
Takustr. 7
14195 Berlin

Germany
Zuse Institute Berlin

MATTHIAS MILTENBERGER1, TED RALPHS2,
DANIEL E. STEFFY3

Exploring the Numerics of
Branch-and-Cut for Mixed Integer

Linear Optimization

1 Zuse Institute Berlin, Department of Mathematical Optimization, Takustr. 7, 14195 Berlin, Germany, miltenberger@zib.de
2 Department of Industrial and System Engineering, Lehigh University, Bethlehem, PA 18015 USA, ted@lehigh.edu
3 Mathematics and Statistics, Oakland University, Rochester, MI 48309 USA, steffy@oakland.edu

ZIB Report 17-43 (July 2017)

ar
X

iv
:1

80
3.

03
45

5v
1 

 [
m

at
h.

O
C

] 
 9

 M
ar

 2
01

8



Zuse Institute Berlin
Takustr. 7
14195 Berlin
Germany

Telephone: +49 30-84185-0
Telefax: +49 30-84185-125

E-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

bibliothek@zib.de
http://www.zib.de


Exploring the Numerics of Branch-and-Cut for

Mixed Integer Linear Optimization

Matthias Miltenberger Ted Ralphs Daniel E. Steffy

July 20, 2017

Abstract

We investigate how the numerical properties of the LP relaxations
evolve throughout the solution procedure in a solver employing the branch-
and-cut algorithm. The long-term goal of this work is to determine
whether the effect on the numerical conditioning of the LP relaxations
resulting from the branching and cutting operations can be effectively
predicted and whether such predictions can be used to make better al-
gorithmic choices. In a first step towards this goal, we discuss here the
numerical behavior of an existing solver in order to determine whether
our intuitive understanding of this behavior is correct.

1 Introduction

The branch-and-cut algorithm for mixed integer linear optimization problems
(MILPs) combines aspects of the branch-and-bound algorithm with the cut-
ting plane algorithm to strengthen the initial LP relaxation (see [4] for a com-
plete description of these operations and the definitions of these terms). While
branching increases the number of subproblems to be solved and should thus be
avoided in principle, the addition of too many cutting planes often results in an
LP relaxation with undesirable numerical properties. Recent research into the
viability of solving MILPs using a pure cutting plane approach has provided
some insight into how and why this happens and has explored techniques to
generate a sequence of valid inequalities whose addition to the LP relaxation is
less likely to cause difficulties [5, 9].

In general, branching and cutting must be used carefully in concert with
each other to maintain numerical stability. The effect of these operations on
numerics is not well understood, however, and is difficult to control directly.
There exists a number of approaches to effectively combine the branching and
cutting operations. In some solvers, cutting is only done at the root node, while
in others, cuts are added throughout the tree. As with any numerical process,
implementations of these solution algorithms use floating-point arithmetic and
are subject to accumulation of roundoff errors within the computations. With-
out appropriate handling of these errors, the algorithms may return unreliable
results, failing to behave or terminate as expected.

Modern MILP solvers use a wide range of techniques to mitigate the diffi-
culties associated with numerical errors. For example, it is standard practice to
discard or modify cuts whose coefficients differ significantly in magnitude, since

1



these inequalities are likely to degrade the conditioning of the LP relaxation.
This and other techniques help to ensure that the LP relaxation will have better
numerical properties and increases the computational stability of the algorithm.

It is well understood that the addition of cutting planes has the potential to
negatively impact the numerical properties of the LP relaxation, even after steps
have been taken to improve their reliability. On the other hand, branching may
counteract this effect to some extent, leading to a more stable algorithm overall.
In this paper we seek to carefully investigate the impact of both branching and
cutting on the numerical properties of the LP subproblems solved in the branch-
and-cut algorithm. The purpose of this work is both to confirm existing folklore,
namely that branching improves condition and cutting degrades it, as well as
to explore the potential for directly controlling numerical properties through
judicious algorithmic choices.

