim.,
16(3):198–228, 2008.

30


	1 Introduction
	1.1 Summary of Our Results

	2 Preliminaries
	2.1 The Ranking Algorithm
	2.2 Known IID Model with Uniform Probability Distribution
	2.3 Priority Model

	3 Deterministic Multipass Online Algorithms
	3.1 Positive Result
	3.2 Negative Result

	4 Analysis of MinDegree in the Known IID Model
	5 A Hybrid Algorithm in the Priority Model
	5.1 The Besser-Poloczek Graph Construction
	5.2 Analysis of MinRanking on the Besser-Poloczek Graphs

	6 Conclusion and Open Problems