In Section 2 we discuss the choice and computation of the basis matrix
condition numbers as a measure of numerical stability. In Section 3 we describe
computational results regarding how branching and cutting affect the condition
numbers. Section 4 discusses some implications of our findings and ongoing
work.

2 Condition numbers

The condition number of a numerical problem is a bound on the relative change
(in terms of a given norm) in the solution to a problem that can occur as a
result of a change in the input (see [3] for formal definitions). For example, the
condition number of a matrix A is κ(A) = ‖A‖2‖A−1‖2 and yields a bound on
how much the solution to the linear system of equations Ax = b might change,
relative to a change in the right hand side vector b. For LPs, a handful of dif-
ferent condition numbers have also been defined; a comprehensive treatment of
condition numbers for LPs, along with much more general discussion regarding
the concept of problem condition, is given in [3].

When LPs are solved by the simplex method, a sequence of basis matri-
ces are encountered (see [4]), each corresponding to a square system of linear
equations. Although condition numbers can be defined for LPs themselves, it is
the condition number of the basis matrices encountered during a simplex solve
(particularly the optimal basis) that is the most relevant measure of numerical
stability of the branch-and-cut algorithm. A primary reason for this is that the
solution to the LP relaxation is obtained by solving a system of equations in-
volving the basis matrix so that the condition number of this matrix determines
the multiplicative effect of numerical errors in the computed cuts.

After applying cutting planes or branching at a node, the resulting modified
LP is re-solved. In general, we expect that the newly added cuts or branching
inequalities will be binding at the new basic solution, which means that these
additional constraints are a factor in determining the conditioning of the basis.
Thus, measuring the condition number of these linear systems and how they
change as a result of the added cuts or branching inequalities should give some
insight into the numerical behavior of the simplex algorithm and ultimately
the branch-and-cut algorithm. In this paper, we are looking for overall trends
(how much does the addition of cuts generally degrade the conditioning), so
we consider these numbers in the aggregate and provide some suggestions for

2



0 500 1000 1500 2000

101

103

105

107

109

 begin
 separation

tr12-30

0 500 1000 1500 2000 2500

 begin
 separation

timtab2

0 50 100 150 200 250

 begin
 separation

egout

0

20000

40000

60000

80000

100000

120000obj
value

0

100000

200000

300000

400000
obj
value

0

50

100

150

200

250

300
obj
value

Figure 1: Condition number development (vertical axis, in log scale) for every
simplex iteration in the root node (horizontal axis) including re-optimizations
after adding cutting planes in multiple rounds (vertical lines). A plot of objective
values at each iteration is overlaid as a dashed gray line with the scales given
to the right of each plot.

visualizing this data.
Since we are are interested in an accurate picture, we use the 2-norm power

iteration method to determine condition numbers. This method provides an
accurate answer, though it is unlikely to be efficient enough for practical use.
An excellent discussion on algorithms for condition number estimation is given
in [6, Chapter 15].

3 Experiments

To study the effect of cuts on conditioning, we solved a subset of instances from
MIPLIB 3[2], MIPLIB 2003[1], and MIPLIB 2010[7] test sets, collecting detailed
statistics. The solver used was SCIP 4.0 with the LP solver SoPlex 3.0 [8] (with
slight modifications to allow access to the condition number information). We
used a time limit of one hour and a node limit of 10,000.

To get a clearer picture, we deactivated many advanced features, such as
primal heuristics, domain propagation, and conflict analysis. Furthermore, we
only generated Gomory cuts and disabled all other cutting plane generators.
While SCIP only applies cutting planes at the root by default, we enabled cut
generation at all nodes in order to study how this affects conditioning. Note
that although cuts are generated throughout the tree, SCIP still uses a scoring
strategy to determine which inequalities should actually be added.

In what follows, we first study how the condition number of the basis matrix
evolves at the root node, where the initial LP relaxation is solved and initial
rounds of cuts are added, and then study how the condition number of the basis
matrices are affected by branching and cutting as the algorithm progresses.

3.1 Root Node Analysis

In general, we expect the condition number of the basis matrix to degrade
as a result of operations performed in the root node and our initial compu-
tations are aimed at confirming this. Fig. 1 shows the condition number of
each basis matrix encountered during each iteration of the solution of the initial
LP relaxation and during each iteration of the re-solve occurring after adding
each round of cuts for selected instances from our test set. One can observe

3



that during the early iterations—especially of the initial relaxation in the root
node—the condition numbers of the basis matrices grow quickly. This is ex-
pected, as more structural variables are pivoted into the basis, while slack
variables are pivoted out. Since the initial basis is always the identity ma-
trix, which has condition number 1, the conditioning can only degrade at first.
After the initial optimization, the MILP solver tries to generate Gomory cuts.

2.5 5.0 7.5 10.0 12.5 15.0
last condition number of original LP (log 10)

2

4

6

8

10

12

14

co
nd

iti
on

 n
um

be
r i

nc
lu

di
ng

 c
ut

s 
(lo

g 
10

)

last after cutting phase
avg over cutting phase

Figure 2: Root node: Compari-
son of condition numbers of the
original LP and including cut-
ting planes.

This computation involves the basis matrix
itself, so an ill-conditioned basis matrix can
prevent precise calculation of the coefficients
of the new constraint. Moreover, adding these
new rows to the LP often deteriorates its con-
dition number even further as can be seen in
Fig. 1. This sample of instances clearly shows
the expected behavior.

Fig. 2 is a visualization of the difference
between the condition number of the optimal
basis of the original LP and two other num-
bers: (1) the average over all bases encoun-
tered during the cutting procedure and (2)
the condition number of the final optimal ba-
sis. While for some instances there is a slight
improvement after adding cuts, in most cases
addition of cuts leads to an increased condition number, as expected.

3.2 Tree Analysis

One way in which the addition of cuts can cause basis matrices to become
poorly conditioned is if the associated hyperplanes are nearly parallel; addition
of many such cuts may lead to a tailing off of the cutting plane algorithm as
many similar cuts are generated and the process stalls. Although branching also
involves imposing a special kind of “cut” to the resulting subproblems, these
branching constraints have a simple form (the coefficient vector is a unit vector),
which makes them quite attractive from a numerical point of view. In particular,
they are mutually orthogonal and unlikely to degrade the conditioning much in
general. As such, we may be tempted to hope that the addition of this special
kind of inequality may even improve conditioning.

branching cutting

10 1

100

101

102

m
ea

n 
co

nd
iti

on
 n

um
be

r r
at

io
 o

ve
r a

ll 
no

de
s

Figure 3: Effects of
branching and cutting

Despite the apparent plausibility of this hypothe-
sis, our experiments do not fully support it, though
they do show a significant difference between the ef-
fect of branching versus cutting, as expected. In
Fig. 3, we show how branching and cutting impact the
numerical stability. The left plot shows the average
relative change in the condition number as a result of
the addition of the branching constraints. Similarly,
the right plot shows the average relative change in
conditioning resulting from the addition of cuts. In
each case, we took the difference between the con-
dition numbers of the optimal basis matrices before
and after either branching or cutting. Each dot then
represents the average across all nodes for a given in-

4



slopes w/o cuts
mean: 0.0038

slopes with cuts
mean: 0.0101

0.10

0.05

0.00

0.05

0.10

sl
op

e 
of

 li
ne

ar
 re

gr
es

si
on

 fi
tti

ng

0 50 100 150 200
tree depth

7

8

9

10

11

12

m
ea

n 
co

nd
iti

on
 n

um
be

r (
lo

g 
10

)

instance: lectsched-4-obj
slope: 0.0114

Figure 4: Condition number development in the tree. Left: Distribution of
linear regression slopes of all instances in the test set. Right: Single instance
example.

stance. The bar represents the mean over all instances. While branching does
not seem to have a significant effect on average, adding cutting planes clearly
leads to an increase in the condition number. Thus, despite the observation
that branching does not appear to degrade the condition number in the same
way as cut generation, it does not appear to help it either.

In Fig. 4 we visualize how condition numbers degrade generally as a function
of the depth of a given node. The idea is to determine whether conditioning
generally degrades consistently as the tree gets deeper. The right figure plots
the average condition number across all nodes at a given depth, along with
a regression line showing the average degradation in the log of the condition
number per level in the tree for a single instance. The left figure shows the
distribution of slopes of this same linear regression across all instances both
with cuts and with a pure branch-and-bound.

It appears that in general, the condition number often has a strong positive
correlation with the tree depth if cuts are added throughout the solving process.
When cutting is disabled this effect is much less strong. One has to be aware
that the behavior of a single instance might be much different from what the
trend predicts.

4 Outlook

In this paper, we presented a preliminary exploration of the numerical behavior
of SCIP, a state-of-the-art MILP solver. In the future, we hope to do similar
explorations with other solvers to determine what the overall behavior is and
where additional control of the numerical stability might have an impact. The
eventual goal is to determine whether it is possible to more directly estimate
the impact of certain algorithmic choices on numerical behavior and whether
this could lead to improved control mechanisms.

Acknowledgments

The work for this article has been partly conducted within the Research Cam-
pus Modal funded by the German Federal Ministry of Education and Research
(fund number 05M14ZAM). The support of Lehigh University is also gratefully
acknowledged.

5



References

[1] T. Achterberg, T. Koch, and A. Martin. MIPLIB 2003. Operations Research
Letters, 34(4):1–12, 2006.

[2] R. E. Bixby, S. Ceria, C. M. McZeal, and M. W. P. Savelsbergh. An updated
mixed integer programming library: MIPLIB 3.0. Optima, (58):12–15, June
1998.

[3] P. Bürgisser and F. Cucker. Condition - The Geometry of Numerical Al-
gorithms, volume 349 of Grundlehren der math. Wissenschaften. Springer,
2013.

[4] M. Conforti, G. Cornuéjols, and G. Zambelli. Integer Programming.
Springer, 2014.

[5] M. Fischetti and D. Salvagnin. A relax-and-cut framework for gomory
mixed-integer cuts. Math Prog Comp, 3(2):79–102, 2011.

[6] N. J. Higham. Accuracy and Stability of Numerical Algorithms. 2002.

[7] T. Koch, T. Achterberg, E. Andersen, O. Bastert, T. Berthold, R. E. Bixby,
E. Danna, G. Gamrath, A. M. Gleixner, S. Heinz, A. Lodi, H. Mittelmann,
T. Ralphs, D. Salvagnin, D. E. Steffy, and K. Wolter. MIPLIB 2010. Math
Prog Comp, 3(2):103–163, 2011.

[8] S. J. Maher, T. Fischer, T. Gally, G. Gamrath, A. Gleixner, R. L. Gottwald,
G. Hendel, T. Koch, M. E. Lübbecke, M. Miltenberger, B. Müller, M. E.
Pfetsch, C. Puchert, D. Rehfeldt, S. Schenker, R. Schwarz, F. Serrano,
Y. Shinano, D. Weninger, J. T. Witt, and J. Witzig. The SCIP Optimization
Suite 4.0. Technical Report 17-12, ZIB, 2017.

[9] A. Zanette, M. Fischetti, and E. Balas. Lexicography and degeneracy: can
a pure cutting plane algorithm work? Math Prog, 130(1):153–176, 2011.

6


	1 Introduction
	2 Condition numbers
	3 Experiments
	3.1 Root Node Analysis
	3.2 Tree Analysis

	4 Outlook

